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UNCERTAINTY QUANTIFICATION IN ANN
• develop reliable and robust models while retaining high performance is one of the critical aspects that bridges the gap between 

theoretical predictions and real-world applications in DL


• understanding and quantifying uncertainty is not just academic, but a mandatory requirement for deploying reliable and 
transparent AI systems in several fields of applied AI: natural sciences, healthcare, autonomous driving, financial forecasting, …


• Definition: 


• HQ in DNN: deploy DL systems that does not only make predictions but also provide measures of confidence in their 
predictions


• program of this lecture and associated hands-on:


• discuss foundational understanding of the various types of uncertainties in DNN


• brief introduction to methodologies for quantifying and managing these uncertainties in neural networks (ensemble methods, 
Bayesian-NN, conformal methods), and discuss the implications and applications of such practices in real-world scenarios


• apply in a simple practical use-case the principal uncertainty methods discussed during the course
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UNDERSTANDING UNCERTAINTY OF ANNs
• in practice to provide an uncertainty assessment for an ANN means to return 

a distribution over a prediction instead of a point prediction 
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Classification:

y

y = 0,1

Regression:

x2

output: label + confidence

output: mean + variance

p(y |x) x1

x



DNN UNCERTAINTY AND ROBUSTNESS OF AN ANN

• immagine we train a CNN for the task of recognizing cat & dogs, we know that a state-of-the-art vision model can 
solve the task with high accuracy measured on I.I.D. (Independent and Identically Distributed) samples, eg samples 
for which 


• what happens if in prediction we feed the model with O.O.D. (Out-Of-Distribution) samples, eg samples for which 
 (in physics we call these: sources of systematic uncertainty)? For example an image 

containing a horse … 


• in general a typical NN model trained with softmax output will still predicts with a high probability score the 
unseen image to belong to one of the two cat/dog classes


• model uncertainty can help deciding when to trust the model in such common situations

ptest(x, y) = ptrain(x, y)

ptest(x, y) ≠ ptrain(x, y)
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EXAMPLE OF ROBUSTNESS AGAINST OOD

5J.Z.Liu et al., arXiv:2006.10108 [cs.LG]

positive 
class data

negative 
class data

OOD data

https://arxiv.org/abs/2006.10108


Z → qq̄

Z + Jets

W + Jets

tt̄

Z → τ+τ−

HZ

unexpected 
NP signal

OPEN-SET RECOGNITION

the model should be able to say that 
the specific input doesn’t belong to 

any of these categories 
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EXAMPLE OF SOURCES OF O.O.D. SHIFTS IN DATA
• several sources: ex. temporal changes, geographical variations, sampling bias, label inconsistencies, sensor/detector 

changes, over-aggressive/wrong data-augmentation, novelties or rare events, adversarial attacks, data corruption/data 
loss during transmission/storage/handling of the data …


• different possible effects on the dataset:


• covariate shift in a dataset: the distribution of the input variables (covariates)  in the training data is different from 
the distribution of the input variables in the test or real-world application data. However, the conditional distribution 
of the output variable given the input variables  remains the same across the training and test datasets → 
even if the inputs look different between training and testing, the way the output relates to the input doesn't change


• open-set samples: new categories my appear at inference time


• sub-population shift: frequencies of data of sub-populations changes during inference 


• label shift: distribution of the labels  changes while  is fixed, eg while the overall proportion of each class 
in the target variable changes, the way the features relate to the target within each class does not

p(x)

p(y |x)

p(y) p(y |x)
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TYPE OF UNCERTAINTIES IN ANNs
• ANN uncertainty is usually decomposed in three components:


1. approximation uncertainty: related to the expressive power / assumptions of the model


• the model is not sufficiently expressive to model the data-to-label association


• the data are not aligned with the inductive biases of the model 


• example: the model assumes rotational invariance of the input while the input is not


• in general is not reducible (w/o changing the model)
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TYPE OF UNCERTAINTIES IN ANNs
2. model uncertainty (epistemic uncertainty): accounts for the uncertainty in the model 

parameters, it arises when the model is not suitably trained due to the lack of training data


• with a finite training set many models can fit the  
training data well, epistemic uncertainty captures  
our ignorance about which model actually generated  
the training set data


• in general is reducible as vanishes in the limit of infinite data (assuming model identifiability)
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TYPE OF UNCERTAINTIES IN ANNs
3. data-inherent uncertainty (aleatoric uncertainty): captures inherent noise in the observations (ex. sensor 

noise, motion noise, labelling noise, …)


• further classified in:


• homoscedastic uncertainty: uncertainty that stays  
constant across the input space


• heteroscedastic uncertainty: uncertainty that  
varies with the input (often occurs when there is a large  
difference among the sizes of the observations)


• in general is not reducible adding additional data to the training set, but can be reduced with additional 
features/views describing the data
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METRICS TO EVALUATE/CORRECT QUALITY OF AN UNCERTAINTY 
ESTIMATE
• several empirical measures proposed in literature:


• calibration error: CE = |confidence − accuracy |
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predicted probability 
of correctness

observed rate 
of correctness

example: of the proton-proton collisions predicted to be 
                higgs decay with 90% probability, what fraction 
                did we observe an actual higgs decay?  

- 90% → perfect calibration

- <90% → over-confidence

- >90% → under-confidence

• for regression task: calibration corresponds to the coverage of the confidence interval/credibility 
interval (eg the probability that the confidence interval will include the true value (parameter) of interest)



METRICS TO EVALUATE QUALITY OF AN UNCERTAINTY ESTIMATE

• Expected Calibration Error:


 

ECE =
M

∑
m=1

nm

N
|confidence(Bm) − accuracy(Bm) |
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within-bin 
predicted 

confidence

within-bin rate of 
correctness

LeNet: slightly under-confident 

C.Guo et al., arXiv:1706.04599

group probability 
predictions in M bins

set of indices of samples whose prediction 
confidence falls into the interval m

1
nm ∑

i∈Bm

1(yi = ̂yi)1
nm ∑

i∈Bm

̂pi

average the calibration error 
across bins (weighted by number 

of points in each bin)


ResNet: over-confident 

provides an aggregated measure across different probability 
intervals. It divides predictions into bins, calculates the 

difference between the average predicted probability and the 
actual accuracy in each bin, and then computes a weighted 

average of these differences

https://arxiv.org/pdf/1706.04599.pdf


EXAMPLE OF ROBUSTNESS AGAINST OOD

13
D.Hendrycks, T.Dietterich, arXiv:1903.12261 [cs.LG]

Expected Calibration Error

(measure correspondence between predicted 

probabilities and empirical accuracy)

quality of uncertainty degrade 
with increasing shift

accuracy drop with increasing shift

Y.Ovadia et al., arXiv:1906.02530 [stat.ML]

https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1906.02530


ENSAMBLE-BASED UNCERTAINTY ESTIMATION METHODS
• an intuitive way to quantify epistemic uncertainty is to employ an ensemble of models,  

instead of relying on a single one


• simple to implement in practice and readily parallelizable 


• several strategies related to the collection of models to ensemble, and the  
aggregation strategy, most popular approach average predictions of independently  
trained models (bagging, boosting, deep ensembles etc…), forming a mixture distribution  


• deep ensembles: multiple instances of a base architecture are obtained each initialised with different weights values, 
trained on the same dataset, and then averaging their output. Each model output can be considered a sample from the 
output distribution which expresses model uncertainty
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mean of the predictions and 
variance will be used as metric 

for the uncertainty

B. Lakshminarayanan et al., arXiv:1612.01474 [stat.ML]

resources (CPU/RAM)
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p(y |x, w)

q
M

M

∑
m=1

p(y |x, wi)

https://arxiv.org/pdf/1612.01474.pdf


ENSAMBLE-BASED UNCERTAINTY ESTIMATION METHODS
• Monte Carlo Dropout: a very simple and fast method to sample N independent models without requiring multiple 

and independent trainings


• at training time, connections between layers are randomly dropped with a probability p to avoid overfitting. By 
keeping dropout enabled also at test time, we can perform multiple forwards sampling of a different network every 
time
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I. train model with dropout layers

II. activate dropout layers at test time

III. repeat T times

Y.Gal et al., arXiv:1506.02142

μ(x) =
1
T

T

∑
i=1

pi(y |x)

σ2(x) =
1

T − 1

T

∑
i=1

(pi(y |x) − μ(x))2

https://arxiv.org/pdf/1506.02142.pdf


DEEP ENSAMBLES WORKS VERY WELL IN PRACTICE

16Y.Ovadia et al., arXiv:1906.02530 [stat.ML]

https://arxiv.org/abs/1906.02530


BAYESIAN NEURAL NETWORKS
• A Bayesian neural network is a probabilistic model that allows to quantify uncertainty in predictions by representing 

the weights and biases of the network as probability distributions rather than fixed values 


• allows to incorporate prior knowledge about the weights and biases into the model, and update our beliefs about 
them as we observe data


• it can simulate multiple possible models of parameters w with an associated probability distribution p(w). By 
comparing these multiple predictions, it is possible to obtain an estimation of the model’s prediction uncertainty. 
If the different models agree, then the uncertainty is low. If they disagree, then the uncertainty is high
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BAYESIAN NEURAL NETWORKS
• the procedure to build and train a bayesian NN consists in two steps:


• design of the neural network architecture: eg the functional model 


• choose the probabilistic distributions for the parameters of the model (prior): , and the model 
confidence:  

y = fw(x)
p(w)

p(y |x, w)
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p(y |x, T) = ∫w
p(y |x, w)p(w |T)dw marginal distribution allows to 

quantify model’s uncertainty

p(w |T) =
p(T |w)p(w)

p(T)
=

p(T |w)p(w)
∫

w
p(T |w)p(w)dw

posterior distribution of 
the model parameters

T = {(xi, yi)} i = 1⋯, N

intractable: approximated via Monte Carlo or Variational Inference



MC EXAMPLE PROCEDURE
• with the MC approach we use a finite set of random samples to approximate an expected value

• in the specific case: generate a set of neural networks asymptotically distributed according to 

 in order to approximate  as the empirical expectation of the single-network 
predictions  under the sampled networks
p(w |T) p( ̂y |x, T)

p( ̂y |x, w)
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MC Algorithm

̂y =
1
N ∑

wi

fwi
(x)

Σ̂ =
1

N − 1 ∑
wi

( fwi
(x) − ̂y)( fwi

(x) − ̂y)T

set of samples of the marginal and set of 
samples from the posterior p(w)

estimator  of the output ̂y yp(w)



w

T

• it is common to assume a normal distribution for the prior
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w ∼ p(w) = N(μ, Σ)
y ∼ p(y |x, w) = N( fw(x), Σ)
y ∼ p(y |x, w) = Categorical( fw(x)) classification

regression

• NOTE: are also possible BayesianNN with stochastic activations instead of 
stochastic weights (similar to Kolmogorov-Arnold NN —KAN)

generative 
process

generative 
process

l0 = x
li ∼ ai(li | li−1) = ai(N(Wili−1 + bi, Σ)) ∀i ∈ [1,L]
y = lL



VARIATIONAL INFERENCE PROCEDURE
• with the MC approach there is no learning phase for the Bayesian-NN as it is sufficient to sample the 

posterior  to obtain its estimator

• the approach however suffers of the curse of dimensionality, as directly sampling the posterior becomes 

harder and harder with the increase of the dimensionality of the sampling space

• to cope with this issue several techniques of approximate inferences have been proposed, with the 

variational inference being the most popular


• same idea of the variational method used in VAE:


• approximate the intractable density  with a tractable parametrised and amortized density (eg a 
NN): , (where  represents the variational parameters), chosen among a family of probability 
densities Q 


• goal: find   that best approximate the posterior by minimising wrt  the KL divergence: 



• in practice as directly minimising the KL is also not tractable because  is not tractable, the 
ELBO (Evidence Lower Bound) is used as tractable surrogate of the : 

p(w |T)

p(w |T)
qϕ(w) ϕ

qϕ(w) ϕ
KL(qϕ(w)∥p(w |T))

p(w |T)
KL(qϕ(w)∥p(w |T)) 21
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KL(qϕ(w)∥p(w |T)) = ∫ qϕ(w)log
qϕ(w)

p(w |T)
dw = Eq[log

qϕ(w)
p(w |T)

] =

= Eq[log qϕ(w)] − Eq[log p(w |T)] =

= Eq[log qϕ(w)] − Eq[log
p(w, T)

p(T)
] =

p(w, T) = p(w |T)p(T)

= Eq[log qϕ(w)] − Eq[log p(w, T)] + Eq[log p(T)] =

= Eq[log qϕ(w)] − Eq[log p(w, T)] + ∫ qϕ(w)log p(T)dw =

= Eq[log qϕ(w)] − Eq[log p(w, T)] + log p(T)∫ qϕ(w)dw =

= Eq[log qϕ(w)] − Eq[log p(w, T)] + log p(T)

constant wrt , so we can ignore it 
in the optimisation procedure

qϕ(w)
-ELBO



23

ELBO(qϕ(w)) = − (KL(qϕ(w)∥p(w |T)) − log p(T)) =

= − ( Eq[log qϕ(w)] − Eq[log p(w, T)] + log p(T) − logp(T) ) =

cancel= Eq[log p(w, T)] − Eq[log qϕ(w)] =

= Eq[log p(T |w)] + Eq[log p(w)] − Eq[log qϕ(w)] =

p(w, T) = p(T |w)p(w)

= Eq[log p(T |w)] + Eq[log
p(w)
qϕ(w)

] =

= Eq[log p(T |w)] − Eq[log
qϕ(w)
p(w)

] =

= Eq[log p(T |w)] − KL(qϕ(w)∥p(w)) tractable !

by maximizing the ELBO wrt , we indirectly minimize ϕ KL(qϕ(w)∥p(w |T))



OPTIMIZING WITH GRADIENTS
• variational inference re-frames the computation of an integral (the marginal likelihood from exact inference) as 

the optimization of its lower bound

• the most interesting point is that this implies that we can now use tools from the optimization literature to 

approximately solve our inference problem. This includes optimizing with the same stochastic gradients 
descent methods used in standard neural network training


• the simples and most popular choice for the variational density is a diagonal-covariance gaussian 
distribution (note that it may not always the best choice in order to model the true posterior )


• with this assumption all the network weights are jointly distributed according to the multivariate Gaussian:

qϕ(w)
p(w |T)
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qϕ(w) = q(μ,σ)(w) = N(μ, σ2I)

⇒ log q(μ,σ)(w) = −
1
2

(w − μ)T(σ2I)(w − μ)

L(μ, σ) = ET[ELBO(qϕ(w))] = ET[ E(μ,σ)∼q(w)[log p(T |w) + log p(w) − log q(μ,σ)(w)] ]loss

we want to optimise L with gradients, so we need to compute  and  ∇μL(μ, σ) ∇σ L(μ, σ)



• we can use SGD through the expectation  over data using the batches, but there 
is a problem with the second expectation value   as the distribution 

 depends on the parameters  that we want to optimise


• solution: the reparameterization trick used also in VAE :

ET
E(μ,σ)∼q(w)[]

q(w) μ, σ
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L(μ, σ) = ET[ E(μ,σ)∼q(w)[log p(T |w) + log p(w) − log q(μ,σ)(w)] ] ⇒

∇μ,σ L(μ, σ) =
1
N

N

∑
i=1

[∇μ,σE(μ,σ)∼q(μ,σ)(w)[log p(T |w) + log p(w) − log q(μ,σ)(w)]

we cannot proceed with the gradient due to this dependence

w ∼ N(μ, σ2I) reparameterized as: w = μ + σϵ ϵ ∼ N(0,1)with: 

doesn’t depend on μ, σ

⇒ ∇μ,σ L(μ, σ) ≈
1
N

N

∑
i=1

S

∑
j=1

[∇μ,σ[log p(T |w(μ, σ, ϵj)) + log p(w(μ, σ, ϵj)]]
new hyperparameter S: sets the number of samples from  to 

estimate the expected log-likelihood (typically S=1 is used)
p(ϵ)



EXAMPLE BAYESIAN-DGNN
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{1024}      {512, 256}      

B-DGCNN

S.Giagu, M. di Filippo, L.Torresi, Front. Phys., Volume 10 - 2022

- all bayesian layers (EdgeConv, MLP, etc.), w/ gaussian priors (uncorrelated between layers and neurons) 

- better classification performance wrt the point DGCNN

- class probabilities better aligned with physics expectations

τ± → π±π0ντ
τ± → π±π0ντ

τ± → π±π0π0ντ

https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full


CONFORMAL PREDICTIONS
• conformal prediction is a framework in ML that provides a way to quantify and control the 

confidence or reliability of predictions made by a model


• in particular, given an input, conformal prediction instead of outputting a single prediction, return a 
set (a prediction interval in regression problems and a set of classes in classification problems), 
using a frequentist statistical setting


• the size of the prediction set quantifies the uncertainty of the model, and provides alternatives to 
the point prediction  27

[leopard]

[dalmatian, 
grape, 

elderberry, 
staffordshire 
bullterrier, 
currant ]

A.N.Angelopoulos and S, Bates, arXiv:2107.07511 [cs.LG]

https://arxiv.org/pdf/2107.07511.pdf


CONFORMAL PREDICTIONS
• advantages of conformal predictions:


• both the prediction interval and classification sets in conformal prediction 
are guaranteed to cover the true value with a given confidence level:


• very simple to apply, you don’t need to re-train the model multiple times 
(like in ensemble methods) and the model itself doesn’t need to have robust 
uncertainty incorporated (like in bayesian networks). The model is a black 
box in the conformal prediction approach
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p(y ∈ Set(x)) ≥ (1 − α)



CONFORMAL PREDICTIONS
• how it works:


I. define a disagreement score function:


• eg something for which larger scores means large errors 


II. compute the disagreement score on TC: 


III.compute  quantile of scores of the N events:

{S(x1, y1), ⋯, S(xN, yN)}

∼ (1 − α)
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TC{(xi, yi)} i = 1,⋯, Ny = fw(x) a calibration set

(never seen by the model)a trained model

S(x, y)
ex. 

- classification: 1-f(x)y

- regression: MAE

̂q : quantile of the scores {S(x1, y1), ⋯, S(xN, yN)}

we need:

S(x,y)α1 − α

̂q

eg: for a new datapoint there would be a  chance that 
it’s disagreement score would be less than the threshold 

∼ (1 − α)
̂q

and:



CONFORMAL PREDICTIONS
III. construct prediction sets using model predictions and quantile


• the quantile are used to predict a sets for a new example x:


• possible to demonstrate:
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τ(x) = {y : S(x, y) ≤ ̂q}

τ: function that return a set which 
contains a subset of all the 

possible classes or a confidence 
interval for a regression task

(1 − α) ≤ p(y ∈ τ(x)) ≤ (1 − α) +
1

N + 1

the size of the calibration set has an impact, 
that can be controlled by choosing N 

ex: α = 0.1,N = 100 → 90 % ≤ p ≤ 91 %

τ(x) = {Container Ship} τ(x) = [ f(x) − ̂q, f(x) + ̂q]



PYTORCH AWARE BNN LIBS



PYTORCH BNN LIBRARIES
• several python libraries to implement BayesianNN with pytorch available on web (with variable support 

from developers)


• Two extreme examples:


• Pyro: https://github.com/pyro-ppl/pyro: flexible, scalable deep probabilistic programming library built 
on pytorch


• 🙂 complete and with a large contributor base


• 😕 a lot of functionalities means less intuitive use 


• Torchbnn: a simpler and limited implementation available in github (old but still functioning): https://
github.com/Harry24k/bayesian-neural-network-pytorch/tree/master


• works in google colab


• to install it: !pip install torchbnn
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https://github.com/pyro-ppl/pyro
https://github.com/Harry24k/bayesian-neural-network-pytorch/tree/master
https://github.com/Harry24k/bayesian-neural-network-pytorch/tree/master


BAYESIAN LINEAR LAYER IN TORCHBNN
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35
the standard pytorch Linear layer

reparameterization trick

N(0,1) random numbers



EXAMPLE BAYESIAN MLP
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EXAMPLE OF A BNN WITH MCMC IN PYRO  
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dataset from a noisy sinusoidal function
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shallow BNN with gaussian priors on the weights
p(w) = N(0,10 ⋅ 1)
p(yi |xi, w) = N(ANNw(xi), σ2) σ ∼ Γ(0.5,1)with prior for sigma:
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define and run Markov Chain Monte Carlo sampler

wi ∼ p(wi |T) ∝ p(T |w)p(w)

e.g.  is approximated via:Ew∼p(w|T))[p(y |x, w)] Ew∼p(w|T))[p(y |x, w)] ≈
1
N

N

∑
i=1

p(y |x, wi)

as the normalisation (evidence ) is intractable MCMC methods (like Hamiltonian MC) are used 
to draw sample from the non-normalized posterior  (M.D.Offman, A.Gelman, arXiv:1111.4246)

p(T)

https://arxiv.org/abs/1111.4246
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calculate and plot the predictive distribution


