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You can follow the instructions at
https://github.com/thesfinox/aiphy-intro-ml-homework

Tutorials are presented as Jupyter notebooks. You will have several options to
run them:

run online using Binder in extreme cases,
install Docker and use the dedicated image*,
create and activate a local Python environment.

Disclaimer
You are warmly invited to download the presentation : some details might be

deliberately hidden in small print🤭.

* This is the preferred method, especially if you are usingWindows OS. Should you encouter any issues, do not hesitate to ask for help!
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Programming computers to learn from
experience should eventually eliminate
the need for much of this detailed
programming effort ”

Arthur Samuel, IBM (1959)
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AI
Artificial Intelligence

“human behaviour” emulation
pattern recognition
learning processes
decision making

Machine Learning

data exploitation
statistical modelling
generalisation on new data

Deep Learning

complex pattern processing
highly non linear problems
“mimic” human brains
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Write a spam filter:
you know what
characterises an
email as spam
you write a set of
rules to flag
emails as spam
you evaluate your
algorithm and
decide whether
to deploy it or
reassess

Get and
prepare
the data

Localise the
problem

Write the
algorithm

Evaluate

DEPLOY

ANALYSE

3

7
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Write a spam filter:
you prepare a
data tidying
pipeline
you write a ML
training pipeline
to flag emails as
spam
you write an
evaluation
pipeline and
decide whether to
deploy the model
or reassess AUTOMATED

Get and
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Exploratory
data

analysis
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algorithm
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Mediapipe face landmarker by

Detectron2 panoptic segmentation / 3D pose estimation model by

...

principal output

(e.g.: analyte concentration)

secondary outputs

(e.g.: integral intensities)

shared
backbone
network

task specific
networks

input
spectrum

feature map

flatten layer

Trustworthy laser-induced breakdown spectroscopy (arXiv:2210.03762)

(
)

noise signal

bulk

(
)

′

noise signal
noise' signal'

Signal detection via functional renormalization group (arXiv:2310.07499)
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Paradoxically, data is themost
under-valued and de-glamorised
aspect of AI ”

Sambasivan et al. CHI’21
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“BAD” DATA
“Bad” input data

insufficient data not enough data to learn anything
useful
untidy data bad missing data fillers, wrong categorical
encoding, non representative samples, etc…
data leakage the model “sees” the generalisation data
unbalanced dataset the model develops a “bias”

“Bad” predictions
biased model cannot model input data⇒ bad
generalisation performance
overfitting model is too “adapted”⇒ bad generalisation
performance

Garbage IN⇒ Garbage OUT
Racial, sexist, and religious biases in trained

models are always the result of human errors
(even accidental)!
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“BAD” DATA

“BAD
PREDICTIONS”

Simple examples of biases in AI

Bianchi et al. FAccT’23
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“GOOD” DATA

ML pipeline
Introduce a set of “checklists” to…

…ensure high data quality (and tidiness);
…streamline analysis andmodel building;
…simplify the learning process and its
evaluation;
…grant reproducibility and experimentation
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ML pipeline
Introduce a set of “checklists” to…

…ensure high data quality (and tidiness);
…streamline analysis andmodel building;
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evaluation;
…grant reproducibility and experimentation

=
“ML PIPELINE”

Riccardo Finotello AIPhy 30/09/2024 16 / 104

TheMLMindset
ML pipelines and working operations



Data preparation

Exploratory
data analysis

Model
development

Evaluation

Deployment

modular break down complex problems into

small bricks

reproducible trace back analysis to

well-defined breakpoints

experimental trial-and-error is permitted

and easier to implement

collaborative agreeing on sensible

choices enables peaceful and fruitful collaborations

The Scikit-learn guideline
“Improving the documentation

is no less important than
improving the library itself.”
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LetDN = {(~xi , ~yi) | Kp 3 ~xi ∼ P (X ), Kq 3 ~yi ∼ P (Y ) ∀i = 1, 2, ... , N}:

DN

Some definitions to start:
~x are called features / exogenous variables /

regressors / predictors / explanatory variables

~y are called labels / endogenous variables /

regressands / targets / explained variables
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LetDN = {(~xi , ~yi) | Kp 3 ~xi ∼ P (X ), Kq 3 ~yi ∼ P (Y ) ∀i = 1, 2, ... , N}:

DN *
* Imagine if an ordering

“by label” yi was left in

the dataset: what would

happen in the following?

shuffle the dataset to avoid biases:
any possible ordering of the data
should never interfere

prepare a test set and “hide” it until
your final evaluation

Data leakage
The test set should be randomly and
independently chosen to represent
“real-world” data. It must never come into
contact with training procedures.
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LetDN = {(~xi , ~yi) | Kp 3 ~xi ∼ P (X ), Kq 3 ~yi ∼ P (Y ) ∀i = 1, 2, ... , N}:

D (dev)
N D (test)

N

The number of samples to leave in the splits is highly
dependent on the size of the dataset, type of task,

computing resources, regularity of the data, etc…Traditionally,
smaller datasets may require ∼ 80 % of training data.
However, Big Data may take up to 99 % of training
data, as the test set will remain statistically relevant.

(e.g. see Andrew Ng (2019))
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Food for thought... Outliers?

K

Kp−1 D (·)
N

1. you have some pictures, and
outliers are overexposed
samples you would get rid of
anyway

2. you analyse financial data
where stock returns are capped
to a given value

3. you are building a
cybersecurity defence and
outliers are attacked data

4. you have scientific data, and
you are trying to derive an
analytical formula using
insights from ML

1. remove them everywhere (they do not represent real-world data) 2. leave
them everywhere / move them toD

(test)
N and cap the value 3. move them to

D
(test)
N (grasp a model of easy cases to predict complex ones) 4. move them to

D
(test)
N (the model should be able to predict them anyway)

Riccardo Finotello AIPhy 30/09/2024 20 / 104

Dealingwith Data
A generic beginning of a project

https://info.deeplearning.ai/machine-learning-yearning-book


LetDN = {(~xi , ~yi) | Kp 3 ~xi ∼ P (X ), Kq 3 ~yi ∼ P (Y ) ∀i = 1, 2, ... , N}:

D (dev)
N D (test)

N

The number of samples to leave in the splits is highly
dependent on the size of the dataset, type of task,

computing resources, regularity of the data, etc…Traditionally,
smaller datasets may require ∼ 80 % of training data.
However, Big Data may take up to 99 % of training
data, as the test set will remain statistically relevant.

(e.g. see Andrew Ng (2019))

Food for thought... Outliers?

K

Kp−1 D (·)
N

1. you have some pictures, and
outliers are overexposed
samples you would get rid of
anyway

2. you analyse financial data
where stock returns are capped
to a given value

3. you are building a
cybersecurity defence and
outliers are attacked data

4. you have scientific data, and
you are trying to derive an
analytical formula using
insights from ML

1. remove them everywhere (they do not represent real-world data) 2. leave
them everywhere / move them toD

(test)
N and cap the value 3. move them to

D
(test)
N (grasp a model of easy cases to predict complex ones) 4. move them to

D
(test)
N (the model should be able to predict them anyway)

Riccardo Finotello AIPhy 30/09/2024 20 / 104

Dealingwith Data
A generic beginning of a project

https://info.deeplearning.ai/machine-learning-yearning-book


D (dev)
N

Let us suppose:
good exploratory data analysis
model dev. and training onD (dev)

N

no bias / sensible choices
good performance
in general… nothing strange

D (test)
N

You get:
Bad generalisation performance
Biased/unbalanced results

In other words, we need to evaluate the model before deploying it, or it will be, in

general, a catastrophe!
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Holdout validation

D (dev)
N
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Holdout validation

D (train)
N D (val)

N

buildD (val)
N ⊂D (dev)

N and
D (train)

N = D (dev)
N \D (val)

N once
computing time-friendly
good for (very) large datasets
easy to implement, easy to use usually,

no boilerplate code in Pytorch Lightning, Keras, Hugging Face, etc…
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Holdout validation

D (train)
N D (val)

N

buildD (val)
N ⊂D (dev)

N and
D (train)

N = D (dev)
N \D (val)

N once
computing time-friendly
good for (very) large datasets
easy to implement, easy to use usually,

no boilerplate code in Pytorch Lightning, Keras, Hugging Face, etc…

Cross validation (K-fold)

more robust estimator
first insight into uncertainties
time consuming for large datasets
might need some coding yes, scikit-learn

has a good implementation! Do not worry!
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Let dist(y , by) be a metric distance between ground truth y and its prediction by (e.g.

mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for ~y] and compute error E onD (val).

Holdout validation

E
D (val)

N
(y , by) = E

D (val)
N

[dist(y , by)]
=

1

m

m−1X
p=0

dist(yp, byp).

Cross validation (K-fold)

E (K )

D (val)
N

(y , by) = EK-folds
h
E

D (val)
N

[dist(y , by)]i
=

1

K

K−1X
i=0

1

mi

mi−1X
p=0

dist(y [i]
p , by [i]

p ).
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Let dist(y , by) be a metric distance between ground truth y and its prediction by (e.g.

mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for ~y] and compute error E onD (val).

Holdout validation

E
D (val)

N
(y , by) = E

D (val)
N

[dist(y , by)]
=

1

m

m−1X
p=0

dist(yp, byp).

Cross validation (K-fold)

E (K )

D (val)
N

(y , by) = EK-folds
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p ).

Notation: let n =
˛

˛

˛

D (dev)
N

˛

˛

˛

, then¨ n
K

˝

≤ mi ≤
¨ n

K

˝

+1 is the size of the i-th validation fold⇒ n− n
K = K−1

K n
is the size of the remaining set.

The particular case K = n is called “leave-one-out” validation.
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More complicated than that…The choice depends on K . Moreover, the wholeD
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N is used!
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Let M =
˘

f (n) | n = 1, 2, ...
¯ set ofmodels (e.g. linear model, support vector machine, decision tree, neural network, etc.)

Each f (n) has two sets of dependencies⇒ f (n) = f (n)(Θ ;Ω):
Θ is the set of parameters (i.e. the weights of the model → y = ~̨ · ~x)
Ω is the set of hyperparameters (i.e. constraints of the model → y = ~̨ · ~x + – ~̨ · ~̨)

D (train)
N D (val)

N

you train the parameters
Θ of a model f (n)

you validate the
hyperparameters Ω of

model f (n) vs f (m) (n 6= m)
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Let M =
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hyperparameters Ω of

model f (n) vs f (m) (n 6= m)

Loss functions
mean squared error, mean absolute error, cross

entropy, KL divergence, style transfer loss, etc.

Metrics
mean squared error, accuracy, precision,

recall, F-score, Rand index, etc.
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Let M =
˘

f (n) | n = 1, 2, ...
¯ set ofmodels (e.g. linear model, support vector machine, decision tree, neural network, etc.)

Each f (n) has two sets of dependencies⇒ f (n) = f (n)(Θ ;Ω):
Θ is the set of parameters (i.e. the weights of the model → y = ~̨ · ~x)
Ω is the set of hyperparameters (i.e. constraints of the model → y = ~̨ · ~x + – ~̨ · ~̨)

D (train)
N D (val)

N

you train the parameters
Θ of a model f (n)

you validate the
hyperparameters Ω of

model f (n) vs f (m) (n 6= m)

Loss functions
mean squared error, mean absolute error, cross

entropy, KL divergence, style transfer loss, etc.

Metrics
mean squared error, accuracy, precision,

recall, F-score, Rand index, etc.

Training
Model
selection
(hyperparameter

tuning)

see later…
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The pletora of evaluation functions at our disposal strongly depends on the task!
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The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task – Purity
Let K = {k1, k2, ... , kP} the set of clusters, and C = {c1, c2, ... , cL} the set of classes of
N points:

P(K,C) =
1

N

PX
p=1

max
‘=1,...,L

|kp ∩ c‘|

Purity is the normalisedmode of the
clusters. What happens if K = N?
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The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task – Normalized Mutual Information
Let K = {k1, k2, ... , kP} the set of clusters, and C = {c1, c2, ... , cL} the set of classes of
N points:

NMI(K,C) = 2
I(K,C)

H(K) + H(C)

where H(·) = −EP (·) [lnP (·)] and

I(K,C) = EP (K∩C)

»
ln P (K ∩C)

P (K)P (C)

–
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The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task – Rand Index
Let K = {k1, k2, ... , kP} the set of clusters, and C = {c1, c2, ... , cL} the set of classes of
N points:

Consider the N(N − 1)/2 couples:
TP → similar objects in the same clusters
TN → different objects in different clusters
FP → different objects in the same clusters
FN → similar objects in different clusters

RI(K,C) =
TP + TN

TP + TN + FP + FN
Some of you might recognise the classification “accuracy” in this definition: even

though the idea is not far, this is different!
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The pletora of evaluation functions at our disposal strongly depends on the task!

Regression task – p-norm
Let yi ∈ R be the ground truth, and byi ∈ R the prediction of the i-th sample
(i = 1, 2, ... , N).

||y − by ||p =

 
NX

i=1

(yi − byi)
p

! 1
p

Specific cases:
p = 0→ no. of non-zero elements
p =∞→📖 can you compute it?
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The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task – Accuracy, precision, recall and confusion matrix
Let Ci ∈ {0, 1} be the ground truth, and bCi ∈ {0, 1} the prediction of the i-th sample
(i = 1, 2, ... , N).*

predictionbC = 1 bC = 0

gr
ou

nd
tru

th
C

=
1

C
=

0

TP

TN

FN

FP
confusion matrix

Consider the possibilities:
TP→ C = bC = 1

TN→ C = bC = 0

FP→ C = 0 and bC = 1 (type I)
FN→ C = 1 and bC = 0 (type II)

*Class assignements are based on the probability of belonging to a class, that is bC = 1 ⇔ P (bY = 1) > ”, where ” is an arbitrary threshold.
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The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task – Accuracy, precision, recall and confusion matrix
Let Ci ∈ {0, 1} be the ground truth, and bCi ∈ {0, 1} the prediction of the i-th sample
(i = 1, 2, ... , N).*

predictionbC = 1 bC = 0

gr
ou

nd
tru

th
C

=
1

C
=

0

TP

TN

FN

FP
confusion matrix

accuracy = TP+TN
TP+TN+FP+FN

precision = TP
TP+FP

recall = TP
TP+FN

*Class assignements are based on the probability of belonging to a class, that is bC = 1 ⇔ P (bY = 1) > ”, where ” is an arbitrary threshold.
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The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task – Accuracy, precision, recall and confusion matrix
Let Ci ∈ {0, 1} be the ground truth, and bCi ∈ {0, 1} the prediction of the i-th sample
(i = 1, 2, ... , N).*

predictionbC = 1 bC = 0

gr
ou

nd
tru

th
C

=
1

C
=

0

TP

TN

FN

FP
confusion matrix

Fβ = (1 + β2) precision·recall
β2·precision+recall

Imagine you are testing the presence of an infection in the population: would you

prefer a highly precise test or go for higher recall? Why?

*Class assignements are based on the probability of belonging to a class, that is bC = 1 ⇔ P (bY = 1) > ”, where ” is an arbitrary threshold.
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The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task – Accuracy, precision, recall and confusion matrix
Let Ci ∈ {0, 1} be the ground truth, and bCi ∈ {0, 1} the prediction of the i-th sample
(i = 1, 2, ... , N).*

predictionbC = 1 bC = 0

gr
ou

nd
tru

th
C

=
1

C
=

0

TP

TN

FN

FP
confusion matrix

sensitivity = TP
TP+FN (= recall)

specificity = TN
TN+FP

All metrics depend on the decision
threshold M = M(η). What if we use it as a
parameter? We can use the Area Under the
Curve (AUC) to evaluate the classifier!

*Class assignements are based on the probability of belonging to a class, that is bC = 1 ⇔ P (bY = 1) > ”, where ” is an arbitrary threshold.
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The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task – Accuracy, precision, recall and confusion matrix
Let Ci ∈ {0, 1} be the ground truth, and bCi ∈ {0, 1} the prediction of the i-th sample
(i = 1, 2, ... , N).*

ran
do
m
cla

ssi
fie
r

1 - specifity

se
ns

iti
vit

y

Receiver
Operating

Characteristic
(ROC)

sensitivity = TP
TP+FN (= recall)

specificity = TN
TN+FP

All metrics depend on the decision
threshold M = M(η). What if we use it as a
parameter? We can use the Area Under the
Curve (AUC) to evaluate the classifier!

*Class assignements are based on the probability of belonging to a class, that is bC = 1 ⇔ P (bY = 1) > ”, where ” is an arbitrary threshold.
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The pletora of evaluation functions at our disposal strongly depends on the task!

Binary classification
The output of the model for the i-th sample byi ∈ RK . We can use a sigmoid
normalisation by ′

i =
1

1 + e−byi
∈ [0, 1]

to interpret the result as a probability of belonging to the positive class. In other
words, the class assignment is:

bC = 1 ⇔ P (Yi = 1) = by ′
i > η,

where η is an arbitrary threshold (e.g. η = 0.5).
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The pletora of evaluation functions at our disposal strongly depends on the task!
Multiclass classification
The output of the model for the i-th sample byi ∈ RK . We can use a softmax
normalisation

P (Yi = k) = by ′ (k)
i =

eby(k)
i

KP
‘=1

eby(‘)
i

s.t.
KX

k=1

by ′ (k)
i = 1

to interpret the result as a probability of belonging to the k-th class. In other
words, the class assignment is:

bCi = argmax
k=1,...,K

by ′ (k)
i = argmax

k=1,...,K
by (k)

i

HOMEWORK: prove that softmax for binary classification is a sigmoid.
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The pletora of evaluation functions at our disposal strongly depends on the task!
Target encoding
Compare softmax-activated layer classes⇒ use one-hot encoding:

P (Yi = k) = 1 ⇒ ~yi =

0B@0, ... , 0, 1,| {z }
k-th position

0, ... , 0,

1CA .

This enables comparisons ~y vs ~by after
softmax by comparing “bits” of

information contained in the vectors.
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Without loss of generality, define the true value: N.B.: Var(X) = E[X2] − E[X ]2

y = f (~x) + ε ∈ R, ~x ∈ Rp, E(~x ,y) [ε] = 0, Var(~x ,y)(ε) = E(~x ,y)
ˆ
ε2
˜
= σ2.

Generalisation error
Let (~x ′, y ′) be an unseen pair, and compute the squared error from a trained
model bfDN :

E(~x ,y), DN

»“
y ′ −bfDN (~x

′)
”2–

We consider themean squared error for simplicity, but the same holds for other kinds of generalisation error.
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model bfDN :

E(~x ,y), DN

»“
y ′ −bfDN (~x

′)
”2–

We consider themean squared error for simplicity, but the same holds for other kinds of generalisation error.
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+ EDN

»

“

f (~x ′)−bfDN (~x
′)
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+ E(~x ,y), DN

h

2 ε
“

f (~x ′)−bfDN (~x
′)
”i

= σ2 + EDN

»

“

f (~x ′)−bfDN (~x
′)
”2

–

+ 2 EDN

h

f (~x ′)−bfDN (~x
′)
i

= σ2 + EDN

h

f (~x ′)−bfDN (~x
′)
i2

+ VarDN

“

f (~x ′)−bfDN (~x
′)
”

= +
complexity

er
ro
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nc
e

bias 2
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High bias or high variance produce high/bad generalisation errors!
The choice of a good validation strategy becomes fundamental!
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What K should I choose? What happens to the estimate of the prediction error
E (K )

D (val)
N

(y , by) = EK-folds
h
E

D (val)
N

[dist(y , by)]i
in cross validation?

Consider its stability analysis: (i.e. the study of its covariance, as it is an average of i.i.d. variables⇒ central limit theorem. See

Bengio and Grandvalet, 2004)

Var(K )

D (val)
N

(dist(y , by)) = 1

K 2

K−1X
i , j=0

1

mi mj

mi ,j−1X
p, q=0

Cov
“
dist(y (i)

p , by (i)
p ), dist(y (j)

q , by (j)
q )
”

m …=
P
everything

= 1
n2σ

2 + m−1
n ω + n−m

n γ

Lemma: ∄ unbiased estimator of Var(dist(y , by))
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What K should I choose? What happens to the estimate of the prediction error
in cross validation?
Consider its stability analysis: (i.e. the study of its covariance, as it is an average of i.i.d. variables⇒ central limit theorem. See

Bengio and Grandvalet, 2004)
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q , by (j)
q )
”

m …=
P
everything

= 1
n2σ

2 + m−1
n ω + n−m

n γ

Lemma: ∄ unbiased estimator of Var(dist(y , by))

ω and γ depend on correlations!
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Consider all elements:
a “machine” needs good data as
input even though nobody wants to tidy data for life…

we need structured procedures to
avoid mistakes
we must use good practices (data
split, validation, etc.)
we have to deal with bias and
variance
a “machine” needs an architecture
and an objective to train what everyone wants!

data
preparation
and analysis

AI model
building hell yeah!
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Consider all elements:
a “machine” needs good data as
input even though nobody wants to tidy data for life…

we need structured procedures to
avoid mistakes
we must use good practices (data
split, validation, etc.)
we have to deal with bias and
variance
a “machine” needs an architecture
and an objective to train what everyone wants!

How does a “machine” learn?

data
preparation
and analysis

AI model
building hell yeah!

please, do not follow the advice, this is just a meme…
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Machines can learn in different ways:

dist(y , by) better…−→ (L , K , g) “loss (function)” (sometimes Lagrangian),

where K ∼ Cn (at least locally) with ametric tensor g:

L : K −→ R

Z 7−→ L (Z )
def
= “distance from target”
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Machines can learn in different ways:

dist(y , by) better…−→ (L , K , g) “loss (function)” (sometimes Lagrangian),

where K ∼ Cn (at least locally) with ametric tensor g:

L : K −→ R

Z 7−→ L (Z )
def
= “distance from target”

Notice Z = Z (y , by) and by = f{Θ;Ω}(x). The training problem (i.e. finding the best Θ∗)
becomes:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

Should you see a correlation between L and the logarithm of a likelihood function, you would be basically right…
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Machines can learn in different ways:

dist(y , by) better…−→ (L , K , g) “loss (function)” (sometimes Lagrangian),

where K ∼ Cn (at least locally) with ametric tensor g:

L : K −→ R

Z 7−→ L (Z )
def
= “distance from target”

Least squares
Let Z = Y − bY :

L (Z ) = EP (Y )

»“
Y − bY”2–

Cross entropy

Let Z =
“

Y , bY”:
L (Z ) = −EP (Y )

h
ln bYi

K-means clustering
Let Z = X − bMc :

L (Z ) = EP (X ,C)

»“
X − bMc

”2–
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What makes a loss function “good”? These properties are not always verified unfortunately…

Convexity

z

L

z1 z2

Differentiability

∀c ∈ K \D0 ∃ lim
x→c

f (x)− f (c)
x − c

= f ′(x)|x=c
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What makes a loss function “good”? These properties are not always verified unfortunately…

Convexity

z

L

z1 z2

L (z2)−L (z1) ≥
dL (z)
dz

˛̨̨̨
z=z1

(z2 − z1)

Differentiability

∀c ∈ K \D0 ∃ lim
x→c

f (x)− f (c)
x − c

= f ′(x)|x=c
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Let P andQ be two probability distributions of X ∈ X, and consider the
Kullback-Leibler divergence:

DKL (P ||Q ) = EX∼P

»
ln P (X )

Q (X )

–
=
X
x∈X

P (x) ln P (x)
Q (x)

.

Theorem
DKL (P ||Q ) is a convex function in the pair (P ,Q ) over X.
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Let P andQ be two probability distributions of X ∈ X, and consider the
Kullback-Leibler divergence:

DKL (P ||Q ) = EX∼P

»
ln P (X )

Q (X )

–
=
X
x∈X

P (x) ln P (x)
Q (x)

.

Theorem
DKL (P ||Q ) is a convex function in the pair (P ,Q ) over X.

Proof
DKL (t P1(X ) + (1− t)P2(X ) || t Q 1(X ) + (1− t)Q 2(X )) =

=
X
x∈X

„
(t P1(X ) + (1− t)P2(X )) ln t P1(X ) + (1− t)P2(X )

t Q 1(X ) + (1− t)Q 2(X )

«
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»
ln P (X )

Q (X )
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=
X
x∈X

P (x) ln P (x)
Q (x)

.

Theorem
DKL (P ||Q ) is a convex function in the pair (P ,Q ) over X.

Proof
DKL (t P1(X ) + (1− t)P2(X ) || t Q 1(X ) + (1− t)Q 2(X )) ≤

“log sum inequality” ≤
X
x∈X

„
t P1(X ) ln �t P1(X )

�t Q 1(X )
+ (1− t)P2(X ) ln ����(1− t)P2(X )

����(1− t)Q 2(X )

«
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Kullback-Leibler divergence:

DKL (P ||Q ) = EX∼P

»
ln P (X )

Q (X )

–
=
X
x∈X

P (x) ln P (x)
Q (x)

.

Theorem
DKL (P ||Q ) is a convex function in the pair (P ,Q ) over X.

Proof

DKL (t P1(X ) + (1− t)P2(X ) || t Q 1(X ) + (1− t)Q 2(X )) ≤
≤ t DKL (P1 ||Q 1) + (1− t)DKL (P2 ||Q 2)

□
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Let P andQ be two probability distributions of X ∈ X, and consider the
Kullback-Leibler divergence:

DKL (P ||Q ) = EX∼P

»
ln P (X )

Q (X )

–
=
X
x∈X

P (x) ln P (x)
Q (x)

.

Theorem
DKL (P ||Q ) is a convex function in the pair (P ,Q ) over X.

1. prove that f(x) = − ln(x) is convex (or that f(x) = ln(x) is concave)
2. prove the “log sum inequality” (it follows from Jensen’s inequality and 1.) used in the proof – have fun or look it up!
3. prove that the cross entropy H(P , Q ) = −EP [lnQ ] is convex in Q over X

4. prove that any local minimum of a convex function is also a global minimum (suppose there are more, and find a
contradiction…)

HOMEWORK
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?
Let ~x , ~v ∈ Rn and f = f (~x) ∈ C 2 (R):

~∇~v f (~x) = ~∇f (~x) · ~v

which is maximal when ~v is in the same
direction of ~∇f (~x)

Steepest ascent (theorem?)

The gradient is the direction of steepest
ascent of the (hyper)surface.
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?

We can control the descent along the surface by iterating:

~x (t+1) = ~x (t) − ~α� ~∇f
“
~x (t)
”

where ~α ∈ Rn is the learning rate (N.B. α ∈ Ω is a hyperparameter of the model
often just a scalar…).
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?

Gradient descent
Require: α ∈ R+, θ(0), L , T ∈ N \ {0}
for 0 ≤ t < T do

~G (t) ← ~∇L (y , by(~θ(t))) = ~∇L (~θ(t))
~θ(t+1) ← ~θ(t) − α ~G (t) . steepest descent
return ~θ(T )

θ

L

dL
dθ ' 0

dL
dθ ' 0
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?

Gradient descent
Require: α ∈ R+, θ(0), L , T ∈ N \ {0}
for 0 ≤ t < T do

~G (t) ← ~∇L (y , by(~θ(t))) = ~∇L (~θ(t))
~θ(t+1) ← ~θ(t) − α ~G (t) . steepest descent
return ~θ(T )

θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬
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Remember theminimisation problem:

Θ∗ = argmin
Θ

L (Z ) = argmin
Θ

L (y , by(Θ,Ω))

What if L is too complicated for an analytical solution?

Gradient descent
Require: α ∈ R+, θ(0), L , T ∈ N \ {0}
for 0 ≤ t < T do

~G (t) ← ~∇L (y , by(~θ(t))) = ~∇L (~θ(t))
~θ(t+1) ← ~θ(t) − α ~G (t) . steepest descent
return ~θ(T )

Does it converge?
θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬

We will see better solutions later on…

Riccardo Finotello AIPhy 30/09/2024 38 / 104

Loss Functions
Differentiability and gradient descent



Definition | Lipschitz smoothness
Let f ∈ C 1(Rn) a scalar function, and L > 0. We call f L-smooth if it is L-Lipschitz:

∀~x ,~y ∈ Rn
˛

˛

˛

˛

˛

˛

~∇f (~x)− ~∇f (~y)
˛

˛

˛

˛

˛

˛

2
≤ L ||~x − ~y ||2
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Theorem | Smooth convex functions
Let f be a convex L-smooth scalar function over Rn , and let α = L−1 the learning rate, then ∀t ∈ [1, T ]:

f (~x(t))− f (~x∗) ≤
2L

T − 1

˛

˛

˛

˛

˛

˛

x(0) − x∗
˛

˛

˛

˛

˛

˛

2
.

(see Gower (Télécom Paris))
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Theorem | Smooth convex functions
Let f be a convex L-smooth scalar function over Rn , and let α = L−1 the learning rate, then ∀t ∈ [1, T ]:

f (~x(t))− f (~x∗) ≤
2L

T − 1

˛

˛

˛

˛

˛

˛

x(0) − x∗
˛

˛

˛

˛

˛

˛

2
.

(see Gower (Télécom Paris))
Consider~x(t+1) = ~x(t) − 1

L
~∇f
“
~x(t)

”
:

˛̨̨̨˛̨̨̨
~∇f
„
~x(t+1)

«
− ~∇f

„
~x(t)

«˛̨̨̨˛̨̨̨
2

=

˛̨̨̨
˛̨
˛̨̨̨
˛̨Z ~x(t+1)

~x(t) d~s ∇2 f(~s)

˛̨̨̨
˛̨
˛̨̨̨
˛̨
2

≤ L
˛̨̨̨˛̨̨̨
~x(t+1) − ~x(t)

˛̨̨̨˛̨̨̨
2

=
1

L

˛̨̨̨˛̨̨̨
~∇f
„
~x(t)

«˛̨̨̨˛̨̨̨
2

which shows (Taylor expansion + bound on Hessian) that

f
„
~x(t+1)

«
≤ f

„
~x(t)

«
−

1

L

˛̨̨̨˛̨̨̨
~∇f
„

x(t)
«˛̨̨̨˛̨̨̨

2
+

1

2L

˛̨̨̨˛̨̨̨
~∇f
„
~x(t)

«˛̨̨̨˛̨̨̨
2

= f
„
~x(t)

«
−

1

2L

˛̨̨̨˛̨̨̨
~∇f
„

x(t)
«˛̨̨̨˛̨̨̨

2
.

Moreover, by subtracting f
`
~x∗
´:

f
„
~x(t+1)

«
− f

“
~x∗
”
≤ f

„
~x(t)

«
− f

“
~x∗
”
−

1

2L

˛̨̨̨˛̨̨̨
~∇f
„

x(t)
«˛̨̨̨˛̨̨̨

2
.
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Theorem | Smooth convex functions
Let f be a convex L-smooth scalar function over Rn , and let α = L−1 the learning rate, then ∀t ∈ [1, T ]:

f (~x(t))− f (~x∗) ≤
2L

T − 1

˛

˛

˛

˛

˛

˛

x(0) − x∗
˛

˛

˛

˛

˛

˛

2
.

(see Gower (Télécom Paris))
From the last equation

f
„
~x(t+1)

«
− f

“
~x∗
”
≤ f

„
~x(t)

«
− f

“
~x∗
”
−

1

2L

˛̨̨̨˛̨̨̨
~∇f
„

x(t)
«˛̨̨̨˛̨̨̨

2
,

apply the convexity property

f
„
~x(t)

«
− f

“
~x∗
”
≤ ~∇f

„
x(t)

«
·
„
~x(t) − ~x∗

«
≤
˛̨̨̨˛̨̨̨
~∇f
„

x(t)
«˛̨̨̨˛̨̨̨2

2

˛̨̨̨˛̨̨̨
x(t) − ~x∗

˛̨̨̨˛̨̨̨2
2

and reconstruct:

∆
(t+1) ≤ ∆

(t) − β

„
∆

(t)
«2

⇔ β ≤ β
∆(t)

∆(t+1)
≤

1

∆(t+1)
−

1

∆(t)
,

where ∆(t) = f
“
~x(t)

”
− f

`
~x∗
´ and

β =
1

2L
˛̨̨˛̨̨

x(0) − x∗
˛̨̨˛̨̨2
2

, since
˛̨̨̨˛̨̨̨

x(t) − x∗
˛̨̨̨˛̨̨̨2
2
≤
˛̨̨̨˛̨̨̨

x(0) − x∗
˛̨̨̨˛̨̨̨2
2

.
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Theorem | Smooth convex functions
Let f be a convex L-smooth scalar function over Rn , and let α = L−1 the learning rate, then ∀t ∈ [1, T ]:

f (~x(t))− f (~x∗) ≤
2L

T − 1

˛

˛

˛

˛

˛

˛

x(0) − x∗
˛

˛

˛

˛

˛

˛

2
.

(see Gower (Télécom Paris))
We finally conclude by summing over all t ∈ [1, T ]:

(T − 1)β ≤
1

∆(T)
−

1

∆(1)
≤

1

∆(T)
≤

1

∆(t)
.

□
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Is there a difference betweenmetrics and loss functions? Can I choose
arbitrarily?

Regression task N.B. we are not discussing “good vs bad” metric/loss

Let f{Θ,Ω} : R
n → R, such that ~x f7→ by , a regressionmodel

metric → ||y − by ||p
loss → ||y − by ||p>0

A priori, we could use the loss as evaluation metric as well.

Classification task N.B. we are not discussing “good vs bad” metric/loss

Let f{Θ,Ω} : R
n → R, such that ~x f7→ by (probability of being positive sample), a classificationmodel

metric → accuracy
loss → EC

h

ln bC
i

(cross entropy)

Depending on the task, we need a differentiable loss, but not necessarily a continuous evaluation!
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Q: Is there a way to actively reduce overfitting the training data?

regularised model = model + constraint on parameters
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Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

Lp regularisation
Define the Lp norm of ~x ∈ Rk :

||~x ||p =

 pX
i=1

|xi |p
! 1

p

, special cases

8><>:L0 : ||~x ||0 =
pP

i=1

δ|xi |, 0

L∞ : ||~x ||∞ = supi∈[1,p] |xi |
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Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

Lp regularisation

Then:

L reg(Θ; Λ) = λp ||Θ||pp , s.t. λp ∈ Λ.

Most common regularisation techniques
are p = 1 (LASSO) and p = 2 (Ridge). Θ

L reg
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Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

L1 and L2 regularisation: probabilistic interpretation or simple trick?
Remember P (A ∩ B) = P (A | B)P (B) = P (B | A)P (A) which implies (Bayes’ theorem):

P (A | B)
| {z }

posterior

=

likelihood
z }| {

P (B | A)

prior
z }| {

P (A)
P (B)
| {z }

marginal

.
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Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

L1 and L2 regularisation: probabilistic interpretation or simple trick?

Θ∗ = argmax
Θ

(lnP (Θ | ~x))
| {z }

MAP

= argmax
Θ

0

B

B

@

lnP (~x | Θ)
| {z }

MLE

+ lnP (Θ)
| {z }

prior

1

C

C

A

where, for Θ = (θ1, θ2, ... , θp):

L1 : P (Θ) = Laplace(Θ | 0, b) =
1

2pbp
e− ||Θ||1b , L2 : P (Θ) = N (Θ | 0,σ2) =

1

(2ıσ2)p
e−
||Θ||22
2σ2 .

N.B.: certainly “MAP w/ prior⇒ penalised least squares”, but “penalised least squares ⇏
Gaussian/Laplace prior”: it is rather a matter of efficiency and good results.

(see Gribonval (2011))

Riccardo Finotello AIPhy 30/09/2024 43 / 104

Regularisation Techniques
Containing the overfit

https://inria.hal.science/inria-00486840


Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

L1 and L2 regularisation: probabilistic interpretation or simple trick?

Θ∗ = argmax
Θ

(lnP (Θ | ~x))
| {z }

MAP

= argmax
Θ

0

B

B

@

lnP (~x | Θ)
| {z }

MLE

+ lnP (Θ)
| {z }

prior

1

C

C

A

where, for Θ = (θ1, θ2, ... , θp):

L1 : P (Θ) = Laplace(Θ | 0, b) =
1

2pbp
e− ||Θ||1b , L2 : P (Θ) = N (Θ | 0,σ2) =

1

(2ıσ2)p
e−
||Θ||22
2σ2 .

Q: L reg adds a restrictions on the parameters of the model to contain the overfit. How to interpret this
in terms of bias vs variance?

(see Gribonval (2011))
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Q: Is there a way to actively reduce overfitting the training data?

L full(Θ; Ω,Λ) = L (Θ; Ω) + L reg(Θ; Λ)

L1 and L2 regularisation: probabilistic interpretation or simple trick?

Θ∗ = argmax
Θ

(lnP (Θ | ~x))
| {z }

MAP

= argmax
Θ

0

B

B

@

lnP (~x | Θ)
| {z }

MLE

+ lnP (Θ)
| {z }

prior

1

C

C

A

where, for Θ = (θ1, θ2, ... , θp):

L1 : P (Θ) = Laplace(Θ | 0, b) =
1

2pbp
e− ||Θ||1b , L2 : P (Θ) = N (Θ | 0,σ2) =

1

(2ıσ2)p
e−
||Θ||22
2σ2 .

Q: L reg adds a restrictions on the parameters of the model to contain the overfit. How to interpret this
in terms of bias vs variance? Increase in bias, decrease in variance.

(see Gribonval (2011))
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SUPERVISED UNSUPERVISED

Supervised learning
“learn” knowing the result (labels)
iterative process with examples
need annotated data

Unsupervised learning
“learn” a structure in the data
can identify usable patterns
data are not labelled
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Supervised learning
LetD = {(~x , y)} a labelled dataset:

fsupervised : Kp → K

regression
classification
time series inference
(LLMs, generative AI, etc. debatable)

Unsupervised learning
LetD = {~x} a set of data points:

funsupervised : Kp → Kq

principal components analysis
clustering and manifold learning
anomaly detection
etc.
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consistent prediction of
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Reinforcement
learning

prize vs penalty training

(e.g. Boston Dynamics)
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2. TheMLMindset
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Unsupervised learning
Supervised learning
Ensemble learning
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find maximal “distance2”

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.
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data better from another
angle (<–> > <–>)
“distance” from centre

find maximal “distance2”

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
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find maximal “distance2”

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
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data better from another
angle (<–> > <–>)
“distance” from centre
find maximal “distance2”
(i.e. maximal variance)

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.
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Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.
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x

y

x

y

x ′

y ′

data better from another
angle (<–> > <–>)
“distance” from centre
find maximal “distance2”
(i.e. maximal variance)

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.

Preliminaries (spectral theorem)

Let M ∈ Rp×p s.t. MT = M . Then, ∃ complete
orthonormal basis of Rp

˘
~e1,~e2, ... ,~ep

¯ s.t.
M =

“
~mT

i

”
i=1,2,...,p

=

pX
i=1

–i~ei~eT
i ,

where –i ∈ R+ ∀i ∈ [1, p].
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x
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y

x ′

y ′

data better from another
angle (<–> > <–>)
“distance” from centre
find maximal “distance2”
(i.e. maximal variance)

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.

Maximal variance
Let Y ∈ Rn×p matrix representation of data
with covariance C = n−1X T X .

We look for a new basis

Y ′|{z}
scores / principal components

= Y W|{z}
loadings

which maximises the variance in each
direction of the vectors ~y ′

[i] ∈ Rp

(i = 1, 2, ... , n).
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x

y

x

y

x ′

y ′

data better from another
angle (<–> > <–>)
“distance” from centre
find maximal “distance2”
(i.e. maximal variance)

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.

Maximal variance
We need:

Var(y ′
[i](a)) = Var(~y[i] · ~w(a)) = ~wT

(a) C[i] ~w(a).

and compute

argmax
~w(a)

~wT
(a) C[i] ~w(a)

constrained to

~w(a) · ~w(b) = δab.
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x
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x ′

y ′

data better from another
angle (<–> > <–>)
“distance” from centre
find maximal “distance2”
(i.e. maximal variance)

Let ~xi ∈ Rp for i = 1, 2, ... , n s.t. E[~x ] = ~x . Call
~yi = ~xi − ~x (i = 1, 2, ... , n) the centred data.

Principal Components (theorem)

If C has distinct eigenvalues λ1, ... , λp , then
~w(a) is the eigenvector corresponding to

the a-th largest eigenvector λa.
Moreover,

Var(y ′
[i](a)) = ~wT

(a)C[i] ~w(a) = λa.

Prove the PC theorem. Proceed iteratively from ~w(1) .
HOMEWORK
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original images (Olivetti dataset)

PCA (on image vectors)

eigenface basis
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original images (Olivetti dataset)

PCA (on image vectors)

eigenface basis

1. let Z ∈ [0, 255]2 be a grayscale image
2. define ~y = vec(Z ), then find basis of images ˘~w(1), ... , ~w(p)

¯
3. write each image ~y([i]) =

pP
k=1

y ′
[i](k)~w(k), where y ′

[i](k) = ~y[i] · ~w(k)

4. (optional) use ~y ′
[i] ∈ Rp to train a classifier (see Sirovich and Kirby (1987) and Turk and Petland (1991))
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original images (Olivetti dataset)

PCA (on image vectors)

eigenface basis

As λ(k) represents the variance explained by the k-th principal component:

~y W = ~y ′
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original images (Olivetti dataset)

PCA (on image vectors)

eigenface basis

As λ(k) represents the variance explained by the k-th principal component:

~y Wα = ~y ′
α
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1st PC: 18% of explained variance

50% of explained variance: 6 components

90% of explained variance: 83 components

Cumulative variance
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LetD = {xi ∈ R | i = 1, 2, ... , n} s.t.
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hypothesis: data are sampled from different Gaussian distributions
objective: can we group data according to the parameters of different Gaussian
distributions?
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It looks easy knowing the
ground truth…
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…but it is not! (even 1D!)

We need to build several normal distributions,
then select what we need→ build a Gaussian
Mixture Model
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…but it is not! (even 1D!)

We need to build several normal distributions,
then select what we need→ build a Gaussian
Mixture Model
Reminders
Remember:

N (x | —,ff2) =
1

√
2ıff2

e− (x−—)2

2ff2 .

and (Bayes’ theorem):

P (A | B) =
P (B | A)P (A)

P (B)
.
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…but it is not! (even 1D!)

Gaussian Mixture Model
Consider K > 1 components and let
Θ = {(c(1),—1,ff2

1), ... , (c(K ),—(K ),ff2
(K ))}, where c(k)

(k = 1, 2, ... , K ) are the probabilities of picking
the k-th Gaussian.

We observe themarginal (C is latent) likelihood:

P (x | Θ) =

KX
k=1

P (C = k | Θ)P (x | C = k ; Θ)

=
KX

k=1

c(k) N (x | —(k),ff2
(k)).

Riccardo Finotello AIPhy 30/09/2024 54 / 104

GaussianMixtureModel
Definition



−4 −3 −2 −1 0 1 2

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
x

)

…but it is not! (even 1D!)

Gaussian Mixture Model
Consider K > 1 components and let
Θ = {(c(1),—1,ff2

1), ... , (c(K ),—(K ),ff2
(K ))}, where c(k)

(k = 1, 2, ... , K ) are the probabilities of picking
the k-th Gaussian.
We observe themarginal (C is latent) likelihood:

P (x | Θ) =

KX
k=1

P (C = k | Θ)P (x | C = k ; Θ)

=

KX
k=1

c(k) N (x | —(k),ff2
(k)).

Riccardo Finotello AIPhy 30/09/2024 54 / 104

GaussianMixtureModel
Definition



−4 −3 −2 −1 0 1 2

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
x

)

P (x | Θ) =
KX

k=1

P (C = k | Θ) P (x | C = k; Θ)

=

KX
k=1

c(k) N (x | —(k) , ff2(k)).

Gaussian Mixture Model
Consider K > 1 components and let
Θ = {(c(1),—1,ff2

1), ... , (c(K ),—(K ),ff2
(K ))}, where c(k)

(k = 1, 2, ... , K ) are the probabilities of picking
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P (x | Θ) =
KX

k=1

P (C = k | Θ) P (x | C = k; Θ)

=

KX
k=1

c(k) N (x | —(k) , ff2(k)).

Gaussian Mixture Model
How to estimate the parameters? Ideally, we
would like to assign any sample x ∈D to a
generating distribution:

Θ∗ = argmax
Θ

nY
i=1

P (xi | Θ)

= argmax
Θ

nX
i=1

lnP (xi | Θ)

Use the Expectation-Maximisation (EM)
algorithm. (EM is a technique to estimate the MLE of a latent variable model)
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P (x | Θ) =
KX

k=1

P (C = k | Θ) P (x | C = k; Θ)

=

KX
k=1

c(k) N (x | —(k) , ff2(k)).

Expectation Maximisation
Consider

P (C = k | xi ;Θ) =
P(xi | C = k ;Θ)P(C = k)

P(xi | Θ)

=
P(xi | C = k ;Θ)P(C = k)

KP
k=1

P(xi | C = k ;Θ)P(C = k)

=
c(k) N (xi | —(k),ff2

(k))

KP
k=1

c(k) N (xi | —(k),ff2
(k))

= γi(k)

N.B.:
KP

k=1

γi(k) = 1.
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P (x | Θ) =
KX

k=1

P (C = k | Θ) P (x | C = k; Θ)

=

KX
k=1

c(k) N (x | —(k) , ff2(k)).

Expectation Maximisation

Q(Θ) = EP (C|x;Θ) [lnP (x | Θ)]

=

nX
i=1

KX
k=1

P (C = k | xi ;Θ) lnP (xi | Θ)

=

nX
i=1

KX
k=1

γi(k) ln
“

c(k)N (xi | —(k),ff2
(k))
”

Compute (until convergence to Θ{t} t≫1→ Θ∗):

Θ{t+1} = argmax
Θ

Q
“
Θ{t}

”
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=
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Expectation Maximisation
Compute (until convergence to Θ{t} t≫1→ Θ∗):

Θ{t+1} = argmax
Θ

Q
“

Θ{t}
”

,

that is:
c{t+1}
(k) = ED

h

‚
{t}
(k)

i

—
{t+1}
(k) =

ED

h

γ
{t}
(k)x

i

ED

h

γ
{t}
(k)

i

ff
{t+1}
(k) =

ED

h

γ
{t}
(k)

`

x − —(k)
´2

i

ED

h

γ
{t}
(k)

i

Riccardo Finotello AIPhy 30/09/2024 54 / 104

GaussianMixtureModel
Definition



Remember
γ∗

i(k) = P (C = k | xi ;Θ
∗)⇒ bCi = argmax

k
softmax

“
γ∗

i(k)

”
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Remember

γ∗
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ORIGINAL
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k

softmax
“
γ∗

i(k)

”
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Remember
γ∗

i(k) = P (C = k | xi ;Θ
∗)⇒ bCi = argmax

k
softmax

“
γ∗

i(k)

”

Zhao et al. (2016)

can generalise to N-dimensional
distributions
used for exploratory data analysis…
…as well as unsupervised classification

HSI*
λ

I

⇒
R

Rp−1

* HyperSpectral Image
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x0

x1

y = 1

y = −1

(see Cortes and Vapnik (1995))

SupposeD = {(~x , y)}, s.t. y = ±1
(classification) (simple case: linearly separable)
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x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

How to choose the best
hyperplane to separate the

points?
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Maximise the separation (i.e.
themargin)!

Riccardo Finotello AIPhy 30/09/2024 58 / 104

Support VectorMachine
Definition | The classification case

https://doi.org/10.1007/BF00994018


x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Hyperplane (strict) separation theorem
Let A, B ⊂ Rp s.t. they are closed and convex,
and A ∩ B = ∅. Suppose one of them is
compact. Then ∃~w = (~a, b) ∈ Rp ×R s.t.

~a · ~x + b

(
> c1 ∀x ∈ A
< c2 ∀x ∈ B

for c1 > c2. That is,
provided a separation, there exist a
hyperplane separating the two sets
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x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Hyperplane (strict) separation theorem
Let A, B ⊂ Rp s.t. they are closed and convex,
and A ∩ B = ∅. Suppose one of them is
compact. Then ∃~w = (~a, b) ∈ Rp ×R s.t.

~a · ~x + b

(
> c1 ∀x ∈ A
< c2 ∀x ∈ B

for c1 > c2. That is,
∃f : Rp → {−1,+1}

~x 7→ y

where y is a boolean variable.
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine
LetD = {(~xi , yi) ∈ Rp × {−1, 1} | i = 1, 2, ... , n}
linearly separable. Let (~a, b) ∈ Rp ×R identify
a hyperplane.
Then, for i = 1, 2, ... , n:

~a · ~xi + b

(
≥ +1 if yi = +1

≤ −1 if yi = −1

Riccardo Finotello AIPhy 30/09/2024 58 / 104

Support VectorMachine
Definition | The classification case

https://doi.org/10.1007/BF00994018


x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine
LetD = {(~xi , yi) ∈ Rp × {−1, 1} | i = 1, 2, ... , n}
linearly separable. Let (~a, b) ∈ Rp ×R identify
a hyperplane.
Then, for i = 1, 2, ... , n:

yi (~a · ~xi + b) ≥ 1.
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine
LetD = {(~xi , yi) ∈ Rp × {−1, 1} | i = 1, 2, ... , n}
linearly separable. Let (~a, b) ∈ Rp ×R identify
a hyperplane.
The distance between classes

ρ(~a) = min
~x|y=+1

~a˛̨˛̨
~a
˛̨˛̨
2

· ~x − max
~x|y=−1

~a˛̨˛̨
~a
˛̨˛̨
2

· ~x

becomes maximal for the optimal (~a∗, b∗):

ρ(~a∗) =
2˛̨˛̨
~a
˛̨˛̨
2

.
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine

`
~a∗, b∗´ = argmax

~a∈Rp , b∈R

ρ(~a) = argmin
~a∈Rp , b∈R

1

2

˛̨˛̨
~a
˛̨˛̨2
2

constrained to

yi(~a · ~xi + b) ≥ 1 ∀i = 1, 2, ... , n.

That is, find the saddle points of:

L(~a, b, ~µ) =
1

2
~a · ~a −

n−1X
i=0

µi
`
yi(~a · ~xi + b)− 1

´
s.t. µi ≥ 0 ∀i = 1, 2, ... , n (Lagrange multipliers⇒ find the min for~a and b,

and the max for ~µ).Riccardo Finotello AIPhy 30/09/2024 58 / 104
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vectors
Notice that µi ≥ 0 ∀i = 1, 2, ... , n is fundamental.
From the minimisation (equation of motion), the
constraint:

µi
`
yi(~a · ~xi + b)− 1

´
= 0

implies that

µi > 0⇒ yi(~a · ~xi + b) = 1

∀i = 1, 2, ... , n. That is,
the only contributing data points are those
precisely on the margin⇒ Support Vectors
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine`
~a∗, b∗´ = argmin

~a∈Rp , b∈R

argmax
~µ∈Rn

L(~a, b, ~µ)

can be performed to give:

~a∗ =

nX
i=1

yi —i ~xi and b∗ = −~a · ~xi .

x0

x1

HardMargin
Support Vector

Machine
Riccardo Finotello AIPhy 30/09/2024 58 / 104
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Support Vector Machine (v2)
Suppose data is not perfectly separable. New
constraint:

yi
`
~a · ~xi + b

´
≥ 1− ξi ξi > 0 ∀i = 1, 2, ... , n.

Hence (C > 0):

L(~a, b, ~µ,~ξ) = argmin
~a∈Rp , b∈R, ~ξ∈Rn

1

2
~a · ~a + C

nX
i=1

ξi

Soft Margin SVM
Riccardo Finotello AIPhy 30/09/2024 58 / 104
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Kernel SVM
Suppose data not (natively) lineary separable
in target space, but possibly in feature space:

∃ϕ : Rp → RP , P > p

s.t. we can use SVM in P-dimensional space:

~a∗ =

nX
i=1

yiµiϕ(~xi).

Do we need to know ϕ analytically?
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Kernel SVM
Let f be the SVM classifier and ~x a new data
point:

f (~x) = ϕ(~x) · ~a∗ + b∗

=

nX
i=1

yi µi ϕ(~x) · ϕ(~xi) + b∗.

Only projections on support vectors:

K (~x ,~xi) = ϕ(~x) · ϕ(~xi)

are really necessary (not even all data points!).
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x0

x1

y = 1

y = −1

?

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
themargin)!

Kernel SVM
As long as K ∈ L2(RP) and symmetric:

K (~u, ~v) =
∞X

i=1

λiφi(~u) ·φj(~v), λi ≥ 0.

Good/used choices of K :
radial basis func.: Kσ(~u, ~v) = exp(− ||u−v ||

σ2 )

polynomial func.: Kd (~u, ~v) = (1 + ~u · ~v)d

1. build a SVM for regression (change the classifier constraint to a MSE
loss, see Drucker et al. (1996))

2. show that the sigmoid can be used as a kernel function

HOMEWORK
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D

Q1

D1 D2

Q2

…

D21 D22

A decision tree T is a hierarchicalmodel:
decision nodes where “splits” are made

data nodes
branches parent partitions of data

leaves final partitions of data

That is T (slight abuse of notation: D is both the data and the domain):

T =

(

DA ⊂ D |
[

A

DA = D , DA ∩DB = ∅ forA 6= B

)

where
A = {a1, a2, ... , an}

s.t. |A| is maximal w.r.t. a stopping criterion.
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D1 D2

Q2

…

D21 D22

A decision tree T is piecewise linear as it
outputs a tesselation of the domain space:

x0

x1
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A decision tree T is piecewise linear as it
outputs a tesselation of the domain space:

x0

x1

x0 ⋚ x0
(0)
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D

Q1

D1 D2

Q2

…

D21 D22

A decision tree T is piecewise linear as it
outputs a tesselation of the domain space:

x0

x1

x0 ⋚ x0
(0)

x1 ⋚ x1
(0)

x1 ⋚ x1
(1)

x0 ⋚ x0
(1)

There exists a huge number of decision tree making algorithms (THAID, C4.5, CART, MARS,
etc.)→ we focus on CART and C4.5.
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Q2
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In other words:
Require: stopping criterion S , measure of

“goodness of split”G , i ← 0
while ¬S do

loop
select node i
find the best partition ofDi according
toG
create child nodes ia (a = i1, i2, ... )
loop for each child node i ← ia

return partition assignments ofD
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The C4.5 decision tree
Use information gain (mutual information) as
criterionG (maximise):

MI(X ∈D , Xi ∈DA) = H(X ∈D )− H(X ∈D | Xi ∈DA),

where

H(X) = −
K
X

j=1

P (X ∈ Cj ) log2 P (X ∈ Cj ),

H(X | Xi ) = −
K
X

j=1

P (X ∧ Xj ) log2

P (X ∧ Xj )

P (X ∈ Cj )
,

and P (X ∧ Xj ) = P (X ∈D , Xj ∈ Cj ) and Cj ⊂D .
(see Quinlan (1994))
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The C4.5 decision tree
Use information gain (mutual information) as
criterionG (maximise):

MI(X ∈D , Xi ∈DA) = H(X ∈D )− H(X ∈D | Xi ∈DA),

Which implies:
maximise the information acquired by
the split
pruning based on informative splits
(uninformative branches are replaced by leaf nodes)

missing values automatically handled
the split can be arbitrary (e.g. multiclass)

(see Quinlan (1994))
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The Classification And Regression Trees
Use Gini impurity asG (minimise).
Let pi , i = 1, 2, ... , K , be the probability of
choosing an item of class Ci :

I(X ∈ DA) =
K
X

i=1

pi(1− pi) = 1−
K
X

i=1

p2
i ,

that is
the probability of incorrectly classifying an

item, if it were randomly labelled based on the
distribution of the sample.

(see Breiman et al. (1984))
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The Classification And Regression Trees
Use Gini impurity asG (minimise).
Let pi , i = 1, 2, ... , K , be the probability of
choosing an item of class Ci :

I(X ∈ DA) =
K
X

i=1

pi(1− pi) = 1−
K
X

i=1

p2
i ,

that is
the Tsallis entropy (generalised

Boltzmann-Gibbs) with deformation 2.
(see Breiman et al. (1984))
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The Classification And Regression Trees
Use Gini impurity asG (minimise).
Let pi , i = 1, 2, ... , K , be the probability of
choosing an item of class Ci :

I(X ∈ DA) =
K
X

i=1

pi(1− pi) = 1−
K
X

i=1

p2
i ,

which enables:
binary partitions ofDA

pruning to be enforced (e.g. cross-validation)

label =mode of leaf node (mean/median)

(see Breiman et al. (1984))
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THINK
Suppose no pruning:
1. at which point does T naturally stop?
2. is T high bias or high variance?

Riccardo Finotello AIPhy 30/09/2024 59 / 104

Decision Trees
Definition



D

Q1

D1 D2

Q2

…

D21 D22

THINK
Suppose no pruning:
1. at which point does T naturally stop? → |DA| = 1, ∀A
2. is T high bias or high variance? → VERY high variance

x0

x1

+

o

+

o

+

o

+

+

o

o

Decision trees are
prone to overfitting

D (train) without
appropriate strategies!
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Hierarchical structure enables ranking features⇒ importance of feature for the
split.
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Hierarchical structure enables ranking features⇒ importance of feature for the
split.
Let

IA =
|DA|
|D |

I (X ∈DA)−
|DA1|
|D |

I (X ∈DA1)−
|DA2|
|D |

I (X ∈DA2)

the importance of node A.
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Hierarchical structure enables ranking features⇒ importance of feature for the
split.
Let

IA =
|DA|
|D |

I (X ∈DA)−
|DA1|
|D |

I (X ∈DA1)−
|DA2|
|D |

I (X ∈DA2)

the importance of node A.
Compute the feature importance of feature i :

Fi =

P
a splits on i IaP

a Ia
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Hierarchical structure enables ranking features⇒ importance of feature for the
split.

Can you produce/guess the output?
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Hierarchical structure enables ranking features⇒ importance of feature for the
split.
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LetD (train)
1 ∪D (train)

2 = D (train) a partition of the training set:

D (test)

D (val)

D (train)
1

D (train)
2
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LetD (train)
1 ∪D (train)

2 = D (train) a partition of the training set:

D (test)

D (val)

D (train)
1

D (train)
2 Model 1 Predictions 1

Model 2 Predictions 2

Model 3 Predictions 3

eD (train)
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LetD (train)
1 ∪D (train)

2 = D (train) a partition of the training set:

D (test)

D (val)

D (train)
1

D (train)
2

eD (test)

eD (val)

eD (train) Metamodel Predictions
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LetD (train)
1 ∪D (train)

2 = D (train) a partition of the training set:

D (test)

D (val)

D (train)
1

D (train)
2

eD (test)

eD (val)

eD (train) Metamodel
Though any model will do, linear regression/logistic classification

are mostly used. Thanks to their simple interpretation, they

can be seen as a generalisation of majority voting, by

assigning different weights to the predictions of different models

Inference

Riccardo Finotello AIPhy 30/09/2024 63 / 104

Ensemble Learning
Stacking / Metalearning



LetD (train)
1 ∪D (train)

2 = D (train) a partition of the training set:

D (test)

D (val)

D (train)
1

D (train)
2

eD (test)

eD (val)

eD (train) Metamodel
Though any model will do, linear regression/logistic classification

are mostly used. Thanks to their simple interpretation, they

can be seen as a generalisation of majority voting, by

assigning different weights to the predictions of different models

Inference

BIAS vs VARIANCE?
HOMEWORK
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Suppose a population with distribution P for which you need a statistical
estimate with expected value θ, and variance σ2:
1. take a sampleD = {X1 = x1, ... , Xn = xn} with distribution bP
2. estimate bθ usingD
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Suppose a population with distribution P for which you need a statistical
estimate with expected value θ, and variance σ2:
1. take a sampleD = {X1 = x1, ... , Xn = xn} with distribution bP
2. estimate bθ usingD

Should you be able to repeat your estimation, you could compute

E bP (X)[
bθ] = θ (unbiased estimator) Var bP (X)[

bθ] = n − 1

n
σ2

(biased estimator)
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E bP (X)[
bθ] = θ (unbiased estimator) Var bP (X)[

bθ] = n − 1
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σ2
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and show
E bP (X)[

bθ]− θ

σ√
n

∼ N (0, 1) (central limit theorem).
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Suppose a population with distribution P for which you need a statistical
estimate with expected value θ, and variance σ2:
1. take a sampleD = {X1 = x1, ... , Xn = xn} with distribution bP
2. estimate bθ usingD

Should you be able to repeat your estimation, you could compute

E bP (X)[
bθ] = θ (unbiased estimator) Var bP (X)[

bθ] = n − 1

n
σ2

(biased estimator)

and show
E bP (X)[

bθ]− θ

σ√
n

∼ N (0, 1) (central limit theorem).

This might not be possible!
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From the sampleD , you can resample with replacement:

“bootstrap”→

8>>>><>>>>:
D ∗

(1) = {x∗
1 , x∗

2 , ... , x∗
n } −→ θ∗(1)

D ∗
(2) = {x∗

1 , x∗
2 , ... , x∗

n } −→ θ∗(2)
...
D ∗

(B) = {x∗
1 , x∗

2 , ... , x∗
n } −→ θ∗(B)

Bootstrap
Let bθ∗ = EP ∗(X)[θ

∗], where P ∗(X ) is the
bootstrap distribution:

bθ∗ P−→ bθ.
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(see also Chen (2019), Washington U.)

Consider the Monte Carlo bootstrap estimate

VarP ∗(X)

“bθ∗” =
1

B − 1

BX
i=1

“bθ∗(i) − E[bθ∗]” B≫1
= VarP ∗(X |D )

“bθ∗” (“with the sampleD fixed”).

and prove
VarP ∗(X |D )

“bθ∗” P−→ Var bP (X)

“bθ”
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(see also Chen (2019), Washington U.)

Consider the Monte Carlo bootstrap estimate

VarP ∗(X)

“bθ∗” =
1

B − 1

BX
i=1

“bθ∗(i) − E[bθ∗]” B≫1
= VarP ∗(X |D )

“bθ∗” (“with the sampleD fixed”).

and prove
VarP ∗(X |D )

“bθ∗” P−→ Var bP (X)

“bθ”
Sketch of the proof:
Let ∆∗(D , B) = VarP∗(X|D )

“bθ∗” − Var bP “bθ”, and suppose ∆∗(D , B) < c
B , with c > 0:

(McDiarmid’s inequality) P `˛̨∆∗(D , B) − E[∆∗(D , B)]
˛̨
≥ ε

´
≤ 2e

− 2ε2√B
c

(Borel-Cantelli lemma)
BP

i=1
P `˛̨∆∗(D , B) − E[∆∗(D , B)]

˛̨
≥ ε

´
< ∞ ⇒ P

 
lim sup
B→∞

˛̨
∆∗(D , B) − E[∆∗(D , B)]

˛̨
≥ ε

!
= 0

E[∆∗(D , B)] = 0 ⇒ VarP∗(X|D )
bθ∗ P−→ Var bP (X)

bθ
□
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With all these elements:

Z =
√

n
bθ− θpVarP (X)(θ)

∼ N (0, 1)

Z ∗ =
√

n
bθ∗ − bθq
Var bP (X)(θ)

∼ N (0, 1)

9>>>>>=>>>>>;
estimated parameters have the same distribution!
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With all these elements:

Z =
√

n
bθ− θpVarP (X)(θ)

∼ N (0, 1)

Z ∗ =
√

n
bθ∗ − bθq
Var bP (X)(θ)

∼ N (0, 1)

9>>>>>=>>>>>;
estimated parameters have the same distribution!

Slightlymore formally:
Let

P(x) = P(Z ≤ x) P∗(x) = P(Z∗ ≤ x),

then (see Berry-Esseen theorem):

˛̨̨
P(x) − P∗(x)

˛̨̨
≤ |P(x) −Φ(x)| +

˛̨̨
Φ(x) −Φ

∗
(x)
˛̨̨
+
˛̨̨
P∗(x) −Φ

∗
(x)
˛̨̨
≤ C

—3

ff3
√

n
+ O

 
n
− 1

2

!
+ C∗

—∗3
ff∗3
√

n
→ 0

when n →∞. This shows P → P∗ in distribution.

□
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Given the previous discussion, it becomes natural to define the bagging:

D

D(1) D(2) D(3)

model model model

Aggregation (e.g. classification: majority voting, regression: average prediction)

more on this later…
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Strong Learner
LetD = {(~x , y)} be a labelled dataset,
then a model f is a strong learner if

∀ε > 0 P(f (~x) 6= y) ≤ ε.

Weak Learner
LetD = {(~x , y)} be a labelled dataset,
then a model f is a weak learner if

∃ε′ > 0 P(f (~x) 6= y) ≤ ε′.

D

D ′

D ′′

weak learner

weak learner′

weak learner′′

processing strong learner prediction
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LetD = {(~xi , yi) | yi ∈ {−1, 1} ∀i = 1, 2, ... , N}, and H be a weak learner onD :
Ada(ptive)Boost(ing) Gradient boosting
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LetD = {(~xi , yi) | yi ∈ {−1, 1} ∀i = 1, 2, ... , N}, and H be a weak learner onD :
Ada(ptive)Boost(ing)
Idea: weighted majority voting

Require: M > 0

Require: m = 0, w(0)
i ← N−1 , ∀i = 1, 2, ... , N

for 0 < m ≤ M do
run H (m) onD

β(m) ←
NP

i=1
w(m)

i θ(−yi H
(m)(~xi )) . error rate

α(m) = 1
2

ln 1−β(m)

β(m)

w(m+1)
i ← w(m)

i softmax
α(m) (yi H (~xi ))

return H (~x) = sign
 

MP
m=1

α(m)H (m)(~x)

!
.

Gradient boosting
Idea: improving on previous attempts
Require: M > 0, m = 0, ν > 0, H (~x) = γ +

MP
i=1

γ(m)h(m)(~x), h(m)

weak learner, H (0)(~x) = arg min
γ

L(y , γ)

Require: H (m) = H (m−1) + arg min
γ(m) ,h(m)

L(y , H (m−1)(~x) +

γ(m)h(m)(~x))
for 0 < m ≤ M do

r(m)
i = − δL

δH

˛̨̨
H =H (m) for i = 1, 2, ... , N

train H (m) on {(~x , r(m))}
γ(m) ← arg min

y
L
“

y , H (m−1)(~x) + νγh(m)(~x)
”

H (m) ← H (m−1) + νγ(m)h(m) . ν learning rate
return H (M)(~x).

Remeber that θ is the Heaviside function: θ(x) =

(
1 if x ≥ 0

0 if x < 0
, and softmaxβ(z) =

exp(−βz)
NP

i=1
exp(−βzi )

.
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??? | Random Forest

Remember that for Y = (y1, ... , yB) i.i.d. (variance
σ2 and pairwise correlation ρ):

ρ =
Cov(Y )

ff2
⇔ Cov

“

Y
”

= ρσ2 +
1− ρ

B
σ2

??? | Boosted Decision Trees
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??? | Random Forest

Variance→ ?
Bias→ ?

Trees in random forests are usually fully-grown to start with a low bias, and
to reduce bias after bagging.

??? | Boosted Decision Trees

Variance→ ?
Bias→ ?

Trees in gradient boosting are usually shallow to start with high bias, and
decrease it after boosting.
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Bagging | Random Forest

Variance→ reduction (Cov(Y )
B≫1→ ρσ2 ≤ σ2)

Bias→ increase (more restrictions)
Trees in random forests are usually fully-grown to start with a low bias, and
to reduce bias after bagging.

Boosting | Boosted Decision Trees

Variance→ increase
Bias→ decrease

Trees in gradient boosting are usually shallow to start with high bias, and
decrease it after boosting.
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x0

x1
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x3

x4

Let f (n) be one of N affine functions:

f (n) : Rw(n−1) → Rw(n) , n = 1, 2, ... , N
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Let f (n) be one of N affine functions:

f (n) : Rw(n−1) → Rw(n) , n = 1, 2, ... , N

s.t.

~y (n) = f (n)
“

y (n−1)
”
= W (n)~y (n−1) + ~b(n),

and ~y (0) = ~x (W : “weights”, b: “bias”):

y (N) = f (N) ◦ f (N−1) ◦ · · · ◦ f (1)(~x)
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Linearity of the network

~y(N) = W (N)W (N−1) ... W (1)
| {z }

W

~x +

~b(N) + W (N)~b(N−1) + ...
| {z }

~b

Activation functions
Let a(n) : R×R non linear:“

g(n)(~x)
”

ij
= a(n)

„“
f (n)(~x)

”
ij

«
,

where i = 1, 2, ... , w(n) and j = 1, 2, ... , w(n−1).
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activation

neuron

The activation on the last layer strongly depends on the task…More on

this later!

Call (⊙ is the Hadamard product)

g(n)(~y (n−1)) = a(n) �
“

W (n)~y (n−1) + ~b(n)
”

the n-th layer in the graph.

Neural network
The non linear function:

g(N) ◦ g(N−1) ◦ · · · ◦ g(1)

is called a (fully connected) neural
network (NN) with N − 1 hidden layers.
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The structure

x1

x2

x3

y

is called perceptron Rosenblatt (1958) and it represents the fundamental unit of a NN.
A stack of perceptrons is calledMulti-Layered Perceptron (MLP.)
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Activation functionsmight depend on the task, to ease the training. For instance:

Sigmoid

a(x) = σ(x) =
1

1 + e−x

classically the first…
gradients might saturate for x → ±∞ see later

good interpetation as GLM (probability)
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Activation functionsmight depend on the task, to ease the training. For instance:

Hyperbolic Tangent

a(x) = tanh(x) = e2x − 1

e2x + 1

outputs naturally centred
might saturate for x → ±∞
good alternative to σ

traditionally in (old) GANs
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Activation functionsmight depend on the task, to ease the training. For instance:

REctified Linear Unit

a(x) = ReLU(x) = max(0, x) =

(
x , if x ≥ 0

0, if x < 0

omnipresent powerful sparsifier see Glorot et al. (2011)

gradients might saturate for x → −∞

forces positive outputs (!) Q: is it good for output layer?

slightly non differentiable
computationally fast
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Activation functionsmight depend on the task, to ease the training. For instance:

Leaky REctified Linear Unit

a(x) = LeakyReLUα(x) =

(
x , if x ≥ 0

α x , if x < 0

new slope hyperparameter α ∈ R+

solves the saturation problem
negative outputs are slightly allowed
slightly non differentiable
computationally fast
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Activation functionsmight depend on the task, to ease the training. For instance:

Scaled Exponential Linear Unit

a(x) = SELU(x)
= γ (max(0, x) +min(0,α(ex − 1)))

improve NN beahviour see Klambauer et al. (2017)

solves the saturation problem
negative outputs are not sparsified
slightly non differentiable
requires good initialisation see later…
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Activation functionsmight depend on the task, to ease the training. For instance:

Gaussian Error Linear Unit

a(x) = GELU(x) = x Φ(x)

stochastic regularisation method see Hendrycks and
Gipel (2016)

might saturate at x → −∞, but discouraged
good normalisation of the activations
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Activation functionsmight depend on the task, to ease the training. For instance:

Homogeneous activation

a(x) = xp, | a(λx) = λpa(x)

good behaviour of the network
might help approximations
useful in scientific/“physics informed” scenarios
use at your own risk…

“We are all responsible users” (from the Python guide)
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Activation functionsmight depend on the task, to ease the training. For instance:

Last layer activations

Binary classification

a(N)(~x)i = σ(xi)

=
1

1 + e−xi
∈ [0, 1]

Multiclass
classification

a(N)(~x)i = softmax(xi)

=
exi

KP
i=1

exi

∈ [0, 1]K

Regression

a(N)(~x)i = Id(xi)

Activations are quite flexible and strongly depend on the type of task required (e.g.: if all outputs are
positives, ReLU might be used for a regression task)!
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Theorem (Cybenko | Approximation by sigmoid-activated NNs)
Let F be the set of C 1([0, 1]n) scalar functions, and σ be a sigmoid function. Then

∃N > 0 | f (~x) =
NX

i=1

αi σ (~wi · ~x + b)

is dense in F .

In simplewords: using a 1-layer deep sigmoid-activated scalar NN we can approximate with
arbitrary precision any C ([0, 1]) scalar function. Let g(~x) ∈ C ([0, 1]) and f (~x) be such NN, then

∀ε > 0, sup
~x
||f (~x)− g(~x)|| < ε.
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Theorem (Kolmogorov-Arnold | Approximation theorem)
Let f be a function in F , then

f (~x) =
2nX

q=0

ϕq

 
nX

p=1

φq,p (xp) ,

!

where ϕ and φ are continuous scalar functions of a single variable.

In simplewords: the only “needed” functions are single-variable activations and sums. Technically, if
we could choose the activations of each unit (neuron), we could exactly write any multivariate
function as superposition of univariate functions.

might be interesting to some of you: Liu et al. (2024)
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Theorem (Width expressivity of NNs see Lu et al. (2017))
Let g : Rn → R be a Lebesgue integrable function, and F be the set of fully
connected ReLU-activated NN with width w ≤ n + 4:

∃f ∈ F | ∀ε > 0

Z
Rn

|g(~x)− f (~x)| < ε

In other words: width-bounded NNs can be used as universal approximators on the entire domain of
definition. It is also curious to see:

w ≤ n⇒
Z

Rn

|g(~x)− f (~x)| diverges,

hence the restrictions to [−1, 1]n (i.e. good normalisation):

w ≤ n − 1⇒ ∃ε′ > 0 |
Z

[−1,1]n

|g(~x)− f (~x)| ≥ ε′.
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Theorem (Trade-off width/depth see Lu et al. (2017))
Let n be the input dimensions. For any integer k ≥ n + 4, there exists a
ReLU-activated NN f : Rn → R with width w = 2k2 and depth d = 3, such that

∀b > 0, ∀g : Rn → R,

where g is a ReLU-activated NN whose parameters are bounded in [−b, b], with
width w ′ ≤ k

3
2 and depth d ≤ k + 2, it is true that

∃ε > 0 |
Z
Rn

(f (~x)− g(~x))2 ≥ ε.

In other words: any decrease in width, should be compensated by an increase in depth to keep the
same expressivity of the NNs.
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Some needed questions
Q1: fully connected NNs are universal approximators! Did we answer the ultimate
question of life, the universe and everything?

the answer is “42”, not “neural networks”…🤭
existence of sth ⇏ easy to find
fully-connected NNs low bias⇏ not all kinds of inputs are adapted

Q2: 🤬 shut up, I don’t care! Suppose we found a perfect NN: can we deploy it for
the world to see and use?

you would lead us to another AI winter…
NNs are trained on samples⇒ predict conditioned on that (+ some extrapolation)
probably ok with infinite amount of data (population), but how to train?
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Let L : Rw(N) → R be a loss function (it depends on the
task) and append it to the NN, where at the ‘-th
layer:

y(‘+1)
i = a(‘)(z(‘)

i ),

z(‘)
i =

w(‘−1)
X

j=1

W (‘)
ij y(‘−1)

j + b(‘)
i
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i = a(‘)(z(‘)

i ),

z(‘)
i =

w(‘−1)
X

j=1
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ij y(‘−1)

j + b(‘)
i

We can perform gradient descent (GD) for
each W (‘), ‘ = 1, 2, ... , N by computing:8>>><>>>:

@L
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From the previous expression:
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Training a NN is a two steps procedure:
1. during the forward pass the outputs and
outputs of each layer (loss included) are
computed and stored

2. in the backward pass the gradients of
each layer are assembled iteratively

Finally, the update of the parameters is:8<:W (‘)
ij ←W (‘)

ij − α @L

@W (‘)
ij

b(‘)
i ← b(‘)

i − α @L

@b(‘)
i

,

where α is the learning rate hyperparameter.
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Q: what are good initialisations of weights
and biases?

NNs propagate by matrix multiplication
gradients large to update
gradients small not to explode

However, we know:8<:
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Backpropagation: usually boilerplate code which is already available in most frameworks
(Pytorch, Lightning, Tensorflow, Keras, etc.)

(xkcd.com)
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THINK
What would happen if all W (‘)

ij were to be
initialised to the same constant (say 0)
∀‘ = 1, 2, ... , N?

All activations y (‘) would be the same!
What about δ(‘)?

All updates δ(‘) would be the same!

Nothing to learn!
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Initialisation
It is fundamental to break the symmetry (at
least for W (‘)):

initialise with random values N (µ,σ2)

avoid large entries
follow good rules of thumb:

E
h
y (‘)
i
= E

h
y (‘−1)

i
= 0

Var
“

y (‘)
”
= Var

“
y (‘−1)

”
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Some examples
LeCun initialisation (LeCun et al. (1998))

W (‘)
ij ∼ N

„

0,
“

w(‘−1)
”−1

«

, b(‘)
i = 0

for normally centred activations

Xavier/Glorot initialisation (Glorot and Bengio (2010))

W (‘)
ij ∼ N

„

0, 2
“

w(‘) + w(‘−1)
”−1

«

b(‘)
i = 0

for sigmoid/tanh activations

(Kaiming) He initialisation (He et al. (2015))

W (‘)
ij ∼ N

„

0, 2
“

w(‘−1)
”−1

«

b(‘)
i = 0

for ReLU-family activations
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Some examples
LeCun initialisation (LeCun et al. (1998))

W (‘)
ij ∼ N

„

0,
“

w(‘−1)
”−1

«

, b(‘)
i = 0

Xavier/Glorot initialisation (Glorot and Bengio (2010))

W (‘)
ij ∼ N

„

0, 2
“

w(‘) + w(‘−1)
”−1

«

b(‘)
i = 0

(Kaiming) He initialisation (He et al. (2015))

W (‘)
ij ∼ N

„

0, 2
“

w(‘−1)
”−1

«

b(‘)
i = 0

Derive the formula of LeCun initialisation – or look it up, it is still cool!
Derive the formula of Kaiming He initialisation (what is the difference?)

HOMEWORK
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NNs are powerful at learning/digesting
huge amounts of data
PCs might not be able to load
everything all at once
how to process lots of data?

Require: datasetD = {(~x , y)}

Require: {D[b]}b∈[1,B ] s.t.
B−1
S

i=0

D[b] = D

for 0 ≤ b < B do
compute forward pass onD[b]
perform backpropagation
update W (‘) and b(‘)

return trained NN
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PCs might not be able to load
everything all at once
how to process lots of data?

animation by Luis Medina

Require: datasetD = {(~x , y)}

Require: {D[b]}b∈[1,B ] s.t.
B−1
S

i=0

D[b] = D

for 0 ≤ b < B do
compute forward pass onD[b]
perform backpropagation
update W (‘) and b(‘)

return trained NN
Riccardo Finotello AIPhy 30/09/2024 89 / 104

Neural Network Training
Mini-batch gradient descent

https://towardsdatascience.com/creating-a-gradient-descent-animation-in-python-3c4dcd20ca51


Define:
iteration: one pass of
mini-batch GD
epoch: one pass over the
dataset

Optimisation
Q: how to choose the size of the
mini-batch?

Even though it has a regularisation effect, I would not consider it as

hyperparameter: it mostly depends on memory constraints.

Q: what happens if B = |D |?

This is called “stochastic” GD. Useful for huge datasets.

animation by Luis Medina
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Honest question
Why should we usemini-batch gradient descent? What if my entire dataset fits
into memory? Smith et al. (2021)

Consider the gradient flow Θ̇ = f (Θ) and the discrete update

Θt+1 = Θt + εf (Θt)
to be matched←→ Θ(t + ε) ' Θ(t) + ε f (Θ(t))

Decompose f (Θ) =
∞P

n=0
εn f(n) (Θ). Then, we have, after n iterations with step size

ε = nα :
Θt+n = Θt + αf (Θt) + αf (Θt+1) + · · · = Θt + αf (Θt) + αf (Θt + αf (Θt)) + ...

= Θt + nαf(0) (Θt) + n2α2

„
f(1) (Θt) +

n − 1

2n
~∇f(0) (Θt) · f(0) (Θt)

«
+ ...
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Honest question
Why should we usemini-batch gradient descent? What if my entire dataset fits
into memory? Smith et al. (2021)

Consider the case of gradient descent (full):

f(0)(Θ) = −~∇L (Θ) s.t. Θt+1 = Θt − ε~∇L (Θ)

Then n→∞ we need to introduce a counterterm if we proceed “step-by-step”:
does “renormalisation” ring a bell?

Θ(t+ε) = Θ(t)−εL (Θ) ⇔ f(1)(Θ) = −1

4
~∇
˛̨̨˛̨̨
~∇L (Θ)

˛̨̨˛̨̨2
2
⇒ L (Θ)← L (Θ)+

1

4

˛̨̨˛̨̨
~∇L (Θ)

˛̨̨˛̨̨2
2
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Honest question
Why should we usemini-batch gradient descent? What if my entire dataset fits
into memory? Smith et al. (2021)

Consider now themini-batch loss:

f(0) = bL (Θ) =
1

B

B−1X
i=0

L (i)(Θ) =
1

B

B−1X
i=0

1

|B|
X
k∈B

L k (Θ)

and compute the discrete update over one epoch (n = |B|):
ΘB = Θ0 − ε~∇L (0)(Θ0)− ε~∇L (1)(Θ1)− ε~∇L (2)(Θ2) + ...

= Θ0 − ε

B−1X
i=0

~∇L (i)(Θ0) + ε2
B−1X
i=0

X
j<i

~∇~∇L (i)(Θ0) · ~∇L (j)(Θ0) + ...
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Honest question
Why should we usemini-batch gradient descent? What if my entire dataset fits
into memory? Smith et al. (2021)

After one epoch is ε� 1, the mini-batch update does not introduce noise.
However, if ε is finite, we have aO (ε2) term to keep in mind:

E [ΘB] = Θ0 − εB ~∇L (Θ0) +
B2ε2

4
~∇

 ˛̨̨˛̨̨
~∇L (Θ0)

˛̨̨˛̨̨2
2
− 1

B2

BX
i=1

˛̨̨˛̨̨
~∇L (i)(Θ0)

˛̨̨˛̨̨2
2

.

!
+O (B3ε3)
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Honest question
Why should we usemini-batch gradient descent? What if my entire dataset fits
into memory? Smith et al. (2021)

The first term in the paranthesis comes from the correction to the gradient
descent f(1), but there is one additional term!
Let us recover the continuous update (the gradient flow):

E [ΘB] ' Θ(Bε) ⇔ L (Θ)← L (Θ) +
1

4

˛̨̨˛̨̨
~∇L (Θ)

˛̨̨˛̨̨2
2
+

1

4B

B−1X
i=0

˛̨̨˛̨̨
~∇L (i)(Θ)

˛̨̨˛̨̨2
2

The last is a regularisation term added “automatically” bymini-batch gradient
descent!
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The naive GD is good but can be improved:
weight update might get stuck
weight update might be too slow

A simple example
Let

L (~θ) =
1

2

`

λ1θ
2
1 + λ2θ

2
2

´

, 0 < λ1 < λ2,

s.t. ~∇L (~θ) = (λ1θ1, λ2θ2) to compute
~θ(t+1) = ~θ(t) − α~∇L (~θ), α > 0,

in order to find ~θ∗ = ~0.
see Waldspurger (CEREMADE)

θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬
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The naive GD is good but can be improved:
weight update might get stuck
weight update might be too slow

A simple example
We would like

~θ(t+1) =
“

(1− αλ1)θ
(t)
1 , (1− αλ2)θ

(t)
2

”

s.t. |1− αλi | ≪ 1, for i = 1, 2.
see Waldspurger (CEREMADE)

θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬
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The naive GD is good but can be improved:
weight update might get stuck
weight update might be too slow

A simple example
We would like

~θ(t+1) =
“

(1− αλ1)θ
(t)
1 , (1− αλ2)θ

(t)
2

”

s.t. |1− αλi | ≪ 1, for i = 1, 2.
However,

α = O (λ−1
1 )⇒ 1− αλ2 = 1−

λ2

λ1
< 0

and the update of θ2 diverges.
see Waldspurger (CEREMADE)

θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬
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The naive GD is good but can be improved:
weight update might get stuck
weight update might be too slow

A simple example
We would like

~θ(t+1) =
“

(1− αλ1)θ
(t)
1 , (1− αλ2)θ

(t)
2

”

s.t. |1− αλi | ≪ 1, for i = 1, 2.
And

α = O (λ−1
2 )⇒ 1− αλ1 = 1−

λ1

λ2
≪ 1

and the update of θ1 is slow.
see Waldspurger (CEREMADE)

θ

L

dL
dθ ' 0

dL
dθ ' 0

🤬

1. is the loss landscape still “nice”?
2. are all “nice” losses still convex?

REMARKS
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Introduce the GD algorithm withmomentum (Ω set of weights and biases):
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Introduce the GD algorithm withmomentum (Ω set of weights and biases):

The “Heavy Ball” algorithm | Polyak’s Momentum (see Polyak (1964))

Require: α ∈ R+, Ω(0), L , T ∈ N \ {0}, ~m(0) = ~0
for 0 ≤ t < T do

~G (t) ← ~∇L (Ω(t))
~m(t+1) ← γ~m(t) + (1− γ) ~G (t) . momentum
Ω(t+1) ← Ω(t) − α~m(t+1) . “educated” steepest descent
return Ω(T )
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Introduce the GD algorithm withmomentum (Ω set of weights and biases):

The “Heavy Ball” algorithm | Polyak’s Momentum (see Polyak (1964))

Require: α ∈ R+, Ω(0), L , T ∈ N \ {0}, ~m(0) = ~0
for 0 ≤ t < T do

~G (t) ← ~∇L (Ω(t))
~m(t+1) ← γ~m(t) + (1− γ) ~G (t) . momentum
Ω(t+1) ← Ω(t) − α~m(t+1) . “educated” steepest descent
return Ω(T )

This can be equivalently expressed by:

Ω(t+1) = Ω(t) − eα~∇f
“
Ω(t)

”
+ eβ“Ω(t) −Ω(t−1)

”
,

where eα = α(1− γ) and eβ = αγ
α−1 . Ω(t−1)

Ω(t)
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Introduce the GD algorithm withmomentum (Ω set of weights and biases):
ADA(ptive) M(omentum estimation) (see Kingma and Ba (2014))

Require: α ∈ R+, θ(0), L , T ∈ N \ {0}, ~m(0) = ~0, ~v (0) = ~0
for 0 ≤ t < T do

~G (t) ← ~∇L (Ω(t))
~m(t+1) ← β1 ~m(t) + (1− β1) ~G (t) . first momentum estimate (β1 = 0.9)

~v (t+1) ← β2~v (t) + (1− β2)
“
~G (t)
”2

. second momentum estimate (β2 = 0.999)b~m(t+1)
= ~m(t+1)

1−βt
1b~v (t+1)

= ~v(t+1)

1−βt
2

Ω(t+1) ← Ω(t) − α
b~m(t+1)

√b~v(t+1)
+ε

. momenta-aware steepest descent

return Ω(T )
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Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

Ω(t+1) = (1− η)Ω(t) − α
@L (Ω(t))

@Ω(t) , η > 0.

(see also Loshchilov and Hutter (2017))
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Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

Ω(t+1) = (1− η)Ω(t) − α
@L (Ω(t))

@Ω(t) , η > 0.

The regularisation helps reducing the magnitude of the parameters during
training.

Is weight decay equivalent to a L2 regularisation term in vanilla GD?

L (Ω)← L (Ω) +
η

2
||Ω||22

THINK

(see also Loshchilov and Hutter (2017))
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Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

Ω(t+1) = (1− η)Ω(t) − α
@L (Ω(t))

@Ω(t) , η > 0.

The regularisation helps reducing the magnitude of the parameters during
training.

Is weight decay equivalent to a L2 regularisation term in vanilla GD?

L (Ω)← L (Ω) +
η

2
||Ω||22

Technically, iff. η← ηα−1 , but this is usually ignored, so, yes!

THINK

(see also Loshchilov and Hutter (2017))
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Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

Ω(t+1) = (1− η)Ω(t) − α
@L (Ω(t))

@Ω(t) , η > 0.

The regularisation helps reducing the magnitude of the parameters during
training.

Think about momentum-GD (e.g. ADAM or SGD). Is L2 regularisation still equivalent
to weight decay? Remember that the regularisation leads to

~G (t) = ~∇L
“

Ω(t)
”

+ηΩ(t)

in the algorithm. Can you think of a straightforward modification to recover the “correct” weight decay?

THINK

(see also Loshchilov and Hutter (2017))
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (training phase)
Introduce ∀‘ = 1, 2, ... , N and ∀b = 1, 2, ... ,B :

µ
(‘)
[b] = ED[b]

h
z(‘)
i
=

1˛̨
D[b]

˛̨ |D[b]|X
i=1

z(‘)
i ,

“
σ
(‘)
[b]

”2
= VarD[b]

“
z(‘)
”
=

1˛̨
D[b]

˛̨ |D[b]|X
i=1

“
z(‘)

i − µ
(‘)
[b]

”2

see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (training phase)
Normalize ∀‘ = 1, 2, ... , N and ∀b = 1, 2, ... ,B :

bz(‘)
[b] =

z(‘) − µ
(‘)
[b]

σ
(‘)
[b] + ε

see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (training phase)
Interpolate ∀‘ = 1, 2, ... , N and ∀b = 1, 2, ... ,B :

BN(‘)
[b]

“bz(‘); γ,β
”
= γ[b] bz(‘)

[b] + β[b],

where γ(‘) and β(‘) are learnable scalars
see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (training phase)
Replace ∀‘ = 1, 2, ... , N and ∀b = 1, 2, ... ,B :

y (‘) = a(‘) � z(‘) → by (‘)
[b] = a(‘) � BN(‘)

[b]

“bz(‘); γ,β
”

see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (inference phase)
Inferencemust not depend on batch size!
Compute (after training) ∀‘ = 1, 2, ... , N :

µ(‘) =
1

B

BX
b=1

µ
(‘)
[b] ,

“
σ(‘)
”2

=
1

B

BX
b=1

“
µ
(‘)
[b] − µ(‘)

”2
.

N.B.: the original paper uses the unbiased estimate of the variance.

see Ioffe and Szegedy (2015)
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Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y (‘) = a(‘) � z(‘)

Batch normalisation (inference phase)
Inferencemust not depend on batch size!
Replace all BN(‘) operations ∀‘ = 1, 2, ... , N :

BN(‘)
[b] (·; γ,β) → γ

σ(‘) + ε
z(‘) +

„
β− γµ(‘)

σ(‘) + ε

«
see Ioffe and Szegedy (2015)
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L

Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

For the sake of simplicity, consider the
following regression linearmodel
(homogeneous) for i = 1, 2, ... , h:

yi = fi(~x) =
kX

j=1

Wijxj

and let Q ∈ {0, 1}h×k a matrix of Bernoulli
variables

P(Qij = 1) = p = 1− P(Qij = 0),

for i = 1, 2, ... , h, and j = 1, 2, ... , k .
In other words, E[Qij ] = p, and
Var(Qij) = p(1− p):

(see Wager et al. (2013))
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Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

Then, define the “dropout model”:

eyi = efi(~x) = ((Q �W )~x)i =

kX
j=1

QijWijxj

This is equivalent to any hidden layer in a
NN:

(see Wager et al. (2013))
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Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

We can compute the loss

L (y , ey) = 1

2n

nX
i=1

kX
j=1

`
yi −QijWijxj

´2 ,

whose gradients are:

@ eL

@Wij
= −Qij xj

0

@yi −
k

X

t=1

Qit Wit xt

1

A

= −Qij yi xj + Q2
ij Wij x2

j +

k
X

t=1, t ̸=j

Qij Qit Wit xj xt

(see Wager et al. (2013))
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Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

Let us compute the average value of the
gradients over the dropout distribution:

E

"

@ eL

@Wij

#

= −E
ˆ

Qij
˜

yi xj + E
h

Q2
ij

i

Wij x2
j

+

k
X

t=1, t ̸=j

E
ˆ

Qij
˜

E [Qit ]Wit xj xt .

Remember that E ˆX 2
˜
= Var(X ) + E [X ]

2:

E

"

@ eL

@Wij

#

= −pyi xj + p2Wij x2
j + p (1− p)Wij x2

j

+ p2
k

X

t=1, t ̸=j

Wit xj xt .

(see Wager et al. (2013))
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Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

Though perturbed by constants p and p2,
we can reconstruct the usual loss + a
regularisation:

E

"

@ eL

@Wij

#

∼ E

"

@Lp

@Wij

#

+ p (1− p)Wij x2
j .

Dropout
Dropout is a “feature noising”

regularisation technique, which can be
applied to NNs to prevent overfitting and

co-adaption.
Dropout replaced by Id in inference
(usually).

(see Wager et al. (2013))
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Some remarks:
NNs are high variancemodels
some paths might be strongly
correlated (co-adaptation)

Dropout
Dropout is a “feature noising”

regularisation technique, which can be
applied to NNs to prevent overfitting and

co-adaption.
The elegant idea is to average the outputs of the models over a noise component ξ.
Consider an exponential family of likelihood functions, and take the log-partition
function A:

L
“
Eξ

h
A
“
Ωξ , x

”i”
= L (A (Ω, x)) + R (Ω) ,

where the regularisation

R (Ω) ∼ Eξ

h
A
“
Ωξ , x

”i
− A (Ω, x) ≃

1

2
A′′ (Ω, x) Varξ

“
A
“
Ωξ , x

””
,

in the case Eξ

h
Ωξ

i
= Ω.

(see Wager et al. (2013))
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Every single object has its place in the model, which is (should be) well connected from input to
output. This makes it exportable, reusable and deployable.
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In summary, you should now have a good understanding of:
whatML is, and what are its principles
how to work withML pipelines for high quality research
how to perform validation of ML models
how to evaluate the performance of ML models
what is the “variance vs bias” trade-off
what a loss function is, and what its purpose
several regularisation techniques
different unsupervised and supervised techniques (including ensembles)
what a NN is and how to train one

Hoping that I did not bore anyone to death…
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In bocca al lupo !
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