

## A CMS MEASUREMENT OF THE EFFECTIVE LEPTONIC WEAK MIXING ANGLE IN PP COLLISIONS AT $\sqrt{s} = 13$ TeV

APRIL 10<sup>th</sup>, 2024

CMS-SMP-22-010

### SIMONE AMOROSO (DESY)

### EW PRECISION MEASUREMENTS

- With the Higgs mass  $m_h$  known, the EW sector of the SM is overconstrained The three best measured parameters ( $\alpha(0)$  scheme) are related through:
  - $\alpha = 1/137.035999139(31)$
  - $G_F = 1.1663787(6) \times 10^{-5} \,\mathrm{GeV}^{-2}$
  - $m_Z = 91.1876(21) \text{ GeV}$



Higher order corrections modify these relations:



D

$$\longrightarrow m_W^2 \left( 1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha(0)}{\sqrt{2}G_F}$$
 at leading order

- Measuring one observable one can predict another
- Measuring more allows internal consistency checks of the SM
  - Test new physics in EW loops





### EW precision measurements - $\ensuremath{\mathsf{M}}_W$



Extremely challenging at hadron colliders

- New CDF measurement achieves 9 MeV uncertainty
  - in tension with other experiments and the SM





### THE ELECTROWEAK MIXING ANGLE



| Scheme                                     | Notation            | Value   |
|--------------------------------------------|---------------------|---------|
| On-shell                                   | $s_W^2$             | 0.22339 |
| $\overline{\mathrm{MS}}$ Z pole            | $\widehat{s}_Z^2$   | 0.23122 |
| $\overline{\mathbf{MS}}  \mathbf{Q}^2 = 0$ | $\widehat{s}_0^{2}$ | 0.23863 |
| Effective angle                            | $ar{s}_\ell^2$      | 0.23155 |











# EW precision measurements - $\sin^2 \theta_{\rm eff}^l$



World average precision of  $\delta \sin^2 \theta_{\text{eff}}^l = 16 \cdot 10^{-5}$ , still dominated by lepton colliders

Discrepancy between LEP  $A_{\rm h}^{0}$ and SLD  $A_1$  source of much speculation in the past

Results from the LHC Run-1 reached Tevatron precision





## THE GLOBAL EW FIT

- In the recent past, the global electroweak fit was used to predict the masses of the top quark and Higgs boson before their discovery
- Now, perform stringent test of the self consistency of the SM
- Relations between electroweak observables can be predicted now at 2-loop level
- A very good consistency observed  $\chi^{2}_{min}$  / ndf = 16.62 / 15 p value = 0.34

Discarding the new CDF mW measurement



(\*) comparison to PDG value, not included in fit as input parameter 6



### THE GLOBAL EW FIT





### PRECISION TARGETS

Indirect determinations of  $m_W$  and  $\sin^2 \theta_{eff}^l$  are more precise than current experimental measurements

### Indirect precision on:

$$\delta m_W = 8 \text{ MeV}$$

$$\delta \sin^2 \theta_{\text{eff}}^l = 6 \cdot 10^{-5}$$

Can we achieve these level of precision at the LHC ?



Calls for measuring  $m_W$  with < 10 MeV precision

 $20 \cdot 10^{-5}$  precision on  $\sin^2 \theta_{\rm eff}^l$ corresponds 10 MeV uncertainty in m<sub>W</sub>



 $\sin^2 \theta_{\rm eff}^l$  and the new CDF MW







## STATUS OF THE LHC



| THE LHC          | IS AN "E |
|------------------|----------|
| Particle         | Pr       |
| Higgs boson      | 7.7 n    |
| Top quark        | 275 r    |
| Single top quark | 50 m     |
| Z boson          | 2.8 k    |
| W boson          | 12 b     |
| Bottom quark     | ~40 t    |

### EVERYTHING FACTORY"

### roduced in 139 fb<sup>-1</sup> at √s = 13 TeV

| nillions  |                       |
|-----------|-----------------------|
| nillions  |                       |
| nillions  |                       |
| oillions  | 290 millions leptonic |
| oillions  | 3.7 billions leptonic |
| trillions |                       |

From A. Hoecker

### STANDARD MODEL AT THE LHC

### Standard Model Production Cross Section Measurements



Discovery of the Higgs 

- Precision measurements of QCD and EW processes
- Exploration of **BSM** physics via direct and indirect searches



## STANDARD MODEL AT THE LHC

### Standard Model Production Cross Section Measurements



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/

Precision measurements of Higgs and Standard Model processes

Observation of very rare SM processes

- Direct BSM searches
- Indirect BSM searches through precision measurements



# DRELL-YAN MEASUREMENTS AT THE LHC







Provide plenty of statistics for precise lepton calibrations

Measured inclusively and differentially over a wide phase-space and at different collision energies

Can now be predicted up to N<sup>3</sup>LO in QCD and NLO in EW







$$1 + \cos^2 \theta_{\ell\bar{\ell}} + A_4 \cos \theta_{\ell\bar{\ell}}$$

$$\frac{3}{8}A_{FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$



## AFB AND THE COLLINS-SOPER FRAME

0.6

0.4

0.2

-0.2

-0.4

-0.01



- The quark direction is unknown, inferred from Z-boson direction
  - valence quarks have on average larger Bjorken-x than antiquarks
  - Dilutes the measured asymmetry
- Parton-level asymmetry measured at particle-level, large sensitivity to proton structure (PDFs)

Whether an event is forward or backward is defined by the angle of the negatively charged lepton in the Collins-Soper frame

$$\cos\theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{M^2(M^2 + P_T^2)}} \times \frac{P_z}{|P_z|}$$



- state quarks and on the dilepton rapidity and mass



## $A_4/A_{FB}$ AND PDFS

The forward-backward asymmetry and A4 depend strongly on the initial

At large rapidities the asymmetry is larger as is the sensitivity to  $\sin^2 \theta_{eff}^l$ 

Can exploit the different dependence on y, m to disentangle PDF effects



### NOT ALL EVENTS ARE THE SAME: EVENT-WEIGHTED AFB

- Can gain by weighting each selected event depending on their  $\cos \theta_{CS}$ Ø



Events with different  $\cos \theta_{CS}$  have different sensitivities to the weak mixing angle

- Denominator (normalization) weight
- Numerator (asymmetry) weight
- $A_0 = A_0(m, y, p_T)$  from angular coefficients decomposition of the Z cross-section

$$egin{aligned} &=rac{3}{8}\Big(1+\cos^2 heta^*+rac{A_0}{2}(1-3\cos^2 heta^*)+A_4\cos heta^*\Big)\ &= A_{
m FB}=rac{3}{8}rac{N_{
m F}-N_{
m B}}{D_{
m F}+D_{
m B}} \end{aligned}$$



# PRESENT LHC DETERMINATIONS OF $\sin^2 heta_{ m eff}^l$





Measurements dominated by statistical and PDFs uncertainties

CMS:  $0.23101 \pm 0.00036$  (stat)  $\pm 0.00018$  (syst)  $\pm 0.00016$  (th)  $\pm 0.00031$  (PDF) ATLAS:  $0.23140 \pm 0.00021$  (stat)  $\pm 0.00016$  (syst)  $\pm 0.00024$  (PDF)

- ATLAS-CONF-2018-037
  - $0.23152 \pm 0.00016$
  - $0.23221 \pm 0.00029$
  - $0.23098 \pm 0.00026$
  - $0.23148 \pm 0.00033$
  - $0.23142 \pm 0.00106$
  - $0.23101 \pm 0.00053$
  - $0.23080 \pm 0.00120$
  - $0.23119 \pm 0.00049$
  - $0.23166 \pm 0.00043$
  - $0.23140 \pm 0.00036$

- ATLAS from a fit to  $A_4(y,m)$
- CMS from a fit to  $A_{FB}^{W}(y,m)$ D
  - Comparable precision but ATLAS adds electrons reconstructed in the forward calorimeter
- PDF uncertainties constrained in the interpretations but remain very large





## THE NEW CMS MEASUREMENT

### 

- $\triangleright$
- full phase-space for future reinterpretations and combinations
- $\triangleright$ including electrons reconstructed in the forward calorimeters
- latest advances in theoretical calculations (QCD and EW)

New CMS measurement of the  $\sin^2 heta_{
m eff}^l$  dileptonic (electron and muon) events

Use 137 fb<sup>-1</sup> of *pp* collision data collected in Run2 at  $\sqrt{s} = 13$  TeV

Fit weighted A<sub>FB</sub> in mass and rapidity, but additionally unfold A<sub>4</sub>(y,m) in

Extended to higher dilepton rapidities with new central-forward channel

Improve the interpretation model using modern PDF sets and incorporating



- Events are selected using single- and double-lepton triggers to maximize the data sample
- Several dilepton categories are defined:

- $\mu\mu$ , ee: at least two good central leptons with opposite charges passing the medium identification (criteria
- eg, eh: at least one central electron passing tight identification and one medium forward electron

| Channel | 1               | 1                  | min $p_{\mathrm{T}}^{\mathrm{lead}}$ (GeV) |
|---------|-----------------|--------------------|--------------------------------------------|
| μμ      | 0.00-           | 20                 |                                            |
| ee      | 0.00-           | -2.50              | 25                                         |
|         | $ \eta_{ m e} $ | $ \eta_{\rm g,h} $ | min $p_{\rm T}^{\rm e}$ (GeV)              |
| eg      | 0.00-2.50       | 2.50-2.87          | 30                                         |
| eh      | 1.57 - 2.50     | 3.14-4.36          | 30                                         |

Dedicated ID developed for forward electrons reconstruction using either shower shapes information or jet constituents

## EVENT SELECTION

**Central-Central:** 



 $\mu\mu$ , ee





Forward EM calo Forward HAD calo

### LEPTON EFFICIENCIES AND CHARGE MIS-ID

- Lepton selection efficiencies are evaluated with tag-and-probe (T&P) method using Z events.
  - Measured separately for reconstruction, identification, and trigger selection
- The (small) electron charge misidentification rates are measured as a function of the electron's p<sub>T</sub> and η
  - In a sample of same-sign and opposite-sign dielectrons with a maximum-likelihood fit.



## SIGNAL MONTE CARLO

- A large signal sample of 1.5B simulated Drell-Yan events is generated using the D Zj-MiNNLOPS program in Powheg-Box
- State-of-the-art event generator at NNLO QCD D
- Matched to Pythia8 for parton shower  $\triangleright$ hadronisation as well as initial-state photon radiation (QED ISR)
- Further interfaced to PHOTOS++ for final-state photon radiation (QED FSR)
- Small mismodelling is observed in D the description of the dilepton  $p_T$  distribution
- Corrected reweighing the MC to data in bins of dilepton rapidity





### BACKGROUNDS

### Several sources of backgrounds to isolated lepton pairs

Top backgrounds 2-10% contribution (largest at high  $\cos \theta_{CS}$ )



Photon induced production (formally an NLO EW contribution) 2-5% contribution, largest at high mass





- - b-, c-quark with leptonic meson decays
  - Misidentification of hadron jets as electrons
- Complex to simulate, estimated using data Ø



### MULTIJET BACKGROUND

QCD multijet production has very large cross-sections, contributes to background via



Multijet enriched regions inverting ID/reco selection

Transfer factor evaluated in samples of same-charge or different-flavor dileptons

Good agreement seen in dedicated control regions





## W+JETS BACKGROUND

W+jets background also taken from Monte Carlo, but in the forward channels corrected using scale factors derived in data control regions



 $cos\theta_{\mu g}$ 





## CONTROL DISTRIBUTIONS

A very good agreement between data and simulation can be seen in the dilepton rapidity and mass distribution for the various channels and years







## CONTROL DISTRIBUTIONS

A very good agreement between data and simulation can be seen in the dilepton rapidity and mass distribution for the various channels and years





## CONTROL DISTRIBUTIONS

A very good agreement between data and simulation can be seen in the dilepton rapidity and mass distribution for the various channels and years



 $\cos \theta_{\mu\mu}$ 





## MEASUREMENT BINNING

- The measurement is performed in 9 bins of dilepton rapidity, with y up to 3.4 and in 11 bins of dilepton mass, with y between 54 GeV and 150 GeV
- A different binning is used to determine the unfolded  $A_4(y, m)$ , driven by the dilepton mass resolution

| channel                   |      |      |      |         |        | bin b    | oundar             | ries    |        |       |       |       | # of bins     |
|---------------------------|------|------|------|---------|--------|----------|--------------------|---------|--------|-------|-------|-------|---------------|
| $ y_{\ell\ell} $          | 0.0  | 0.4  | 0.8  | 1.2     | 1.6    | 2.0      | 2.4                | 2.7     | 3.0    | 3.4   |       |       | 9             |
| $\mu\mu, ee$              | Ι    | Ι    | Ι    | Ι       | Ι      | Ι        | Ι                  |         |        |       |       |       | 6             |
| eg                        |      |      |      | Ι       | Ι      | Ι        | Ι                  | Ι       |        |       |       |       | 4             |
| eh                        |      |      |      |         |        | Ι        | Ι                  | Ι       | Ι      | Ι     |       |       | 4             |
|                           |      |      |      |         |        |          |                    |         |        |       |       |       |               |
| $m_{\ell\ell}~({ m GeV})$ | 54.0 | 66.0 | 76.0 | 82.0    | 86.0   | 89.5     | 92.7               | 96.0    | 100.0  | 106.0 | 116.0 | 150.0 | 11            |
|                           |      |      |      |         | Obs    | erved A  | $A^w_{ m FB}(y,r)$ | n) fit  |        |       |       |       |               |
| $\mu\mu, ee$              | Ι    | Ι    | Ι    | Ι       | Ι      | Ι        | Ι                  | Ι       | Ι      | Ι     | Ι     | Ι     | $11 \times 6$ |
| $\boldsymbol{eg,eh}$      |      | Ι    | Ι    | Ι       | Ι      | Ι        | Ι                  | Ι       | Ι      | Ι     | Ι     |       | 9 	imes 4     |
|                           |      |      |      | $A_4(Y$ | (,M) u | nfolding | g and ii           | nterpre | tation |       |       |       |               |
| 0.0 < y < 1.2             | Ι    | Ι    | Ι    | Ι       | Ι      | Ι        | Ι                  | Ι       | Ι      | Ι     | Ι     | Ι     | $11 \times 3$ |
| 1.2 < y < 2.4             | Ι    | Ι    | Ι    |         | Ι      |          |                    | Ι       |        | Ι     | Ι     | Ι     | 7	imes 3      |
| 2.4 < y < 3.4             |      | Ι    |      |         | Ι      |          |                    | Ι       |        |       | Ι     |       | 3 	imes 3     |

The observed reconstructed weighted  $A_{FB}(y, m)$  is used for the sin<sup>2</sup>  $\theta_{eff}^{l}$  extraction



### INTERPRETATION MODEL





### WEAK CORRECTIONS IN POWHEG-BOX NLO

- Remaining electroweak corrections from virtual electroweak loops
  - Can be estimated separately from photonic corrections in a gauge-invariant way
- Calculated at NLO with the Powheg Z\_EW-BMNNPV Monte Carlo program renormalization scheme with  $(G_F, \sin^2 \theta_w^{\overline{MS}}(\mu), m_Z)$  as inputs

  - Vary  $\sin^2 \theta_{w}^{\overline{MS}}(\mu)$  for a consistent direct determination with template fits
  - Universal two-loop higher order corrections to  $\Delta \alpha$ ,  $\Delta \rho$  included
  - Treatment of unstable resonance in the **Complex-Mass-Scheme**
  - Corrections benchmarked against many other codes in LHCEWWG activities
- Implemented as weights on top of NLO QCD + shower events, used to reweigh MiNNLOPS





### WEAK UNCERTAINTIES NLD



Several sources of uncertainties are considered on the NLO weak corrections

Comparison of the complex-mass and pole scheme for the treatment of the finite width

Comparison between the  $(G_F, m_Z, \sin^2 \theta_{eff}^l)$ and  $(\alpha(m_Z), m_Z, \sin^2 \theta_{eff}^l)$  input EW schemes

Parametric uncertainties on the measured values of  $m_t$  and  $m_Z$  (others negligible)

![](_page_32_Figure_7.jpeg)

![](_page_32_Figure_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

![](_page_33_Figure_0.jpeg)

lyl-m bin

### A<sub>FB</sub> FIT

 $\sin^2 \theta_{eff}^l$  extracted in a simultaneous fit to  $A_{FB}(y, m)$  in all measurement bins and channels  $\chi^2(s,\vec{\theta}) = |\vec{\theta}|^2 + \sum_r \sum_c \left( D_{rc} - T_{rc}(s,\vec{\theta}) \right)^T V_{rc}^{-1} \left( D_{rc} - T_{rc}(s,\vec{\theta}) \right)$ 

Data

Theory prediction

![](_page_33_Figure_7.jpeg)

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

![](_page_34_Picture_1.jpeg)

## AFB FIT

Theory prediction

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

### A4 MEASUREMENT

## 

![](_page_35_Figure_2.jpeg)

Additionally,  $A_4(y, m)$  is measured from the reconstructed  $\cos \theta_{CS}$  distribution Total fit  $\chi^2$  = 14839 for total of 14205 measurement bins and 101 free parameters

![](_page_35_Picture_4.jpeg)

### A4 MEASUREMENT

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_4.jpeg)

## PARTON DISTRIBUTION FUNCTIONS DEPENDENCE OF A4

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_2.jpeg)

### CHOICE OF PARTON DISTRIBUTION FUNCTIONS

- All PDF sets provide an equally good description of the data
- PDF spread and uncertainties reduced in the fit

![](_page_38_Figure_3.jpeg)

| PDF     | $A_{\rm FB}$      | (816 bins)                      | $A_4$ (63 bins)   |                              |  |  |
|---------|-------------------|---------------------------------|-------------------|------------------------------|--|--|
|         | $\chi^2_{ m min}$ | $\sin^2 	heta_{	ext{eff}}^\ell$ | $\chi^2_{ m min}$ | $\sin^2 	heta^\ell_{ m eff}$ |  |  |
| NNPDF31 | 724.7             | $23121\pm29$                    | 58.5              | $23120\pm30$                 |  |  |
| NNPDF40 | 730.5             | $23133\pm24$                    | 62.6              | $23133\pm25$                 |  |  |
| MSHT20  | 735.8             | $23123\pm30$                    | 71.0              | $23120\pm32$                 |  |  |
| CT18    | 728.4             | $23170\pm35$                    | 62.2              | $23170\pm36$                 |  |  |
| CT18Z   | 730.7             | $23157\pm31$                    | 61.3              | $23155\pm32$                 |  |  |
| CT18A   | 730.3             | $23167\pm28$                    | 63.6              | $23167\pm28$                 |  |  |
| CT18X   | 728.5             | $23173\pm30$                    | 61.8              | $23177\pm30$                 |  |  |
|         |                   |                                 |                   |                              |  |  |

- But  $\sin^2 \theta_{\text{eff}}^l$  values with different PDFs are only consistent at the ~1 sigma level
- Use CT18Z as covering the central values obtained with the other sets

![](_page_38_Picture_7.jpeg)

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

## HESSIAN PROFILING OF PDFS

![](_page_39_Figure_1.jpeg)

Let the data shift and constrain (a linear combination of) them

The values of the nuisance parameters at the minimum define a new profiled PDF with (generally) smaller uncertainties

$$f'_0 = f_0 + \sum_k b_{k,\text{th}}^{\min} \left( \frac{f_k^+ - f_k^-}{2} + b_{k,\text{th}}^{\min} \frac{f_k^+ + f_k^- - 2f_0}{2} \right)$$

![](_page_39_Picture_5.jpeg)

This reduction in PDF uncertainties happens as long as their covariance is included in the fit, even if the nuisance parameters are not explicitly used

![](_page_39_Picture_8.jpeg)

### PRE- AND POST-FIT PDFS COMPARISON

![](_page_40_Figure_1.jpeg)

The profiled PDFs are pulled by less than one sigma wrt the original ones CT18Z is the least pulled of the PDF sets considered (corroborating our choice)

![](_page_40_Picture_4.jpeg)

### CHANNELS AND YEARS COMPATIBILITY

![](_page_41_Figure_2.jpeg)

![](_page_41_Picture_3.jpeg)

Many consistency checks performed before unblinding the central value of  $\sin^2 heta_{
m eff}^l$ 

|   | _ | _ |
|---|---|---|
| _ | _ |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   | _ | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   | _ | _ |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   | - |
|   |   | - |

|   | _ | _ |
|---|---|---|
| _ |   | _ |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   | _ |   |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   | _ | _ |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   |   |
|   |   |   |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   |   | _ |
|   | _ | _ |
|   |   | _ |
|   |   | _ |
|   |   |   |
|   | _ |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |

![](_page_41_Picture_8.jpeg)

# $\sin^2\theta_{\rm eff}^l$ consistency and error breakdown

From weighted forward-backward asymmetry

| $^{\mathrm{ch}}$ | $\chi^2$ | $\mathbf{nbin}$ | p(%) | $\sin^2	heta_{ m eff}^\ell$ | $\pm$ | $\sigma$ | stat | $\exp$ | theo | pdf | $\mathbf{mc}$ | $\mathbf{bkg}$ | $\operatorname{eff}$ | $\operatorname{calib}$ | other |
|------------------|----------|-----------------|------|-----------------------------|-------|----------|------|--------|------|-----|---------------|----------------|----------------------|------------------------|-------|
| $\mu\mu$         | 241.3    | 264             | 82.7 | 23146                       | $\pm$ | 38       | 17   | 17     | 7    | 30  | 13            | 3              | 2                    | 5                      | 4     |
| ee               | 256.7    | 264             | 59.8 | 23176                       | $\pm$ | 41       | 22   | 18     | 7    | 30  | 14            | 4              | <b>5</b>             | 3                      | 7     |
| eg               | 119.1    | 144             | 92.8 | 23257                       | $\pm$ | 61       | 30   | 40     | 5    | 44  | 23            | 11             | 12                   | 19                     | 9     |
| eh               | 104.6    | 144             | 99.3 | 23119                       | $\pm$ | 48       | 18   | 33     | 9    | 37  | 14            | 10             | 16                   | 18                     | 6     |
| ll               | 730.7    | 816             | 98.4 | 23157                       | $\pm$ | 31       | 10   | 15     | 9    | 27  | 8             | 4              | 6                    | 6                      | 3     |

### From differential unfolded A<sub>4</sub>

| Channel  | n(bins) | $\chi^2_{ m min}$ | p(%) | $\sin^2 	heta^\ell_{ m eff}$ | $\pm$ | $\sigma$  |
|----------|---------|-------------------|------|------------------------------|-------|-----------|
| $\mu\mu$ | 54      | 59.7              | 24.6 | 23146                        | ±     | 39        |
| ee       | 54      | 47.0              | 70.7 | 23192                        | $\pm$ | <b>43</b> |
| eg       | 12      | 11.1              | 43.6 | 23251                        | $\pm$ | 60        |
| eh       | 12      | 8.4               | 67.3 | 23129                        | $\pm$ | <b>47</b> |
| ll       | 63      | 61.3              | 50.3 | 23155                        | ±     | 32        |

.

![](_page_42_Picture_7.jpeg)

![](_page_43_Figure_2.jpeg)

### RESULTS

The final combined result for  $\sin^2 \theta_{eff}^l$ , using CT18Z parton densities is:

![](_page_43_Picture_6.jpeg)

## PROSPECTS FOR HIGH-LUMINOSITY In the High-Luminosity phase of the LHC we expect to collect up

### to 3 ab<sup>-1</sup> of integrated luminosity

![](_page_44_Figure_2.jpeg)

|                                                    | ATLAS $\sqrt{s} = 8$ TeV | ATLAS $\sqrt{s} = 14 \text{ TeV}$ | ATLAS $\sqrt{s} = 14$ T   |
|----------------------------------------------------|--------------------------|-----------------------------------|---------------------------|
| $\mathcal{L} [\mathrm{fb}^{-1}]$                   | 20                       | 3000                              | 3000                      |
| PDF set                                            | MMHT14                   | CT14                              | PDF4LHC15 <sub>HL-L</sub> |
| $\sin^2 	heta_{ m eff}^{ m lept}  [	imes 10^{-5}]$ | 23140                    | 23153                             | 23153                     |
| Stat.                                              | $\pm 21$                 | $\pm 4$                           | $\pm 4$                   |
| PDFs                                               | $\pm 24$                 | $\pm 16$                          | $\pm 13$                  |
| Experimental Syst.                                 | $\pm 9$                  | $\pm 8$                           | $\pm 6$                   |
| Other Syst.                                        | $\pm 13$                 | -                                 | -                         |
| Total                                              | $\pm 36$                 | $\pm 18$                          | $\pm 15$                  |

https://arxiv.org/abs/1902.04070

![](_page_44_Figure_5.jpeg)

![](_page_44_Figure_6.jpeg)

- Thanks also to extended tracker coverage in the forward region expect to half the current uncertainties
  - Another factor of two could possibly come from improved PDF determinations

![](_page_44_Picture_11.jpeg)

![](_page_44_Picture_12.jpeg)

![](_page_45_Figure_1.jpeg)

https://inspirehep.net/literature/2715747

- Determine the weak mixing angle as a function of the scale in the MSbar (running) scheme
- Enhance sensitivity to high-energy loop effects

### FURTHER POSSIBILITIES

Determine effective vector/axial couplings for each fermion type

### LHC can set the most stringent constraints for light-quarks

https://inspirehep.net/literature/2635122

![](_page_45_Figure_9.jpeg)

![](_page_45_Figure_10.jpeg)

![](_page_45_Picture_11.jpeg)

- $\sin^2 \theta_{Aff}^l = 0.23157 \pm 0.00031$  (comparable precision to LEP/SLD)
- PDFs are now limiting both precision and accuracy of the measurement
- Ø assuming some not too unreasonable improvements on the PDFs

### SUMMARY

New CMS measurement of differential  $A_{FB}(y, m)$  and  $A_4$  using Run2 13 TeV data

Results in the most precise measurement of  $\sin^2 \theta_{eff}^l$  at a hadron collider

Central value in agreement with previous measurements and with SM prediction

Potential for the High-Luminosity LHC to reach the SM precision of  $6 \cdot 10^{-5}$ 

![](_page_46_Picture_12.jpeg)

BACKUP

![](_page_47_Picture_1.jpeg)

### ANGULAR COEFFICIENTS DECOMPOSITION

### Angular Coefficients

Complete 5d cross section can be decomposed into 9 harmonic polynomials & 9 coefficients A<sub>i</sub>(m,y,pT) Description is complete to all orders in QCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}}$$

$$\begin{cases} (1+\cos^{2}\theta)+\frac{1}{2}\,A_{0}(1-3\cos^{2}\theta)+A_{1}\,\sin2\theta\,\cos\phi \\ +\frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos2\phi +A_{3}\,\sin\theta\,\cos\phi +A_{4}\,\cos\phi \\ +A_{5}\,\sin^{2}\theta\,\sin2\phi +A_{6}\,\sin2\theta\,\sin\phi +A_{7}\,\sin\theta\,\sin\phi \end{cases}$$

A<sub>3</sub> and A<sub>4</sub> related to  $sin^2\theta_{eff}$ 

![](_page_48_Figure_5.jpeg)

$$A_{FB} = \frac{8}{3}A_4$$

in full phase space

(A<sub>3</sub> only contributes for  $p_{T,Z} > 100$  GeV)

![](_page_48_Picture_9.jpeg)

![](_page_49_Figure_1.jpeg)

### HL-LHC PROJECTIONS

| Parameter                    | Current<br>precision | HL-LHC<br>expected |
|------------------------------|----------------------|--------------------|
| mH                           | 170 MeV              | 10-20 MeV          |
| $sin^2 	heta_{eff}$          | 50 10 <sup>-5</sup>  | <b>15 10</b> -5    |
| mw                           | 20 MeV               | 4 MeV              |
| m <sub>t</sub> <sup>MC</sup> | 5 <b>00 MeV</b>      | 200 MeV            |
| mt <sup>pole</sup>           | ~1 GeV               | < 5 <b>00 Me</b> V |
| αs(mz)                       | ~2%                  | ~1%                |

![](_page_49_Picture_4.jpeg)

- QCD scale variations and EW uncertainties are not included in the chi2 as nuisances but evaluated externally ("offset method")
- The statistical uncertainty of the obtained sin2  $\theta$  eff also reflects, in addition to the data-fit covariance matrix, the covariance matrix of the MC samples, lepton calibrations, efficiencies, and prefiring weights.
- individual or grouped systematic uncertainties are calculated by fixing the corresponding nuisance parameter(s) to the best-fit values obtained in the combined fit and seeing by how much the uncertainty decreases: the quadratic difference from the nominal uncertainty is taken as the uncertainty under consideration

### SYSTEMATIC UNCERTAINTIES

![](_page_50_Picture_5.jpeg)

### TEMPLATE FIT

![](_page_51_Figure_1.jpeg)

- = pseudodata stat. + syst. unc.
- = Theory up/down template (prefit)

Include experimental  $\beta_{j, \exp}$  and PDF unc.  $\beta_{\mathrm{th}}$  in the fit:

$$\chi^{2}(\beta_{\exp},\beta_{th}) = \sum_{i=1}^{N_{data}} \frac{(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j,\exp} - \sigma_{i}^{th} - \sum_{k} \Gamma_{ik}^{th} \beta_{k})}{\Delta_{i}^{2}}$$
$$+ \sum_{j} \beta_{j,\exp}^{2} + \sum_{k} \beta_{k,th}^{2}$$

![](_page_51_Picture_6.jpeg)

![](_page_51_Picture_7.jpeg)

![](_page_52_Picture_0.jpeg)

CMS Experiment at the LHC, CERN Data recorded: 2017-Jun-26 03:27:24.199168 GMT Run / Event / LS: 297503 / 410616674 / 223

![](_page_52_Picture_3.jpeg)

![](_page_52_Picture_4.jpeg)

## HIGH-LUMINOSITY (HL) - LHC

![](_page_53_Figure_1.jpeg)

- Fully approved in 2016, technology available, construction well underway!

![](_page_53_Picture_5.jpeg)

# Present LHC determinations of $\sin^2 \theta_{\mathrm{eff}}^l$

![](_page_54_Figure_1.jpeg)

Pull

-

![](_page_54_Figure_4.jpeg)

**ATLAS** Preliminary 8 TeV, 20.2 fb<sup>-1</sup>

— MMHT14

![](_page_54_Picture_9.jpeg)

LHC measurements rely on the correlation pattern in the PDFs to reduce their impact on the weak mixing angle

![](_page_55_Figure_3.jpeg)

# PDFs in $\sin^2 \theta_{\rm eff}^l$ - CMS

 $\sin^2 \theta_{eff}^{\ell} = 0.23101 \pm 0.00036$  (stat)  $\pm 0.00018$  (syst)  $\pm 0.00016$  (theo)  $\pm 0.00031$  (PDF).

MSHT14/NNPDF30 spread of  $6 \cdot 10^{-4}$ 

![](_page_55_Picture_7.jpeg)

![](_page_55_Picture_8.jpeg)

## $0.23140 \pm 0.00021$ (stat.) $\pm 0.00024$ (PDF) $\pm 0.00016$ (syst.)

![](_page_56_Figure_2.jpeg)

PDFs in  $\sin^2 \theta_{\rm eff}^l$  - ATLAS

|                                     | CT10                          | CT14    | MMHT14  | NNPDF31 |
|-------------------------------------|-------------------------------|---------|---------|---------|
| $\sin^2 \theta_{\text{eff}}^{\ell}$ | 0.23118                       | 0.23141 | 0.23140 | 0.23146 |
|                                     | Uncertainties in measurements |         |         |         |
| Total                               | 39                            | 37      | 36      | 38      |
| Stat.                               | 21                            | 21      | 21      | 21      |
| Syst.                               | 32                            | 31      | 29      | 31      |

Large uncertainty from envelope of PDFs,  $3 \cdot 10^{-3}$ , but using old PDF sets

![](_page_56_Picture_7.jpeg)

Forward-backward asymmetry in Drell-Yan probe of the V-A structure of weak interactions

At high-masses, probe extra massive gauge bosons

![](_page_57_Figure_3.jpeg)

# HIGH-MASS AFB IN $Z \rightarrow l^+ l^-$

![](_page_57_Figure_6.jpeg)

- Measurement in agreement with NLO QCD
- Derive limits on Z' in the Sequential SM
- Excludes  $m_{Z'} < 4.4$  TeV at 95% CL
- Comparable with ~ 5 TeV from direct searches D

![](_page_57_Picture_11.jpeg)

![](_page_57_Picture_12.jpeg)