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CNNs



HOW AN ANN “SEE” AN IMAGE  …
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images for a computer are essentially meshes (tensors) of 
numbers

gray scale image with 8bit depth: 12x16x1 intensity ∈ [0,256]

color image with n-bit depth: m1xm2x3 with each RGB intensity ∈ [0,2n]

credit MIT AI course



HOW AN ANN “SEE” AN IMAGE  …
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Classification task:

Label Probability

credit MIT AI course



HOW AN ANN “SEE” AN IMAGE  …
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classification is performed by identifying as many local features as possible present in the specific 
image of the objects we want to recognize ...

NOSE, 

MOUTH, 
EYES,

…

HEADLIGHTS, 
WHEELS, 
PLATE,

…

DOOR, 

STAIRS, 

WINDOWS,

…

credit MIT AI course



HOW AN ANN “SEE” AN IMAGE  …
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it is convenient to identify these characteristics in a hierarchical way ...

edges, spots, … noses, eyes, ears, 
mouths, … entire faces…

credit MIT AI course



HOW AN ANN “SEE” AN IMAGE  …
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we already know that a DNN is able to learn the desired hierarchical representations:

x 1D array of 
the pixel 
values 

(features)

P(label | x)

Issues: 

- it needs a huge number of learnable parameters (weights) → hard to train, overfitting …

- it does not use any local spatial information

- too much flexibility results in arbitrarily complex models for which is very hard to achieve generalisation 


A viable solution: Convolutional Neural Networks



ARCHITECTURES FOR VISION: CNN
• a remedy to facilitate the training of DNN is to introduce task independent priors, i.e. parts of the 

model that are not learnt (also called inductive relational biases), motivated by general properties 
and structures observed in data


• Convolutional NN is a specific DNN architecture designed to excel in image recognition tasks

• acts directly on the images (raw “pixel” information organised in a fixed size mesh)

• the inductive bias is based on assumptions on the properties of the input data:

• translation equivariance: sub-features in the image remain the same in different points of the image

• self-similarity: two or more identical sub-features can be recognised with a single filter that identifies one 

of the sub-features

• compositionality: a complex feature made of several sub-features can be recognised by identifying only 

few sub-features

• locality of the features: to identify a sub-feature it takes just a few pixels concentrated in a small portion 

of the image itself
8



CNN
• CNN implementation idea: apply NN layers called convolutional filters that operate on 

the input by recognising the local sub-features present there

• several groups of filters use shared parameters (weights) and sequentially analyse 

all portions of the image 

• weights of the filters are not fixed but are learned 
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CNNs learn from the training data sample the best set of filters to solve the 
task at hand given the chosen architecture



CONVOLUTIONAL FEATURE EXTRACTION LAYER
• used to identify similar features that are present in different position of the image


• based on three basic ideas: 


• local receptive field (filters  
or convolutional kernels)


• shared-weights kernels 


• pooling layers

10

local receptive field 
5x5

• input neurons (one for each NxN pixels of the image) are NOT fully connected with all the neurons of the first 
hidden layer. Connections exist only for localised and small regions of the image called local receptive fields


• the local receptive field is shifted through the whole image: for each shifted receptive field there will be an 
hidden neuron in the hidden layer


• multiple filters are used in order to identify different features, and combined in a stack of layers in output

24 = 28-5+1

stride S=1
3 local receptive fields 5x5



11

• shared-weights: 

• all the neurons produced by a filter share the same weights → all neurons of the hidden layer detect the same 

sub-feature, only in different regions of the image 

• as the CNN has to identify many sub-features: there are many convolutional kernels each one with an associated 

hidden layer:  image input dimension (n,m,3) → output after a convolutional layer (k,l,d)    

• huge advantage wrt DNN: a much smaller number of weights to learn …

convolutional kernelconvolution

operation wi

xi
∑xi*wi

after the convolution operation, non linearity is applied to each neuron of the filtered image via an activation 
layer (ex. ReLU)



PRODUCED FEATURE MAPS VS KERNEL WEIGHTS
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ORIGINAL SHARPEN EDGE DETECT STRONG EDGE 
DETECT

different weight values emphasize different characteristics of the image



DIGRESSION: NOTION OF SPARSITY OF INTERACTIONS 

• the assumption of locality used in CNN is connected with the concept of sparsity of interactions 

• this can be intuitively understood by considering the k-NN algorithm: 
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g(x) =
1
k ∑

i∈ k−nn(x)

yi
in a regression task returns the average of the 
values of the closest k-points according to a 
defined distance d(x,xi)  

• g(x) is considered “sparse” as only depends on k points of the entire dataset (in a CNN k is the number of pixels involved 
in the convolution operation)


• the Nadaraya-Watson kernel estimator generalize the operation of selection the k-nn points extending the sum over all points 
weighting them with the distance d, and make it differentiable so usable with SGD:

g(x) = ∑
i

d(x, xi) yi = ∑
i

e−β∥x−xi∥2 yi Nadaraya-Watson kernel estimator

making the N-W a convex estimator by using softmax to weight the entries is called attention mechanism



• pooling layers: 

• in addition of the convolution layers a CNN has also other layers called pooling layers, usually used after 
each convolution layer. They performs a downsampling operation: simplifying the information in output 
from the convolutional layer (less weights) and making the model less sensitive to small translations of the 
image


• motivated by the fact that once a sub-feature is found, to know the exact position is not as important as to 
know the relative position wrt the other sub-feature in the image

14



FULL CNN: CONV BLOCKS + DENSE MLP STAGE
• after the convolution blocks, the output of the convolutional layers can be connected via a flattening 

layer with one or more dense layers (DNN), that are used to optimise objectives: class scores 
(classification), mapping (regression), etc…
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Example: LeNet (Yan LeCun 1989)
multi-staged CNN for classification:  (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

detects details 
(segments, arcs, …)

focus on overall 
shapes

maps high level 
representations to targets



MODERN CNNs
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philosophy: deeper is better

• VGG Net: small size kernels limits the 
number of parameters and induce more 
non-linearity and so more degree of 
freedom for the network

- stacking them together change the receptive field: ex. 

C3x3-C3x3: works as a C5x5,  C3x3-C3x3-C3x3: 
works as a C7x7

 …. continue for 152 layers
ResNet-152

60 MPar

going deeper increase the vanishing gradient problem

residual learning in ResNet help mitigating it and to go deeper



GNNs 
Graph Neural Networks (GNN) are an interesting and rapidly developing field in DL with 
several applications in natural science (particle physics, complex systems, statistical 
physics, combinatorial optimization, fluid dynamic, molecules modelling, …), and in 
industry and society (recommending systems, traffic forecasting systems, drug 
discovery, …)



GNNs

• CNNs specialise in processing fixed mesh arrays of data (images), RNNs, specialise in processing 
sequences (text, …), Graph Neural Networks are neural architectures specialised in processing graphs 


• processing graphs pose new challenges in the design of a neural network:


• graph topology is variable event by event → hard to design networks that are both expressive and can 
cope with this variation


• graphs may be extremely large (example: a graph representing connections between users of a social 
network has billions of nodes) → computational resource challenges (especially memory)


• some dataset may be formed by only a single monolithic graph → in these cases the usual procedure 
of training and testing with many examples cannot be applied and different approaches have to be 
devise


• …
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GRAPHS
• graphs are a kind of data structure that is nonlinear and abstract, able to adapt 

to powerful representation of different physical and social systems 


• common types of graphs:

19

nodes
edges or links

- graph are typically sparse: only a 
small subset of all possible edges 
are present


- fully connected graphs are called 
sets (unordered lists)



EXAMPLES OF GRAPHS
• many objects in the real world are naturally represented by graphs


• road networks


• electrical circuits or electrical networks


• chemical molecules 


• physics objects measured in HEP detectors (jets reconstructed in calorimeters, charged particle tracks 
reconstructed in tracking detectors, …)


• interactions between objects (particles, molecules, proteins, humans, planets, gravitational objects, …) 
can be expressed as graphs, where the nodes are the objects, and there is an edge between two objects 
if they interact 


• geometrical 2D/3D point-clouds (geometrical deep learning) 


• social networks: are graphs where nodes are people and the edges represent friendships between them 


• wikipedia can be thought of as a graph in which the nodes are articles  
and the edges represent hyperlinks between articles 


• computer programs can be represented as graphs in which the nodes are  
syntax tokens (variables at different points in the program flow) and the  
edges represent computations involving these variables (autograd used in  
backprop is implemented via computational graph)


• …
20



GRAPH-BASED PHYSICS-INSPIRED DIFFUSION MODEL FOR DRUG DESIGN

• new ways to the molecular design implemented via an iterative refinement process that allows 
methodic design of molecules and correction of possible errors arising during the process 

21E.Hoogeboom et al., arXiv:22203.17003 [cs.LG]

atoms

bonds
⇄⇄

noise is gradually injected until the molecule 
becomes a cluster of random atoms. At each step, 
an inverse process  is learned, which tries 
to predict the noise that was added to the data and 

then removes it to obtain clean data

p(zt−1, zt)

graph neural network architecture: to naturally 
represent the intrinsic topological structures of 

molecules.

physics priors: incorporated into 
the neural network model in such 
a way that it respects the physical 

symmetries of molecules 
(rotations, translations, and 

reflections), to facilitate learning

https://arxiv.org/abs/2203.17003


GNN FOR TRAFFIC FORECASTING

22stateof.ai 2021

Accurately predicting the estimated time of arrival (ETA) for a given route requires a complex understanding of the 
spatiotemporal interactions taking place on the road. GNNs are well suited for this task because roads and their 
intersections naturally form a graph network. A GNN-based system reduced negative ETA outcomes between 16% and 
51% around the world in live production. 

Graph Neural Networks applications: improving ETA predictions in Google Maps

- first, roads are chunked into connected segments that follow typical traffic 
routes and form longer super-segments 

- the world is divided into regions that have similar driving behaviors and train 
region-specific GNNs 

- data represents the actual traversal times across segments and super-
segments, which are used as node-level and graph-level labels for prediction, 
respectively 

- for a given starting time, the GNN learns the travel time of each supersegment 
at specific points in the future. 



COMPLEX FLUID DYNAMIC SIMULATIONS
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based on message passing 
Graph-NN

prediction of 

evolutions at 

future states

gel-like
water sand

ramps

multi-materials

turbulent and complex 
regimes (out of training)

A.Sanchez-Gonzalez et al, arXiv:2002.09405 [cs.LG]

https://arxiv.org/abs/2002.09405


HEP ENHANCED DATA REPRESENTATION WITH GRAPHS

• Image-based: treating the energy deposition on each calorimetric 
cell as a pixel intensity creating an image of the event in fixed-shape 
mesh


• natural representation for Convolutional Neural Networks


• unclear how to incorporate additional information associated to 
each energy deposit


• very sparse and inefficient representation: jets decays have O(10) 
to O(100) particles → more than 90% of the pixels are empty 


• Point cloud-based: unordered sets of entities distributed 
irregularly in space, analogous to the point cloud representation 
of 3D shapes


• clouds allow rich internal structures


• easy to incorporate additional information associated to the 
energy deposit (cell type, energy, timing information, …) 


• the architecture of the neural network has to be carefully 
designed to fully exploit the potential of this representation → 
Graph Neural Networks 24

boosted W→qq’
fixed-mesh image

graphdim: 28x28 = 784 
dim: 15x(3+1)+18 = 78

nodes edges



UNDIRECTED GRAPHS
• an undirected graph consists of nodes that are connected via edges where the 

order of the nodes and their connection does not matter 
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• common examples of data that can be represented as undirected graphs include images, 
protein-protein interaction networks, point clouds, … 

• G is defined as a pair (V, E), where V is a set of 
the graph’s nodes, and E is the set of edges 
making up the paired nodes 


• the graph structure can be encoded as a |V|×|V| 
adjacency matrix A. Each element xij in the 
matrix A is either a 1 or a 0, with 1 denoting an 
edge between nodes i and j (vice versa, 0 
denotes the absence of an edge) 


• undirected graph means A is symmetric (xij = xji)



DIRECTED GRAPHS
• in contrast to undirected graphs, directed graphs connect nodes via directed (directional) edges


• they are defined in the same way as an undirected graph, except that E, the set of edges, is a set of ordered 
pairs, e.g. A elements: xij ≠ xji 


• example of a directed graph is a citation network, where nodes are publications and edges from a node are 
directed toward the nodes of papers that a given paper cite, or a knowledge graph (a directed 
heterogeneous (nodes represent different object types (people, place, companies) multigraph (there may be 
multiple edges representing different relations between each node)

26



• in addition to the graph structure itself represented by A, typically there are also information 
associated with each node and/or each edge of the graph


• for example: we can represent a molecule as an undirected graph with a node label matrix, where 
each row is a one-hot encoding of the associated node’s atom type. Additionally, there can be an 
edge label matrix where each row is a one-hot encoding of the associated edge’s bond type. 
Considering the caffeine molecule a graph representation (with implicit hydrogen atoms) could be:

27



• to summarise:


• a graph G=(V,E) is represented by 3 matrices: 


• adjecency matrix A (dim: VxV) representing graph structure


• node label matrix X (dim: DxV) representing the node embedding 


• edge label matrix XE (dim: DExE) representing the edge embedding (often simpler graph don’t 
use XE)

28

• example:

V×V D×V

DE×E
XE

D=5

DE=4
V=6
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• the adjacency matrix can be used to to find the neighbors of a node using linear algebra. For example 
if we encode the j-th node as a one-hot V-size column vector with all zeros but the j-th element:

6th node 6th node - neighbours

6th node walks of length 2 to the other nodes of the graph
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• in general the element (i,j) of  contains the number of unique “walks” of length m from node i to node j Am

i=4

j=2



SIMILAR AND DIFFERENT INDUCTIVE BIASES BETWEEN IMAGES 
AND GRAPHS

• images and graphs share the locality prior, however the definition of locality is different:

• images: locality in 2D space

• graphs: structural locality 


• intuitively, this means that a node that is 1 edge away is more likely to be related than a node 5 edges away from a give node 


• example: in a citation graph, a directly cited publication, which would be one edge away, is more likely to have similar subject 
matter than a publication with multiple degrees of separation

31

• a strict prior true only for graph data is permutation invariance, which means that the ordering of the nodes does not affect the 
output


• changing the ordering of a graph’s nodes does not change  
the graph’s structure: since the same graph can be represented  
by multiple adjacency matrices, consequently, any operation on a  
graph needs to be permutation invariant 

they represent the 

same graph



GNN
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A GNN is a model that takes the node embeddings X and the adjacency matrix A as inputs and passes the 
graph through a series of K layers. At each layer the node embeddings are updated to create intermediate 
“hidden” representations Hk, before finally computing output embeddings HK 


- at the start, each column of the input node embeddings X contains only the information about the node itself

- at the end, each column of the model output HK contains information about the node and its context within the 

graph 

(Hk, A) = fk(Hk−1, A)

(HK, A) = fK(HK−1, A) = fK( fK−1(⋯f1(X, A))))))

(H1, A) = f1(X, A)
(H2, A) = f2(H1, A)

  w/ Wk learnable weightsfk = fWk⋮

⋮
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LEARNING PROBLEMS ON GRAPHS

• whole graph classification: obtain an embedding 
for the entire graph by performing a global pooling 
operation and use the embedding on a MLP for 
example (example: )


• node classification: is it possibile to classify a 
single or every node, or any combination of it 
(example: )


• edge classification/link prediction: a prediction of 
an edge can be obtained by a prediction for an 
edge by combining the features of the 
corresponding nodes, and pass this information to 
an MLP (example: )

y = softmax[bK + WKHK1/N]

y(i) = softmax[bK + WKh(i)
K ]

y(i,j) = softmax[h(i)T
K h( j)

K ]

mean pooling



LEARNING OVER A GRAPH: GRAPH CONVOLUTIONS
• a possibility to effectively use graph representations is to generalise the concept of convolution of a 

CNN


• in a CNN, convolution means to slide a filter over the image, where, at each step, a weighted sum is 
computed between the filter and the receptive field 


• the generalisation to a graph is implemented in the so called spatial-based graph convolutional neural 
networks (GCN)


• are convolutional in the sense that they update each node by aggregating information from nearby 
nodes, and as such, they induce a relational inductive bias (i.e., a bias towards prioritising information 
from neighbours)


• are spatial-based because they do this in a straightforward manner using the original graph structure 
(in contrast to spectral-based methods that apply convolutions on graphs in the Fourier domain)


• the convolutional approach is even more important for graphs than images because it can function 
with graphs of different sizes (there are many image datasets with a fixed resolution, while most graph 
datasets contain graphs of varying sizes)
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GRAPH VS CNN CONVOLUTION
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BASIC GRAPH CONVOLUTION
• example of implementation of a basic graph convolution over an undirected graph with node labels specified by 

an V×V adjacency matrix A and V×D node feature matrix X:

36

• graph convolutions update the embeddings at each node based on the 
embeddings of their neighbors and themselves via a message passing operation 
that consists in two phases:


• aggregation phase: at each node i in layer k, information from neighboring nodes is 
aggregated by summing their node embeddings h: 

AGG(k)
i = ∑

j∈N(i)

W(k)
2 h(k)

j

• update phase: applies a linear transformation to the current node and to the 
aggregate message and pass the result through a non linear activation:

h(k+1)
i = ϕ[b(k) + W(k)

1 h(k)
i + AGG(k)

i ]
non linearity induced via the activation function φ
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• the two weight matrices 
W1 and W2 are learned 
during the training and 
allow the network to 
capture neighbourhood 
relationships. Stacking 
multiple GCN layers vill 
capture more distant 
relationship



BATCHING MULTIPLE GRAPHS
• MLP, CNN and transformers all leverage the parallelism of modern GPU hardware to concurrently process an entire 

batch simultaneously. However in GNN each graph may have a different number of nodes. Hence, the matrices Xi and 
Ai have different sizes and there is no way to concatenate them into 3D tensors


• solved by a simple trick: the graphs in the batch are treated as disjoint components of a single large graph. The 
network can then be run as a single instance of the network equations. The mean pooling is carried out only over the 
individual graphs to make a single representation per graph that can be fed into the loss function

38figure from https://github.com/tkipf/gcn

https://github.com/tkipf/gcn


OVER-SMOOTHING IN GNNs
• a common issue with GNNs is the so called over-smoothing: after several iterations of GNN message passing all the nodes 

embedding converge to the same value


• tendency especially common in basic GNN models that makes it impossible to build very deep GNN models which leverage longer-
term dependencies in the graph


• over smoothing is related to the receptive field of the GNN (e.g. the set of nodes that determine the embedding of a node of 
interest)


• if two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
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in a K-layers 
GNN, each 
node has a 

receptive field 
of K-hop 

neighborhood 

almost all the 
nodes!



HOW TO AVOID OVER-SMOOTHING PROBLEMS
• analyze the necessary receptive field to solve your problem. e.g., by computing the diameter of the graph 


• set number of GNN layers just slightly larger than the needed receptive, refrain to set it to unnecessarily large 
values


• to increase the expressive power of the GNN with a small number of layers:


• increase the expressive power of each single layer: add layers  
that do not pass messages, message passing based  
on deep MLP networks or/and use attention or multi-head attention  
mechanisms and/or use of skip connections
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pre-processing layers: used when encoding node features 
is necessary (as ex. when nodes represent images/text)


post-processing layers: used when reasoning / transformation over node 
embeddings are needed 

example: graph classification, knowledge graphs 


skip connections: mix shallow and deep GNNs, so that 
residual networks works like ensemble of shallow 

networks 

OR


