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Foreword
For the Haonds-On Sessions

You can follow the instructions at
https://github.com/thesfinox/aiphy-intro-ml-homework

Tutorials are presented as Jupyter notebooks. You will have several options to
run them:

m run online using Binder in extreme cases,

m install Docker and use the dedicated image®,

m create and activate a local Python environment.

Disclaimer

You are warmly invited to download the presentation : some details might be
deliberately hidden in small print &.

+ This is the preferred method, especially if you are using Windows OS. Should you encouter any issues, do not hesitate to ask for help!

g Riccardo Finotello AlPhy 30/09/2024 3/104
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1"

Programming computers to learn from
experience should eventually eliminate
the need for much of this detailed
programming effort ”

Arthur Samuel, IBM (1959)

2  Riccardo Finotello AlPhy 30/09/2024 7/104



What is ML?
The historical concept

of the term

A.L Samuel

Some Studies in Machine Learning
Using the Game of Checkers

Abstract: Two machine-learning procedures have been investigated in some detail using the game of
checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will
learn to play @ better game of checkers than can be played by the person who wrote the program. Further-
more, it can learn to do this in a remarkably short period of time (8 or 10 hours of machine-playing time)
when given only the rules of the game, a sense of direction, and a redundant and incomplete list of
parameters which are thought to have something to do with the game, but whose correct signs and relative
weights are unknown and unspecified. The principles of machine learning verified by these experiments
are, of course, applicable to many other situations.

Arthur Samuel, IBM Journal (1959)

Riccardo Finotello AlPhy 30/09/2024 8/104
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What is ML?
The historical concept

Birth of the term

A.L Samuel

statistical
Some Studies in Machine Learning modelling
Using the Game of Checkers

Abstract: Two machine-learning procedures have been investigated in some detail using the game of

checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will

learn to play @ better game of checkers than can be played by the person who wrote the program. Further-

more, it can learn to do this in a remarkably short period of time (8 or 10 hours of machine-playing time) . .

when given only the rules of the game, a sense of direction, and a redundant and incomplete list of I t
parameters which are thought to have something to do with the game, but whose correct signs and relative g eneraiisation
weights are unknown and unspecified. The principles of machine learning verified by these experiments

are, of course, applicable to many other situations.

Arthur Samuel, IBM Journal (1959)
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Whatis ML?
Intuition and nested definitions

- . m Artificial Intelligence
Al m “human behaviour” emulation
m pattern recognition
m learning processes
m decision making
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Whatis ML?

Intuition and nested definitions

Al

ML

\

N\
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m Artificial Intelligence
m "human behaviour” emulation
m pattern recognition
m learning processes
m decision making
®m Machine Learning
m data exploitation
m statistical modelling
m generalisation on new data
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What is ML? N
Intuitive behaviour

Write a spam filter:

® you know what Localise the Write the
characterises an problem algorithm

email as spam

m you write a set of
rules to flag .
emails as spam .

ANALYSE

m you evaluate your
algorithm and
decide whether

to deploy it or ‘/
reassess
DEPLOY
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Whatis ML?
Intuitive behaviour

Write a spam filter:

E you prepare d
data tidying
pipeline

Train ML

® you write a ML
training pipeline
to flag emails as
spam

m you write an
evaluation
pipeline and
decide whether to
deploy the model
or reassess

Get and

prepare

the data
v

Exploratory
data
analysis

ANALYSE

algorithm

DEPLOY

‘-‘ AUTOMATED }
Riccardo Finotello
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Why ML?
Real world scenarios

Detectron2 panoptic segmentation / 3D pose estimation model by @

Riccardo Finotello

task specitic
“networks

HA)
)

noise

b Signal
oiee Sianal noise’ Signal’

Signal detection via functional renormalization group (arXiv:2310.07499)
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1"

Paradoxically, data is the most
under-valued and de-glamorised
aspect of Al”

Sambasivan et al.

2  Riccardo Finotello AlPhy 30/09/2024 14 /104
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The ML Mindset

Worst case scenario

“BAD"” DATA

g Riccardo Finotello

= “Bad” input data

insufficient data not enough data to learn anything
useful

untidy data bad missing data fillers, wrong categorical
encoding, non representative samples, etc...

data Ieakage the model “sees” the generalisation data
unbalanced dataset the model develops a “bias”
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The ML Mindset
Worst case scenario

“BAD"” DATA

= “Bad” input data
m insufficient data not enough data to learn anything

useful
| | untidy data bad missing data fillers, wrong categorical
encoding, non representative samples, etc...
m data Ieakage the model “sees” the generalisation data
B unbalanced dataset the model develops a “bias”

m “Bad” predictions
B biased model cannot model input data = bad

generalisation performance
| overfitting model is too “adapted” = bad generalisation

performance

<
NS

“BAD
PREDICTIONS”
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The ML Mindset
Worst case scenario

= “Bad” input data
“BAD"” DATA m insufficient data not enough data to learn anything
useful
| | untidy data bad missing data fillers, wrong categorical
encoding, non representative samples, etc...
m data Ieakage the model “sees” the generalisation data
B unbalanced dataset the model develops a “bias”

m “Bad” predictions

\/— El B biased model cannot model input data = bad

generalisation performance

| overfitting model is too “adapted” = bad generalisation

performance

Garbage IN = Garbage OUT

Racial, sexist, and religious biases in trained
models are always the result of human errors
(even accidental)!

g Riccardo Finotello AlPhy 30/09/2024 15 /104
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The ML Mindset
Worst case scenario

“BAD"” DATA

Simple examples of biases in Al

Percent of occupation identified as female

Fretignter @

Percent of occupation
Taxi driver 4|
b || it Gentied a2 female
Software developer 4N
cher <l o Percentof generated images

| N model represented as female
o
» ook
| P Fight attendant

P Therapist
o e
R Housekeeper

Percent of occupation identified as non-white

<
NS

Filot <l
Therapist < | Percent of occupation
Flight attendant <N self.identified as non-white

S — o D
Software developer <
I irenigheer
b turse
| D Housekeeper
| » Cook
b ot ariver

“BAD
PREDICTIONS”

Bianchi et al. FAccT'23
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The ML Mindset
ML pipelines and working operations

“GOOD” DATA
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The ML Mindset
ML pipelines and working operations

“GOOD"” DATA ML pipeline

Introduce a set of “checklists” to...
= ..ensure high data quality (and tidiness);
m ..streamline analysis and model building;

+|— m ..simplify the learning process and its
x| = @ evaluation;
\/_ q m ..grant reproducibility and experimentation
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“GOOD"” DATA ML pipeline

Introduce a set of “checklists” to...
m ..ensure high data quality (and tidiness);
m ..streamline analysis and model building;

+|— m ..simplify the learning process and its
x| = @ evaluation;
\/_ q m ..grant reproducibility and experimentation
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The ML Mindset
A clockwork pipeline

Data preparation

Riccardo Finotello AlPhy 30/09/2024 17 /104


https://scikit-learn.org/stable/developers/contributing.html

The ML Mindset
A clockwork pipeline

' Data ﬁreiarqtion l \
Exploratory \
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The ML Mindset
A clockwork pipeline

|

Exploratory

Model

-l
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The ML Mindset
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The ML Mindset
A clockwork pipeline

i IN] ?
[ g —_ \ THS 15 YOUR MACHINE LEPRNING SYSTET

YUPL YoU POUR THE DATA NTD THIS BG
PILE OF LINEAR ALGEBRA, THEN COLLECT

Exploratory THE ANSLERS ON THE OTHER SIDE.

i VIHAT I THE ANGLIERS ARE LRONG? J
JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

' Deployment \

\ Model \
' Evaluation l

Riccardo Finotello AlPhy 30/09/2024 17 /104
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The ML Mindset
A clockwork pipeline

| modulﬂl‘ break down complex problems into

small bricks

Exploratory
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)
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The ML Mindset
A clockwork pipeline

| modu |C| ¥ break down complex problems into

small bricks

| repl‘oducible trace back analysis to

EXploerory l well-defined breakpoints

/

Model I

[
—
\
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\
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A clockwork pipeline

Data Ereiarqtion \

[

' Deployment \

\
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' Evaluation l

/

Exploratory \

Model \

\

| modulﬂl‘ break down complex problems into

small bricks

| reproducible trace back analysis to

well-defined breakpoints

.
] eXperlmentdl trial-and-error is permitted

and easier to implement
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The ML Mindset

A clockwork pipeline

tDoto prepdrqtionJ

| mOd u |d ¥ break down complex problems into

small bricks

[ Deployment ]

| reproducible trace back analysis to
EXp|0l’Gt0|’y well-defined breakpoints
data analysis .
] eXperImentdl trial-and-error is permitted

and easier to implement

] colldbordtive agreeing on sensible

choices enables peaceful and fruitful collaborations

The Scikit-learn

- “Improving the documentation
evelopment is no less important than

[ Evaluation J

g Riccardo Finotello

improving the library itself.”
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Dealing with Data
A generic beginning of a project

LetQ)N:{()?,',y,) | KPSYINT(X), KQB}_},‘NT(Y) Vi:1,2,...,N}Z

Some definitions to start:

| ] )_(' are CO”ed fe(ltures | exogenous variables |
Q)N regressors / predictors | explanatory variables
[ | }7 are CO”ed |Clbe|s | endogenous variables |

regressands / targets / explained variables

g Riccardo Finotello AlPhy 30/09/2024 20/104



Dealing with Data
A generic beginning of a project

LetQ)N:{()?,',?,) | KPBYINT(X), KQB}_},‘NT(Y) Vi:1,2,...,N}Z

m shuffle the dataset to avoid biases:
any possible ordering of the data
should never interfere

* Imagine if an ordering
“by label” y; was left in
the dataset: what would

happen in the following?

@ Riccardo Finotello AlPhy 30/09/2024 20/104



Dealing with Data
A generic beginning of a project

Let Dy = {()?,',?,‘) | KP > )?,‘ ~ fP(X), K9 > }7,- ~ T(Y) vVi=1,2,..., N}I
m shuffle the dataset to avoid biases:

any possible ordering of the data
Q)N should never interfere
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Dealing with Data
A generic beginning of a project

LetQ)N:{()?,',y,) | KPBYIN?(X), KqEY/NfP(Y) Vi:1,2,...,N}Z

m shuffle the dataset to avoid biases:
any possible ordering of the data
D (dev) D (test) should never interfere

N N m prepare a test set and “hide” it until
your final evaluation

The number of samples to leave in the splits is highly
dependent on the size of the dataset, type of task, Dqtq |eG nge
computing resources, regularity of the data, etc..Traditionally,
smaller datasets may require ~ 80 % of training data.
However, Big Data may take up to 99 % of training The teSt set Shou'd be I‘Ghdomly Gnd
data, as the test set will remain statistically relevant. independently Chosen to represent

(e.g. see Andrew Ng (2019))

“real-world” data. It must never come into
contact with training procedures.

Riccardo Finotello AlPhy 30/09/2024 20/104
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Dealing with Data

A generic beginning of a project

(dev) (test)
Q)N @N

The number of samples to leave in the splits is highly
dependent on the size of the dataset, type of task,
computing resources, regularity of the data, etc..Traditionally,
smaller datasets may require ~ 80% of training data.
However, Big Data may take up to 99 % of training
data, as the test set will remain statistically relevant.

(e.g. see Andrew Ng (2019))

Riccardo Finotello

Let Dy = {(X;, yi) | KP 2 X; ~ P(X), K9 > y; ~P(Y)

Food for thought... Outliers?

1

1
AKP

(-)
Dy

AIPhy

you have some pictures, and
outliers are overexposed
samples you would get rid of
anyway

. you analyse financial data

where stock returns are capped
to a given value

. you are building a

cybersecurity defence and
outliers are attacked data

. you have scientific data, and

you are trying to derive an
analytical formula using
insights from ML

30/09/2024 20/104
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Dealing with Data
A generic beginning of a project

Let Dy = {(X;, yi) | KP 2 X; ~ P(X), K9 > y; ~P(Y)

Q)l(vdev)

D

(test)
N

The number of samples to leave in the splits is highly
dependent on the size of the dataset, type of task,
computing resources, regularity of the data, etc..Traditionally,
smaller datasets may require ~ 80% of training data.
However, Big Data may take up to 99 % of training
data, as the test set will remain statistically relevant.

Riccardo Finotello

(e.g. see Andrew Ng (2019))

you have some pictures, and
outliers are overexposed
samples you would get rid of
anyway

you analyse financial data
where stock returns are capped
to a given value

you are building a
cybersecurity defence and
outliers are attacked data

you have scientific data, and
you are trying to derive an
analytical formula using
insights from ML

1. remove them everywhere (they do not represent real-world data) 2. leave

them everywhere [ move them to D

(test)
N

and cap the value 3. move them to

@Isltest) (grasp a model of easy cases to predict complex ones) 4. move them to

@Isltest) (the model should be able to predict them anyway)

AIPhy

30/09/2024 20/104
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Dealing with Data
The need of self-evaluation

Q)lildev)

Let us suppose:
m good exploratory data analysis

m model dev. and training on iD,ﬁ,de")

m no bias / sensible choices
m good performance
m in general.. nothing strange

@ Riccardo Finotello AlPhy 30/09/2024 21/104



Dealing with Data w%

The need of self-evaluation

(dev) (test)
Q)N @N
Let us suppose: You get:
m good exploratory data analysis m Bad generalisation performance
m model dev. and training on ©{*”  m Biased/unbalanced results

m no bias / sensible choices
m good performance
m in general.. nothing strange
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Dealing with Data
The need of self-evaluation

dev
D4V
Let us suppose: You get:
m good exploratory data analysis m Bad generalisation performance
m model dev. and training on ©{*”  m Biased/unbalanced results
= no bias / sensible choices Most probably, the model overfits (see e
m good performance D*®¥) and is unable to statistically

. . represent new data!l
® in general.. nothing strange
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Dealing with Data
The need of self-evaluation

dev
D4V
Let us suppose: You get:
m good exploratory data analysis m Bad generalisation performance
m model dev. and training on ©*” = Biased/unbalanced results
= no bias / sensible choices Most probably, the model overfits (see e
m good performance D*®¥) and is unable to statistically

represent new dOt(]' In other words, we need to evaluate

the model before deploying it, or it will be, in general, a catastrophe!

m in general.. nothing strange
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Validation

The importance of choosing a validation set

Holdout validation

Q)/S/de\/)
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Validation
The importance of choosing a validation set

Holdout validation
Q)Igltroin) Q),Elvql)

m build " c ©®" and
Q)/E/trcin) _ D,Sldev) \DIEIVQI) once
m computing time-friendly
m good for (very) large datasets
B easy to implement, easy to use usua,

no boilerplate code in Pytorch Lightning, Keras, Hugging Face, etc...
g Riccardo Finotello AlPhy 30/09/2024 22 /104



Validation

The importance of choosing a validation set

Holdout validation
Q)/E/tmin) Q)IEIVCH)

m build " c ©®" and
@/E/trcin) _ D,Eldev) \DIEIVQI) once
m computing time-friendly
m good for (very) large datasets
B easy to implement, easy to use usua,

no boilerplate code in Pytorch Lightning, Keras, Hugging Face, etc...

g Riccardo Finotello

Cross validation (K-fold)

/_Q)Iilvql) E

@/E/tmin)

™~

K “folds” (chunks) of data

m more robust estimator

m first insight into uncertainties

m time consuming for large datasets
B might need some coding yes scixis-1cam

has a good implementation! Do not worry!

AlPhy 30/09/2024 22 /104



Validation
Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error f on @ (VGI) .
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Validation
Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error ‘Z on @ (VGI) .

Holdout validation

ZD/E/VOI) (v, y) = E@/E/VOI) [dist(y,y)]
m—1

1 . -~
= Z dist(yp, ¥p)-
p=0

@ Riccardo Finotello AlPhy 30/09/2024 23 /104
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Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error ‘E on @ (VGI) .

Holdout validation Cross validation (K-fold)
Z@A(,V"” y.y) = E@,f,”“” [dist(y, )] E;K(gm) (¥, ¥) = Ex-folds [E@wab dist(y, ?)]]
N
1 -
= — dist(yp, ¥p)- [7] Al]

Notation: let n = ‘Q)Igde") ‘ then| | < m; < | %] + 1is the size of the i-th validation fold = n— 2 = “4n
is the size of the remaining set.

The particular case K = nis called “leave-one-out” validation.
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Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error ‘E on @ (VGI) .

Holdout validation Cross validation (K-fold)
Eppan (¥, ¥) = Ejpoen [dist(y, )] fgiw,.) (¥,¥) = Ex-folas [E@<val> [dist(y, ?)}]
1= - mi—1
=— ) dist(yp, Jp). .
m pgo =¥ Z Z dist(y}!, 7}

E (val) (y,¥) can be used as estimate of the prediction error
D
N

Notation: let n = ‘D,ﬂ,dev) ‘ then| 2| < m; < [£] + 1is the size of the i-th validation fold = n— £ = K=1n
is the size of the remaining set.

The particular case K = nis called “leave-one-out” validation.
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Validation
Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error ‘E on @ (VGI) .

Holdout validation Cross validation (K-fold)
Z@,glvm) (y,y) = E@,E’vol) [diSt(y! Y Z;K(vcu) (y, y) FEx-folds I:]E@(vcl) [diSt(y, 7)]]
1 m—1 R mi—1
== dist(yp, ¥p)- N
m ;} (Yo ¥p) =¥ Z Z dist y'],yp'])

£ (val) (¥.¥) can be used as estimate of the prediction error
More complicated than that..The choice depends on K. Moreover, the whole ,D,Elclev) is used!

then| 2| < m; < | ]+ 1is the size of the i-th validation fold = n— £ = %n

Notation: let n = ‘@,E,dev) ,
is the size of the remaining set.

The particular case K = nis called “leave-one-out” validation.
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Validation
Validation error and how to use it

Let dist(y,y) be a metric distance between ground truth y and its prediction y ¢
mean squared error, cross entropy, etc.) [N.B.: what said for a scalar y can be said for 7] a nd Compute error ‘E on @ (VGI) .

Holdout validation Cross validation (K-fold)
val 1% e va i v K . -~
Z@é’ I (y, y) E@( ) [dISt(y! y)] E(D(VOI) (y y) EK-f0|dS I:]E@(vol) [dlst(y, y)}]
m—1 I
=— ) dist(ypJp). - 1 ol
;) az KZ X a0
(LD(VCH) (y.¥) can be used as estimate of the prediction error
More complicated than that..The choice depends on K. Moreover, the whole 'Dlsldev) is used!

We will come back to this later...

Notation: let n = @,Eldev) .then| 2| < m; < | ] +1is the size of the i-th validation fold = n— 2 = K2-1p

is the size of the remaining set.

The particular case K = nis called “leave-one-out” validation.
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Parameters vs hyperparameters

Let M - {f(n) | n= 1, 2, } Set Of mOde/S (e.g. linear model, support vector machine, decision tree, neural network, etc.)
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Validation
Parameters vs hyperparameters

Let M = {f(n) | n= 1, 2, } Set Of mOde/S (e.g. linear model, support vector machine, decision tree, neural network, etc.)

Each (" has two sets of dependencies = (" = f(N(@; Q):
m Ois the set of parameters (i.e. the weights of the model — y = § - X)
m Q is the set of hyperparameters (i.e. constraints of the model — y = - X+ A B - §)
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Validation
Parameters vs hyperparameters

Let M = {f(n) | n= 1, 2, } Set Of mOde/S (e.g, linear model, support vector machine, decision tree, neural network, etc.)
Each (" has two sets of dependencies = (" = f(N(@; Q):

m Ois the set of parameters (i.e. the weights of the model — y = § - X)
m Q is the set of hyperparameters (i.e. constraints of the model — y = - X+ A B - §)

(train) (val)
@N @N

you validate the
hyperparameters Q of
model ™ vs (™ (n # m)

you train the parameters
© of a model "
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Validation
Parameters vs hyperparameters

LetM = {f (n) | n=1, 2, ... } set of Models (eg.inear model, support vestor machine, decision tree, neural network, stc.)
Each (" has two sets of dependencies = (" = f(N(@; Q):

m O is the set of parameters (i.e. the weights of the model — y = - X)

m Q is the set of hyperparameters (i.e. constraints of the model — y = - X+ A B - §)

(train) (val)
Q)N @N

train th ¢ you validate the
you train the parameters hyperparameters Q of

(n)
© of a model f model ™ vs f™ (n % m)

| }

Loss functions Metrics
mean squared error, mean absolute error, cross mean squared error, accuracy, precision,
entropy, KL divergence, style transfer loss, etc. recall, F-score, Rand index, etc.
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Validation
Parameters vs hyperparameters

LetM = {f (m) | n=1, 2, ... } set of Models (eq.inear model, support vector machine, decision tree, neural network etc.)
Each (" has two sets of dependencies = (" = f(N(@; Q):

m O is the set of parameters (i.e. the weights of the model — y = - X)

m Q is the set of hyperparameters (i.e. constraints of the model — y = - X+ A B - §)

(train) (val)
Q)N @N

Model
selection
(hyperparameter

. you validate the
you train the parameters hyperparameters Q of
© of a model ™
l model (" vs f™ (n £ m)

tuning)

Loss functions Metrics
mean squared error, mean absolute error, cross mean squared error, accuracy, precision,
entropy, KL divergence, style transfer loss, etc. recall, F-score, Rand index, etc.
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Validation
Parameters vs hyperparameters

LetM = {f (m) | n=1, 2, ... } set of Models (eq.inear model, support vector machine, decision tree, neural network etc.)
Each (" has two sets of dependencies = (" = f(N(@; Q):

m O is the set of parameters (i.e. the weights of the model — y = - X)

m Q is the set of hyperparameters (i.e. constraints of the model — y = - X+ A B - §)

(train) (val)
Q)N @N

Model
selection
(hyperparameter

. you validate the
you train the parameters hyperparameters Q of
© of a model ™
l model (" vs f™ (n £ m)

tuning)

Loss functions see later... Metrics
mean squared error, mean absolute error, cross mean squared error, accuracy, precision,
entropy, KL divergence, style transfer loss, etc. recall, F-score, Rand index, etc.
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task — Purity

Let K = {ki, kz, ..., kp} the set of clusters, and C = {cy, ¢, ..., ¢, } the set of classes of

Purity is the normalised mode of the
C|USteI‘S What happens if K = N?

€2}  Riccardo Finotello AIPh 30/09/2024 25/104
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task — Normalized Mutual Information

Let K = {ky, ko, ..., kp} the set of clusters, and C = {¢y, ¢, ..., ¢, } the set of classes of
N points:

I(K,C)
H(K) + H(C)
where H(-) = —Ep(. [In?(-)] and

NMI(K,C) = 2

%\\ﬁ VANARARA; e
PRERERE R 2(KNC)
o] of o o o o o o o 60~ B [ i)
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Clustering task — Rand Index

Let K = {ki, Ko, ..., kp} the set of clusters, and C = {c¢y, ¢,, ..., ¢} the set of classes of
N points:

Consider the N(N — 1)/2 couples:

m TP — similar objects in the same clusters

m TN — different objects in different clusters

m FP — different objects in the same clusters
S e § m FN — similar objects in different clusters
WY ‘\\i\*“\\ i\ A %ﬁ \ RIK,C) = TP + TN
e é*z*i*i*ﬁ*i’ B TP+ TN+ FP + FN

54

Some of you might recognise the classification “accuracy” in this definition: even

though the idea is not far, this is different!
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Validation metrics

Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Regression task — p-norm

Let y; € R be the ground truth, and y; € R the prediction of the i-th sample
(i=1,2,...,N).

e © O ye
o090 -
°
°
o
.

-

e
.~

b . S
o o |

[

[ ]

Classification Task

Regression Task

Riccardo Finotello

N 5
ly — y”p = (Z(YI - ?i)p)

Specific cases:

i=1

m p = 0 — no. of non-zero elements
B p = oo — EE can you compute it?

30/09/2024 25/104



Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task — Accuracy, precision, recall and confusion matrix

Let C; € {0, 1} be the ground truth, and 5,- € {0, 1} the prediction of the i-th sample
(i=1,2,...,N).

%rff’icyfp Consider the possibilities:
%F o | mTPC=C=1
Se mIN>C=C=0
§e FP— C= C =1 (type
HGARD mFP—C=0andC (type )
= mFN— C=1and C=0 (typell)
confusion matrix

“Class assignements are based on the probability of belonging to a class, thatis C = 1 < (Y = 1) > m, where n is an arbitrary threshold.
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task — Accuracy, precision, recall and confusion matrix

Let C; € {0, 1} be the ground truth, and 5,- € {0, 1} the prediction of the i-th sample
(i=1,2,...,N).

prediction
oo accuracy = ootV
'3 Y =  TPrIN{FPTEN
=)
27| P | FN
+— 31 _ P
_go precision =
3(:
ol| FP | TN recall = i
o

confusion matrix

“Class assignements are based on the probability of belonging to a class, thatis C = 1 < (Y = 1) > m, where n is an arbitrary threshold.
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Validation metrics w
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task — Accuracy, precision, recall and confusion matrix

Let C; € {0, 1} be the ground truth, and 5,- € {0, 1} the prediction of the i-th sample
(i=1,2,...,N).

prediction
5 =t °=0 F[3 _ (1 + Bg) 2pr(—:-cis_ic?n-r(—:-cctll ;
E ] P EN {32-precision+reca
+ o
g [S) Imagine you are testing the presence of an infection in the population: would you
9 l FP TN prefer a highly precise test or go for higher recall? Why?
(0))

confusion matrix

“Class assignements are based on the probability of belonging to a class, thatis C = 1 < (Y = 1) > m, where n is an arbitrary threshold.
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Classification task — Accuracy, precision, recall and confusion matrix

Let C; € {0,1} be the ground truth, and Cie {0, 1} the prediction of the i-th sample
(i=1,2,...,N).

itivi - _IP_ (=
prediction sensitivity = !y (= recall)
C=1 C=o0

specificity TREER

1

P | FN

Cc

FP | TN

cC=0

ground truth

confusion matrix

*Class assignements are based on the probability of belonging to a class, that is C=1% 2 =1) > nwherenisan arbitrary threshold.
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Let C; € {0,1} be the ground truth, and Ci e {0, 1} the prediction of the i-th sample

(i=1,2,..,N).”

>4 sensitivity = 5 (= recall)
S
= o specificity = /e
% - ;\oc,é\‘\ Receiver
» I Operating
L0 Characteristic All metrics depend on the decision
o (ROC) threshold M = M(n). What if we use it as a
. > parameter? We can use the Area Under the
1 - specifity Curve (AUC) to evaluate the classifier!

*Class assignements are based on the probability of belonging to a class, that is C =1« ?(Y = 1) > n,where nis an arbitrary threshold.
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Validation metrics W !!'
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Binary classification

The output of the model for the i~th sample y; € RX. We can use a sigmoid
normalisation

)

i

= — € [0,1]
1+e

to interpret the result as a probability of belonging to the positive class. In other
words, the class assignment is:

C=1 & PY,=1)=Yy >n,

where n is an arbitrary threshold (e.g.n = 0.5).
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Multiclass classification

The output of the model for the i-th sample y; € R¥. We can use a softmax

normalisation
(k)

—~/ ey, ~
P(Yi=k) =7 = Z =1

to interpret the result as a probability of belonging to the k-th class. In other
words, the class assignment is:

Ci=arg maxy, — argmaxy*
k=1,..., k=1,...K

HOMEWORK: prove that softmanx for binary classification is a sigmoid.
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Validation metrics
Evaluating a model

The pletora of evaluation functions at our disposal strongly depends on the task!

Target encoding

Compare softmax-activated layer classes = use one-hot encoding:

k-th position

This enables comparisons y vs f after
softmax by comparing “bits” of
information contained in the vectors.
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Objective

Build a model which learns to predict (generalise) meaningful data
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Objective

Build a model which learns to predict (generalise) meaningful data
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The ML Mindset
Variance and bias

Objective

Build a model which learns to predict (generalise) meaningful data

OVERFITTING MODEL UNDERFITTING MODEL
4 4
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The ML Mindset
Variance and bias

Objective
Build a model which learns to predict (generalise) meaningful data

OVERFITTING MODEL UNDERFITTING MODEL
4 A

&

Y

4,
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The Variance vs Bias Trade-off
Variance and bias in prediction

Without loss of generality, define the true value: ws. varco = eix?) - B2

y = f()?) +¢e€R, X e ]Rp, ]E(;(‘!y) [&] =0, VGr(;’y)(S) = E(;,y) [82] = 0‘2.
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The Variance vs Bias Trade-off
Variance and bias in prediction

Without loss of generality, define the true value: ws. varco = eix?) - B2
y=f(X)+ecR, XecRP, Ey,le]=0, Varg,(e)=Ey, [¢’] =0
Build the model to predict a label (“supervised” sceier)
?@N: RP - R
using data in Dy = {(X?,yD) | XD e RP, y) e R Vi=1,2,..,N}.
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The Variance vs Bias Trade-off
Variance and bias in prediction

Without loss of generality, define the true value: ws. varco = eix?) - B2
y=fX)+e€R, XeRP, Ey,lel=0, Varg,(e)=Egz, ] =0
Build the model to predict a label (“supervised” sceier)
?@N: RP - R
using data in Dy = {(X?,yD) | XD e RP, y) e R Vi=1,2,..,N}.

Generalisation error

Let (X, y’) be an unseen pair, and compute the squared error from a trained
model fp,:

Ezy), oy [(y’ - ?DN()?)) 2]

We consider the mean squared error for simplicity, but the same holds for other kinds of generalisation error.
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The Variance vs Bias Trade-off
Variance and bias in prediction

Ez,y), oy [()" *7@,\,()7'))2]
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The Variance vs Bias Trade-off
Variance and bias in prediction

BEzy), oy [(y' *TDN(Y'))Q] =Exy), oy [(€+f()?’) *TDN(Y’))?
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The Variance vs Bias Trade-off N %
Variance and bias in prediction

BEzy), oy [(y' *TDN(Y'))Q] =Exy), oy [(“rf()?’) *TDN(Y’))?
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The Variance vs Bias Trade-off N %
Variance and bias in prediction

BEzy), oy [(y' *TDN(Y'))Q] =Exy), oy [(“rf()?’) *TDN(Y’))?
= Ezy) [£*] + En, [(f()?') —TBN(Y/))Q} +Egey), oy [2¢ (1) =Ty ()]

=02+ By, [(f()?’) _?@N(z'))j +2 Ery) [e] Eny [f(R) = Tny ()]
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The Variance vs Bias Trade-off VRO
Variance and bias in prediction

BEzy), oy [(y' *TDN(Y'))Q] =Exy), oy [(“rf()?’) *TDN(Y’))?
=Ezy) [£7] + En, [(f(?’) ~Tny (%)) } B gy, oy [26 () =Ty (7))
= 0% + Ep, [(f(x) Ty ( ) }—&-QWDN[ (®') =Ty (x)]
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The Variance vs Bias Trade-off N %
Variance and bias in prediction

Ey). o [(y' *TDN(Y'))Q] = Ezy). oy [(“rf()?’) *TDN(Y’))?
=Ezy) [£7] + En, [(f(?’) ~Tny (%)) } B gy, oy [26 () =Ty (7))
= 0% + Ep, [(f(x) Ty ( ) }—&-QWDN[ (®') =Ty (x)]

=02 + Ep, [f()?’) - f@N()?’)] +Varg, (f()? ) — Top (%' ))
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v ‘i‘&“@’&
The Variance vs Bias Trade-off VRO
Variance and bias in prediction

Ey). o [(y' *TDN(Y'))Q] = Ezy). oy [(“rf()?’) *TDN(Y’))?
= Ezy) [€°] + Eny [(f(?’) ~Tny (%)) } + By, oy [2¢ (7)o, ()]
=02+ By, [(f(x) Ty ( ) }“W@N[ () — Ty (x)]
=02 + Ep, [f()?’) - f@N()?’)] +Varg, (f()? ) — Top (%' ))

= @+ B, [(®) T, ®)] + varg, (Tn,())
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VA AN
The Variance vs Bias Trade-off W !!'

Variance and bias in prediction

By, on {(Y' *TDN(Y'))Q] =Ey), oy [(Hf(i’) *7@N(7’))2}
= Ezy) [€°] + Eny [(f(*’) ~Tny (%)) } + By, oy [2¢ (7)o, ()]
=02+ By, [(f(x) Ty ( ) }HW@N[ () — Ty (x)]
=02 + Ep, [f()?/) - ﬁDN()?’)] +Varg, (f()? ) — Top (%' ))

2 S = 12 —~
- o + Ep, [f(x’)—f@N(x’)] + Varg, (f@N(X’))
irreducible error

bias2 variance
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The Variance vs Bias Trade-off
Variance and bias in prediction

E.), oy [(Y —?@N()?'))Z] = Ey), oy [(H f(¥) —TDN(?’))z}

- o + B [f®) =T, @]+ Vara, (T, (¥))

irreducible error

bias? variance

aleatoric uncertainty
epistemic uncertainty

High bias or high variance produce high/bad generalisation errors!
The choice of a good validation strategy becomes fundamental!
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The Variance vs Bias Trade-off
Variance and bias in prediction

E.), oy [(Y' —?@N()?'))Z] = Ey), oy [(H f(¥) —TDN(Y’))z}
— By [22]+ By | (17) T ()| + Beay, oy [2 (0) - 0 %)

@+ By | (%) Ty (%)) ] + 2 BearteTE, [1%) Ty ()]

0+ En, [f(%') ~ T (%] +Varn, (F(7) ~Tn, (¥))

~ 2 ~
— 2 2 7 2
- o + Enp, [f(x’)—f@N(x’)] + Varp, (f@N(x’))
irreducible error

bias? variance

L . .
complexity aleatoric uncertainty istemi taint
epistemic uncertainty

High bias or high variance produce high/bad generalisation errors!
The choice of a good validation strategy becomes fundamental!

@ Riccardo Finotello AlPhy 30/09/2024 30/104



Back to Cross Validation
A variance and bias perspective

What K should | choose? What happens to the estimate of the prediction error
E o (:7) = Bictoas [ E g [dist(y. 7)]]

in cross validation?

@ Riccardo Finotello AlPhy 30/09/2024 31/104


https://dl.acm.org/doi/10.5555/1005332.1044695

Back to Cross Validation
A variance and bias perspective

What K should | choose? What happens to the estimate of the prediction error

in cross validation?
ConSIdeI’ |tS StClbIlIty GnGIySIS (i.e. the studly of its covariance, as it is an average of i.i.d. variables = central limit theorem. See
Bengio and Grandvalet, 2004)

1 mj;j—1

K—1
1 . N (i
vart® (vol) (dist(y,y)) = rel Z o Z Cov (dlst(yp T, d'St(Yc(/),yc(,’)))
i,j=0
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Back to Cross Validation
A variance and bias perspective

What K should | choose? What happens to the estimate of the prediction error

in cross validation?
COhSIder |tS StCIbIlIty GnGIySIS (i.e. the studly of its covariance, as it is an average of i.i.d. variables = central limit theorem. See
Bengio and Grandvalet, 2004)

1 mj;j—1

K—1
1 . N (i
var® (vm) (dist(y,y)) = rel Z o Z Cov (dlst(yp T, d'St(Yéj),yc(,’)))
i,j=0

:Z m . 120. +m 1w_|_ ,Y

everything

Lemma: 7 unbiased estimator of Var(dist(y, ¥))
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Back to Cross Validation
A variance and bias perspective

What K should | choose? What happens to the estimate of the prediction error

in cross validation?
COhSIder |tS StCIbIlIty GnGIySIS (i.e. the studly of its covariance, as it is an average of i.i.d. variables = central limit theorem. See

Bengio and Grandvalet, 2004)
1 m;;—1

K—1
1 . N (i
var® (Vql) (dist(y,y)) = rel Z o Z Cov (dlst(yp T, d'St(y((;j),yc(,’)))
i,j=0

@y depend on corre@
:Z " ‘. —120' +m1w+ Y

everything

Lemma: 7 unbiased estimator of Var(dist(y, ¥))
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VA RANN
Learning Objectives W

Do machines learn?

Consider all elements:
B a “machine” needs good data as

N put even though nobody wants to tidy data for life..

m we need structured procedures to
avoid mistakes

m we must use good practices (data
split, validation, etc.)

m we have to deal with bias and
variance

E a “machine” needs an architecture
and an objective to train wat everyone wants:
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Learning Objectives
Do machines learn?

Consider all elements:

® a “machine” needs good data as
in put even though nobody wants to tidy data for life.. d(]t(]

m we need structured procedures to preparation
avoid mistakes and analysis

m we must use good practices (data
split, validation, etc.)

m we have to deal with bias and
variance

E a “machine” needs an architecture
and an objective to train wat everyone wants:

Al model
bUIlding hell yeah!

How does a “machine” learn?
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Learning Objectives
Do machines learn?

Consider all elements:
B a “machine” needs good data as

in put even though nobody wants to tidy data for life..

m we need structured procedures to
avoid mistakes

m we must use good practices (data
split, validation, etc.)

m we have to deal with bias and
variance

E a “machine” needs an architecture
and an objective to train wat everyone wants:

data
preparation
and analysis

Al model
bu“ding hell yeah!

How does a “machine” learn?
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Learning Objectives
Do machines learn?

Consider G” elementSZ please, do not follow the advice, this is just a meme..
B a “machine” needs good data as

in put even though nobody wants to tidy data for life..

m we need structured procedures to
avoid mistakes

m we must use good practices (data
split, validation, etc.)

m we have to deal with bias and
variance

E a “machine” needs an architecture
and an objective to train wat everyone wants:

Al model
bu”ding hell yeah!

How does a “machine” learn?
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Loss Functions
Prediction estimation

Machines can learn in different ways:

better...
—

dist(y,y) (L, #, g) *“loss (function)” (sometimes Lagrangian),

where ¢ ~ C" (ateastiocary) With 0 metrie tensor g:
L: X — R

Z— L(2) %! distance from target”
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Loss Functions - !!j
Prediction estimation

Machines can learn in different ways:

better...
—

dist(y,y) (L, #, g) *“loss (function)” (sometimes Lagrangian),

where ¢ ~ C" (ateastiocary) With 0 metrie tensor g:

L: X —R

Z— L(2) %! distance from target”

Notice Z = Z(y,y) and y = f;e, 0}(x). The training problem (i.e. finding the best ©*)
becomes:
©* =argmin L(Z) =argmin L (y,y(0,Q))
(] C]
Should you see a correlation between £ and the logarithm of a likelihood function, you would be basically right...

@ Riccardo Finotello AlPhy 30/09/2024 35/104



Loss Functions
Prediction estimation

Machines can learn in different ways:

better...
—

dist(y,y) (L, #, g *“loss (function)” (sometimes Lagrangian),

where ¢ ~ C" (atieastiocaly) With a metric tensor g:

L. — R
Z— L(2) %! distance from target”
Cross entropy K-means clustering
letZ=Y_-Y: LetZ:(Y,V): letZ = X — M,

L(Z) = Ep(y [(Y ?ﬂ L@Z)=—Bay [n¥] L2 =Farxo [(x_ /\7/0)2]
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Loss Functions
Some properties

Wh(]t ma keS a |Oss function ”gOOd"? These properties are not always verified unfortunately...
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Loss Functions
Some properties

Wh(]t ma keS a |Oss function ”gOOd"? These properties are not always verified unfortunately...
Convexity

LA

SV

21

L(tZl + (1 - t) 22> < tL(Zl) + (1 - t)L(ZQ)
vt e [0, 1]
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Loss Functions
Some properties

Wh(]t ma keS a |Oss function ”gOOd"? These properties are not always verified unfortunately...

Convexity Differentiability
L A
: \:Z Re() |
2 ES

Ve e #\Dy Elxi_rpcw = f'(x)|

LA+ 1-D2z)<tL(z1)+(1—1t)L(Z) X—c x=¢

vt e [0, 1]
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Loss Functions
Some properties

tht ma keS a |Oss function ”gOOd"? These properties are not always verified unfortunately...

Convexity Differentiability

LA

V)

Im(¢)

|

|

|

|

|

|

|

|

4
> Re(¢)
22

(z-z)  veex\D3lim IO _ gy

L(Z2) — L(z1) > X_o x=c
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

Dyt (? || Q) = Ex.p |:|n g(())(())] :Xele)(x)ln g’(())(())
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

Dyt (fP || Q) = Ex.p |:|n g(())(())] :XGZXT(X)In g’(())(())

Dk (P || Q) is a convex function in the pair (P,Q ) over X.
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

Dy (7 || Q) = Exer {m fi((i?)] :ngpmln z((i))

Theorem
Dk (P || Q) is a eonvex function in the pair (?,Q ) over X.

Proof

D (tP1(X) + (1 = 1) Po(X) [ tQ1(X) + (1 = 1) Q2(X)) =
EPL(X) + (1 — 1) Po(X)

-y < (tP(X) + (1= ) Bo(X)) In th(X)+(1—l‘)Q2(X))

xex

@ 37/104
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

D (P [| Q) = Ex~ep [m 5/(())(())] _ XEZ;P(X)I"‘ g/(())(())

Theorem

D (P || Q) is a convex function in the pair (P,Q ) over X.
Proof
D (t21(X) + (1 — 1) Po(X )Hth( )+ (1 =1 Qa2 (X)) <
N— FRX) n SR (X)
og sum inequality S ); <tfP1(X) Inin(X) (1 t) ?Q(X) MQQ( )>
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

D (P [| Q) = Ex~e [ln g((f())] - X;T(X) In é’(())(())

Theorem
Dk (P || Q) is a eonvex function in the pair (?,Q ) over X.

Proof

D (tP1(X) + (1 — ) Po(X) [| tQ1(X) + (1 — 1) Q2(X)) <
<tD (P || Q1)+ (1 =)D (P2 || Qo)

@ 37/104
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Loss Functions
An example of convex loss

Let 2 and Q be two probability distributions of X € ¥, and consider the
Kullback-Leibler divergence:

Dy (2 || Q) = Exr {m fi((i?)] :ngp(x)ln z(&))

Theorem

Dk (P || Q) is a convex function in the pair (?,Q,) over X.

. prove that f(x) = — In(x) is convex (or that f(x) = In(x) is concave)

2. prove the “log sum inequality” (it follows from Jensen'’s inequality and 1.) used in the proof — have fun or look it up!
3. prove that the cross entropy H(?,Q) = —Ep [InQ] is convex in Q over X
4

. prove that any local minimum of a convex function is also a global minimum (suppose there are more, and find a
contradiction...)
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Loss Functions
Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) =argmin L (y,¥(0,Q))
(] (S]

What if L is too complicated for an analytical solution?
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Loss Functions o !!'
Differentiability and gradient descent

Remember the minimisation problem:
©* =argmin L(Z) =argmin L (y,¥(0,Q))
(] C]
What if L is too complicated for an analytical solution?
Let X, Ve R"and f = f(X) € €% (R):
Vif(X) = VF(X) - V

which is momeoI when Vv is in the same
direction of Vf(X)

Steepest a Scent (theorem?)

The gradient is the direction of steepest
ascent of the (hyper)surface.
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Loss Functions o ?ﬁf
Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) =argmin L (y,¥(0,Q))
(] C]

What if L is too complicated for an analytical solution?

We can control the descent along the surface by iterating:
ﬂHU:%U—&Qﬁq%ﬁ

where & € R” is the learning rate (N.B. « ¢ Q is a hyperparameter of the model

often justa scalcr...) .
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Loss Functions
Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) = argmin L (y,y(0,Q))
(] S]

What if £ is too complicated for an analytical solution?

>

Gradient descent
L

Require: x c R+, 0, £, T IN\ {0}
for0<t< Tdo

GO« VL(y,y(E) = VLED) /
g+ () — G > steepest descent de =0
return 6(7) l
dL
doe T

0
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Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) = argmin L (y,y(0,Q))
(] S]

What if £ is too complicated for an analytical solution?

>

Gradient descent
L

Require: x c R+, 0, £, T IN\ {0}
for0<t< Tdo

GO« VL(y,y(E) = VLED) /
g+ () — G > steepest descent “de =0
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dL
doe T
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Loss Functions
Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) = argmin L (y,y(0,Q))
(] S]

What if £ is too complicated for an analytical solution?

>

Gradient descent
L

Require: x c R+, 0, £, T IN\ {0}
foro<t<Tdo o
G < VL(y,y(6Y)) = VLEO)
g+ () — G > steepest descent
return 6(7)
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Loss Functions
Differentiability and gradient descent

Remember the minimisation problem:

©* =argmin L(Z) = argmin L (y,y(0,Q))
(] S]

What if £ is too complicated for an analytical solution?

Gradient descent

Require: x c R*, 09, £, T € N\ {0}
for0<t< Tdo
GO« VL(y,§(ED)) = VLED)
L 6D g0 — G® > steepest descent
return 6(7)

5

Qlo
D!

DoeS it C O n Ve rg e? We will see better solutionsgter on..

g Riccardo Finotello AlPhy 30/09/2024 38/104




Gradient Descent
On the convergence of gradient descent

Definition | Lipschitz smoothness

Let f € ¥1(R") a scalar function, and L > 0. We call f L-smooth if it is L-Lipschitz:

VFER" ||VAR) - V)|, < LIK -7l

@ 39/104



Gradient Descent
On the convergence of gradient descent

Theorem | Smooth convex functions

Let f be a convex L-smooth scalar function over R”, and let « = L~ the learning rate, then Vvt € [1, T|:

2L
(DY _ f(x* 2= ||x(0) — xx
(X' f(X)STqHX X

2

(see Gower (Télécom Paris))
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Gradient Descent w%

On the convergence of gradient descent

Theorem | Smooth convex functions
Let f be a convex L-smooth scalar function over R”, and let « = L~ the learning rate, then Vvt € [1, T|:

2L
(DY _ f(x* 2= ||x(0) — xx
(X' f(X)STqHX X

2

(see Gower (Télécom Paris))
Consider x(t+1) = z(t) _ %6! (;(f));

' (X( ' ) (X( k ) H
2
which shows (Taylor expansion + bound on Hessian) that

() 21(e0) -

Moreover, by subtracting f (X*):

2(t+1)
/jt) a8 21| < L|[xEHD —z®O
X

=zl O,

o0,

o (O, + g o GO, = () - 2

AR

f(y(’“)) — f()?*) < f()?([)) — f(;*) -
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Gradient Descent
On the convergence of gradient descent

Theorem | Smooth convex functions

Let f be a convex L-smooth scalar function over R”, and let « = L~ the learning rate, then Vvt € [1, T|:

2L
(DY _ f(x* 2= ||x(0) — xx
(X' f(X)STqHX X

2
(see Gower (Télécom Paris))
From the last equation
f()?(t+1)) — () < f(i(’)) - (%) - i 6f(x(”)H2,
apply the convexity property
(EO) =1 (3) < 90 (x0) - (x0 - x7) < |[or (m)Hj OB j
and reconstruct:
A 1 1

(1) £ A0 _ )? _
A sa®—p (a0)" = o <bmn < cmwm - 2o
where () = !(7“)) — f(X*) and

1 2

S FOE

2< X(O)—x*
2 =

since |[x() — x*

2
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Gradient Descent
On the convergence of gradient descent

Theorem | Smooth convex functions

Let f be a convex L-smooth scalar function over R”, and let « = L~ the learning rate, then Vvt € [1, T|:

2L
(DY _ f(x* 2= ||x(0) — xx
(X' f(X)STqHX X

2

(see Gower (Télécom Paris))
We finally conclude by summing overall t € [1, T]:
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Loss Functions vs Metrics
Evaluating algorithms

Is there a difference between metrics and loss functions? Can | choose
arbitrarily?

Riccardo Finotello AlPhy 30/09/2024 40 /104
Dependina on the task we need qa differentiable loss but not necessarilv a continuous evaluation!



Loss Functions vs Metrics
Evaluating algorithms

Reg reSSion tOSk N.B. we are not discussing “good vs bad” metric/loss
Let fo.0} : R” — R, such that X +s §, a regression model

metric  — |[ly —¥ll,
loss =y =Yllpso

A priori, we could use the loss as evaluation metric as well.

Depending on the task, we need a differentiable loss, but not necessarily a continuous evaluation!
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Loss Functions vs Metrics
Evaluating algorithms

Reg reSSion tOSk N.B. we are not discussing “good vs bad” metric/loss
Let fo.0} : R” — R, such that X +s §, a regression model

metric  — |[ly —¥ll,
loss =y =Yllpso

A priori, we could use the loss as evaluation metric as well.

Clq SSifiCGtion tGS k N.B. we are not discussing “good vs bad” metric/loss

- o~ oge .
Let f{@!Q} :R" — R, such that X — Y (probability of being positive sample), classification model

metric — accuracy
loss - E¢ [In 5] (cross entropy)

Depending on the task, we need a differentiable loss, but not necessarily a continuous evaluation!
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

regularised model = model + constraint on parameters
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Li(©; Q) = L(©; Q) +
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lin(©®; Q,A) = L(B; Q) + Lreg(@); A)
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Regularisation Techniques N %
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, regularisation

Define the L, norm of X € RX:

1 p
P P L X, =S 8k
II%]], = <Z|x,-p> ,  special cases v [1Xllo ,; %1, 0
=L Lot [|X|loo = SUPjcpr g IXil
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“;J // NN
Regularisation Techniques 1998 %
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, regularisation

Then:

Lieg(®; A) =27 ||O]F, st Ay €A

Most common regularisation techniques
are p = 1 (LASSO) and p = 2 (Ridge).

Riccardo Finotello AlPhy 30/09/2024 43[104



C NANAN
Regularisation Techniques w%

Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, and L, regularisation: probabilistic interpretation or simple trick?

Remember P (AN B) = P(A| B)P(B) = ?(B | A)P(A) which implies (Bayes’ theorem):
likelihood ~ prior

—N— N
B|A) ?(A)

P(
P(A|B)=
—— P(B)
posterior S~
marginal

Riccardo Finotello AlPhy 30/09/2024 43[104



Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, and L, regularisation: probabilistic interpretation or simple trick?

0* =argmax (In?(© | X)) = argmax | In?(X | ©) +InP(0)
© (€) N——— N —

MLE prior
MAP

where, for © = (01, 02, ..., 0p):
1 leli3

Ly: PO) =N (0]0,0%)=—— @ 302

1 _ Hele
(2mo2)P

Li: P(©)=Laplace(® | 0,b) = T

N.B.: certainly “MAP w/ prior = penalised least squares”, but “penalised least squares =
Gaussian/Laplace prior”: it is rather a matter of efficiency and good resuilts.
(see Gribonval (2011))
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, and L, regularisation: probabilistic interpretation or simple trick?

0* =argmax (In?(© | X)) = argmax | In?(X | ©) +InP(0)
© (€) N——— N —

MLE prior
MAP

where, for © = (01, 02, ..., 0p):
1 J\@Q%

1 _ Hele e
(2mo2)P

o) Ly: P©) =N (©]0,0%) =

Li: P(©)=Laplace(® | 0,b) =

Q: Lreg adds a restrictions on the parameters of the model to contain the overfit. How to interpret this

in terms of bias vs variance?
(see Gribonval (2011))
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Regularisation Techniques
Containing the overfit

Q: Is there a way to actively reduce overfitting the training data?

Lia(©; Q,A) = L(O;Q) +  Leg(O; A)

L, and L, regularisation: probabilistic interpretation or simple trick?

0* =argmax (In?(© | X)) = argmax | In?(X | ©) +In?(0)
(] (€] ——— N——

MLE prior
MAP

where, for © = (01,62, ...,0p):

v

1 lell 1 _lell
Ly: T(@):Loploce(@\o,b):we* 5, Lo: ?(@):N(@lO,GQ):We 202 .

Q: Lreg adds a restrictions on the parameters of the model to contain the overfit. How to interpret this

in terms of bias vs variance? increase in bias, decrease in variance.
(see Gribonval (2011))
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Types of Algorithms
A simple distinction

SUPERVISED
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Types of Algorithms
A simple distinction

SUPERVISED

Supervised learning
m “learn” knowing the resuit (labels)
m iterative process with examples

m need annotated data
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Types of Algorithms
A simple distinction

SUPERVISED
Supervised learning Unsupervised learning
m “learn” knowing the result (labels) = “learn” a structure in the data
m iterative process with examples m can identify usable patterns
m need annotated data m data are not labelled
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Types of Algorithms
A more realistic scenario

scikit-learn
Jassifi @ algorithm chea
classification
Tty - sheet

more

svC hod data o
e S | q @ regression
3 No SGD [ElastioNet] SVRkernel="rbr |
"\ Regressor , Ensemble
text s Regressors
,

4

RidgeRegressior

SVR(kernel="linear";

Spectral "’

Clustering| -
GMM (N | IsoMap

T L’i Spectral
clustering e y E

Batch) . JYES
IMeanShift, . . .
KMeans dimensionality
reduction
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Types of Algorithms
Some more details...

Supervised learning Unsupervised learning

Let D = {(X,y)} a labelled dataset: Let D = {X} a set of data points:
fsupervised KP — K funsupervised KP — K9
B regression B principal components analysis
m classification m clustering and manifold learning
m time series inference m anomaly detection
m (LLMs, generative Al, etc. desatatis) m etc.

£} Riccardo Finotello AlPh 30/09/2024 48 [104
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Types of Algorithms
A wide spectrum

Supervised
learning

Buiuiog|
pasinladnsun
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Types of Algorithms
A wide spectrum

Supervised

learning

Self-supervised

Riccardo Finotello

learning

partially labelled
data, similarity

analysis (e.g. SIMCLR)
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analysis (e.g. SIMCLR)
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Types of Algorithms
A wide spectrum

Self-supervised

learning

partially labelled
data, similarity

analysis (e.g. SIMCLR)

Riccardo Finotello

Supervised
learning
1
|
|
|
|
|
|
|
|
—
|
|
|
|
|
|
|
|
|
|

o=
=3
o=
e
=
************* r-———====="135 ®
| =. 5
| =
| Q »
o
5 5 o
Semisupervised
learning
train supervised —
consistent prediction of
unlabelled (e.g. FixMatch)
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Types of Algorithms
A wide spectrum

O
(O} e))
Wealkly-
alnented Prediction Pseudodabel |- — - - - - - N - -r---------

Unlabeled
example

Buiuiog)
pasinladnsun

Strongly-
augmented

Semisupervised

learning
partially labelled train supervised —
data, similarity consistent prediction of
analysis (e.g. SIMCLR) unlabelled (e.g. FixMatch)
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Types of Algorithms
A wide spectrum

prize vs penailty training

(e.g. Boston Dynamics)

Supervised
learning

Self-supervised

learning

partially labelled
data, similarity

analysis (e.g. SIMCLR)

Riccardo Finotello

Reinforcement
learning

K
|
|
I
I
I
|
Buiuiog)
pasiniednsun

Semisupervised
learning

train supervised —

consistent prediction of
unlabelled (e.g. FixMatch)
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Types of Algorithms
A wide spectrum

prize vs penalty training

(e.g. Boston Dynamics)

Reinforcement
learning

Supervised
learning

Self-supervised
learning

partially labelled

data, similarity

analysis (e.g. SIMCLR)

g Riccardo Finotello

Imour

=

el

o]

Semisupervised
learning

train supervised —

consistent prediction of
unlabelled (e.g. FixMatch)
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Principal Components Analysis

Definition

m data better from another
angle (<—> > <->)
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Principal Components Analysis
Definition

m data better from another
angle (<—> > <—>)
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m data better from another
angle (<—> > <—>)
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Principal Components Analysis
Definition

m data better from another
angle (<—> > <—>)
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance)

Riccardo Finotello AlPhy 30/09/2024 52/104



Principal Components Analysis w%
Definition

letX; € RP for i =1,2,...,n st E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

m data better from another
angle (<—> > <—>)
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance)
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WA w

Principal Components Analysis
Definition

let X; € RP fori=1,2,...,nst. E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

Preliminaries (spectral theorem)

Let M € RP*P st. MT = M. Then, 3 complete
orthonormal basis of RP {&,, &, ..., €y} sit.

P
—(mT _ AR
W= (m,- )i:1,2 ..... o ;)\,e,e, ’
m data better from another B

angle (<—> > <->) where \; € Rt Vi€ [1,p].
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance)

@ Riccardo Finotello AlPhy 30/09/2024 52 /104




Principal Components Analysis
Definition

m data better from another
angle (<—> > <—>)
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance)

Riccardo Finotello

letX; € RP for i =1,2,...,n st E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

Maximal variance

Let Y € R"™P matrix representation of data
with covariance C = n-' X' X.

We look for a new basis

Y’ =Y W
—~— —~—

scores / principal components loadings

which maximises the variance in each
direction of the vectors yj; € R?

(i=1,2,..,n).

AIPhy 30/09/2024 52/104



Principal Components Analysis
Definition

letX; € RP for i =1,2,...,n st E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

Maximal variance
We need:

var(yya) = Var(yy - Wa)) = H(Ta) Clij Wa)-

and compute

m data better from another arg max vT/(Q) Ci) W(a)
angle (<—> > <—>) W(a)
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance) Wia) - Wp) = Sab-

constrained to

Riccardo Finotello AlPhy 30/09/2024 52/104



Principal Components Analysis
Definition

letX; € RP for i =1,2,...,n st E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

Principal Components (theorem)

If C has distinct eigenvalues A4, ..., Ap, then

W(a is the eigenvector corresponding to
the a-th largest eigenvector A,.

Moreover,
m data better from another ;

angle (<—> > <->) Var(y[ya) = W Cii) Wa) = Aa-
m “distance” from centre

m find maximal “distance?”
(i.e. maximal variance)
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Principal Components Analysis
Definition

letX; € RP for i =1,2,...,n st E[X] = X. Call
Vi=X —Xx(i=1,2,...,n) the centred data.

Principal Components (theorem)

If C has distinct eigenvalues A4, ..., Ap, then

W(a is the eigenvector corresponding to
the a-th largest eigenvector A,.

Moreover,
m data better from another ;
angle (<—> > <->) Var(y[ya) = W Cii) Wa) = Aa-

m “distance” from centre HOMEWORK
| ﬁnd mClXImCﬂ "diSthcez" m Prove the PC theorem. Proceed iteratively from v‘v(l), ]

(i.e. maximal variance)
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Principal Components Analysis
Dimensionality reduction | Eigenfaces

original images (Olivetti dataset) eigenface basis

PCA (on image vectors)
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Principal Components Analysis
Dimensionality reduction | Eigenfaces

original images (Olivetti dataset) eigenface basis

PCA (on image vectors)

1. let Z € [0,255)% be a grayscale image
2. define y = vec(Z), then find basis of images { W), ..., W) }

. . — p — — —
3. write each image y(;) = kz y[’,](k) W), Where y[’,.](k) = Y - W
=1

4, (optionol) use }7[’,] € RP to train a classifier (see Sirovich and Kirby (1987) and Turk and Petland (1991))

Riccardo Finotello AlPhy 30/09/2024 53 /104
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Principal Components Analysis
Dimensionality reduction | Eigenfaces

original images (Olivetti dataset) eigenface basis

PCA (on image vectors)

As A represents the variance explained by the k-th principal component:

w — y

<!
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original images (Olivetti dataset)

Principal Components Analysis
Dimensionality reduction | Eigenfaces

PCA (on image vectors)

eigenface basis

As A represents the variance explained by the k-th principal component:

Cumulative variance

<!

Riccardo Finotello

JR—
}‘/’/ 1050005077 50% of explained variahce: 6 components
X 750007777 I

AlPhy 30/09/2024
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Gaussian Mixture Model
Definition
letD ={x;eR|i=12,..,n}st

hypothesis: data are sampled from different Gaussian distributions
objective: can we group data according to the parameters of different Gaussian
distributions?

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

It looks easy knowing the
ground truth...
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Gaussian Mixture Model
Definition
We need to build several normal distributions,

then select what we need — build a Gaussian
Mixture Model

.but it is not! (even1D!)
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Gaussian Mixture Model
Definition
We need to build several normal distributions,

then select what we need — build a Gaussian
Mixture Model

Reminders
Remember:

1 _x=w?

e 202,
V2mo2

N(x | mo?) =

and (Bayes' theorem):

P(A|B) = 7?(51‘)22)1’“).

.but it is not! (even1D!)

@ 54 /104



Gaussian Mixture Model
Definition

Gaussian Mixture Model
Consider K > 1 components and let
O = {(C1)s #1,07), o, (Cli)s (k) ‘7<2K))}' where ¢,

(k=1,2,...,K) are the probabilities of picking
the k-th Gaussian.

.but it is not! (even1D!)

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

Gaussian Mixture Model

Consider K > 1 components and let

O = {(C1)s #1,07), o, (Cli)s (k) U<2K))}' where ¢
(k=1,2,...,K) are the probabilities of picking
the k-th Gaussian.

We observe the marginal cisiaen likelihood:

P(x|©) =Y P(C=k|O)P(x|C=k;O)

.but it is not! (even1D!)

M= 1=

Cky N(x | /J'(k)aff(Qk))-

>
Il
—

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

Gaussian Mixture Model

Consider K > 1 components and let

O = {(C1)s #1,07), o, (Cli)s (k) ‘7<2K))}' where ¢,
(k=1,2,...,K) are the probabilities of picking
the k-th Gaussian.

K
P(x| ©) =Y P(C=k|O)P(x|C=k ©)
k=1

K
= & o 2] ) o))

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

Gaussian Mixture Model

How to estimate the parameters? Ideally, we
would like to assign any sample x € D to a
generating distribution:

n
©* =argmax [[2(x | ©)
® &=

=argmax» _In?(x | ©)

K =~
P(x|©) =3 P(C=k|©)P(x|C=k ©) =
k=1

K
= & o 2] ) o))

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model

Definition

P(x| ©) =Y P(C=k|O)P(x|C=k ©)
k=1

K
= & o 2] ) o))

g Riccardo Finotello

Gaussian Mixture Model

How to estimate the parameters? Ideally, we
would like to assign any sample x € D to a
generating distribution:

n
©* =argmax [[2(x | ©)
® &=

=argmax» _In?(x | ©)

i=1

Use the Expectation-Maximisation (EM)

G|gOI’Ith m (EMisa technique to estimate the MLE of a latent variable model)

AIPhy 30/09/2024 54 /104



Gaussian Mixture Model
Definition

Expectation Maximisation

Consider
P(xi| C=k;®)P(C = k)
E (C | le ) P(XI- ‘ @)
_ P(xi| C=k;®)P(C = k)
K
Y P(xi| C=k;®)P(C = k)
T - - o 0 ! 2 k=1
& K | G AN (x| B(k)» T k) 3
P(x|©) =3 P(C=k|O)P(x|C=k ©) =% 2 = Yi(k)
T Z C(k> N(Xi ‘ l‘l’(k)ao-(k))
= kgl S(ky A(x | ”(k)’”(2k) ). k=1

K
NB.: 3 vik = 1.
k=1

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

Expectation Maximisation

Q(0) = Ep(cix0) [INP(x | ©)]

n K
=> > P(C=k|x;0)InP(x|O©)

i=1 k=1
n K
=> > Yiwhn (%)N(Xf | N(k)"’?m))
i=1 k=1
P(x|©) = 3 P(C=k|O)P(x|C=k ©) .
' =" ’ Compute (until convergence to 01t %' @+):

K
=3 oy N ey, o20)-
PR (K)o k) oitH} _ argmaxQ (®{t}>
e

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Definition

Expectation Maximisation

Compute (until convergence to (% =" @*):

olt*1} — argmaxQ (8{'}) ,
)

that is:
{t+1} _ {t}
ol ! =Bo [14)]
{t}
LAY Ep [YM)X]
(K {t}
EZJ [Y(k)]
P(x|©) =3 P(C=k|©)P(x|C=k ©) o ,
k=1 ¢ .
K ) o_{[+1} o Eqp [y(k) (Xﬁl‘b(k)) :|
= A(x | 2o K))- k -
k§1 k) K (k)@ (k) (k) Ep {Y({éﬂ

@ Riccardo Finotello AlPhy 30/09/2024 54 [104



Gaussian Mixture Model
Unsupervised learning | Clustering

Remember

Yiw =P(C=k|x;0") = Ci = arg;nox softmax (y;‘(k)>
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Gaussian Mixture Model
Unsupervised learning | Clustering

Remember

Yiw =P(C=k|x;0") = Ci = arg;nox softmax (y;‘(k))

GMM
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Gaussian Mixture Model
Unsupervised learning | Clustering

Remember

Yiw =P(C=k|x;0") = Ci = arg;nax softmax (yf(k))

(ORIGINAL)
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Gaussian Mixture Model
Unsupervised learning | Clustering

Remember

Yiw =P(C=k|x;0") = Ci = arg;nax softmax (yf(k))

(PREDICTED )

g Riccardo Finotello AlPhy 30/09/2024 55 /104



Gaussian Mixture Model
Unsupervised learning | Clustering

Remember

Yik = P(C=k|x;0%) = C: = arg max softmax (y;‘(k))
k

m can generalise to N-dimensional
distributions

m used for exploratory data analysis..
m ..as well as unsupervised classification

I RrP—1
q4-> o
. -
HSI® &o
’
Zh t al. (2016) ' A .
ao et al. D
N
HyperSpectral Image
@ Riccardo Finotello AlPhy 30/09/2024 55 /104
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Support Vector Machine
Definition | The classification case

(see Cortes and Vapnik (1995))

Suppose D = {(X,y)}, sty ==+1
(C|ClSSiﬁCCIti0n) (simple case: linearly separable)
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Support Vector Machine
Definition | The classification case

- H
-

-
-
-

(see Cortes and Vapnik (1995))

How to choose the best
hyperplane to separate the
points?
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Support Vector Machine
Definition | The classification case

-
-
-
-
-

k)
x-=" =-"
-t X -
—V————
x0
o=

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!
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Support Vector Machine

B w

Definition | The classification case

1
X" A

—’—-
—’—
—’—
=

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

g Riccardo Finotello

Hyperplane (strict) separation theorem

Let A, B C RP s.t. they are closed and convex,
and AN B = (. Suppose one of them is
compact. Then 3w = (&,b) € R? x R s.t.

oL A
a-x+b{> ¢ Vxe

<t VxeB

for ¢; > ¢,. Thatis,

provided a separation, there exist a
hyperplane separating the two sets

AIPhy 30/09/2024 58 /104
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Support Vector Machine

Definition | The classification case

1
X" A

—’—-
—’—
—’—
=

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

g Riccardo Finotello

Hyperplane (strict) separation theorem

Let A, B C RP s.t. they are closed and convex,
and AN B = (. Suppose one of them is
compact. Then 3w = (&,b) € R? x R s.t.

B 5l >c VxeA
<t VxeB

for ¢; > ¢,. Thatis,

IF: RP o {—1,+1}
X = y

where y is a boolean variable.
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Support Vector Machine
Definition | The classification case

Support Vector Machine

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

Riccardo Finotello AlPhy 30/09/2024

><,_.
>

@ ) Let D = {(X,y) e RP x {~1,1} | i =1,2,...,n}
~—"""".» linearly separable. Let (3, b) € R” x R identify
o AP - a hyperplane.
i P Then, fori=1,2,...,n:

x° > 41 if 1

S if y; =
> 3.X pl= + : Vi +
< -1 if yi=-1
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Support Vector Machine
Definition | The classification case

1
A Support Vector Machine

@ ) Let D = {(X,y) e RP x {~1,1} | i =1,2,...,n}
~—"""".» linearly separable. Let (3, b) € R” x R identify
o AP - a hyperplane.
i P Then, fori=1,2,...,n:
0 - o
Ry yi(@-%+b) > 1.

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!
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Support Vector Machine

Definition | The classification case

-
-
-
-

-
-

-

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

Riccardo Finotello

Support Vector Machine

LetD = {(X,,yi)) e RP x {-1,1} | i=1,2,...,n}
linearly separable. Let (3, b) € R” x R identify
a hyperplane.

The distance between classes

WV

- X — max - X

- . a
" N

sly=+1 ||2]l,

becomes maximal for the optimal (&, b*):

[\
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Support Vector Machine

Definition | The classification case

-
-
-
-

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

Riccardo Finotello

Support Vector Machine

(&*,b*) = argmaxp(d) = arg min ! IEs
acRP, beR deRp, beR 2

constrained to
y,(é)?,—l—b) >1Vi=1,2,..,n.
That s, find the saddle points of:

n—1
a-a —Zui(Yi(5'7i+b)—1)

i=0

L(a, b, i) =

N | =

S.t. g = 0 VI — 1 2 ..., I (Lagrange multtiplier: = find the min for @ and b,
Hi = T <A?Phyg F>30709/2024 58104
and the max for fi).


https://doi.org/10.1007/BF00994018

B w

Support Vector Machine
Definition | The classification case

1
XA Support Vectors
y=1 Notice that w; > 0Vi =1,2, ..., nis fundamental.
i From the minimisation (equation of motion), the
________ ' constraint:

. ) I

y 0 L (y,-(a~x,-+b)—1):0
> implies that

(see Cortes and Vapnik (1995)) W > 0= yl(é . )‘('I. 4 b) =1

Maximise the separation (i.e. ¥i=12,..,n Thatlis,

the margin)! the only contributing data points are those
precisely on the margin = Support Vectors

g Riccardo Finotello AlPhy 30/09/2024 58 /104
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Support Vector Machine
Definition | The classification case

x! .
A Support Vector Machine
@ . (&%, b") = argminargmaxL(a, b, i)
- ? FERP, bR HERN

-
-
-

T _." can be performed to give:
- O
0

n
> é*zzyipifj and b*z—é'ii.
i=1

(see Cortes and Vapnik (1995))

. ( Hard Margin

Maximise the separation (i.e.

the margin)! Support \(ector
Machine

Riccardo Finotello AlPhy 30/09/2024 58 [104
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Support Vector Machine

Definition | The classification case

X .

@ i Suppose data is not perfectly separable. New
~—"""_. 7 constraint;
-t .=
X-="" == Lo )
. _’Q ———— y,-(a-x,-+b)21—£,- E>0 Vi=1,2,...,n.
0
Ry Hence (C > 0):
1 n
(see Cortes and Vapnik (1995)) L(é, b, ﬁ’ E») _ Grg min 75 . é 4 C Z Evi
3CRP, bER, ECRN 2 i=1

Maximise the separation (i.e.

the margin)!

Soft Margin SVM
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Support Vector Machine

Definition | The classification case

-
-
-
-

(see Cortes and Vapnik (1995))

Maximise the separation (i.e.
the margin)!

Riccardo Finotello

Kernel SVM

Suppose data not (natively) lineary separable
in target space, but possibly in feature space:

IJ¢p:RP-RP, P>p

s.t. we can use SVM in P-dimensional space:

n
=Y yimb(X).
i=1

Do we need to know ¢ analytically?
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Support Vector Machine
Definition | The classification case

1
XA Kernel SVM

Let f be the SVM classifier and X a new data
A point:
o DA
- f(X) = ¢(X) - & + b’
- n
0 2 3 *
> = Vi b(X) - b(X) +b".
i=1

(see Cortes and vapnik (1995)) - |y projections on support vectors:
K(X,Xi) = ¢(X) - d(Xi)

are really necessary (notevenai datapoints).

Maximise the separation (i.e.
the margin)!
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Support Vector Machine
Definition | The classification case

1
XA Kernel SVM

@ As long as K € Ly(RP) and symmetric:
e -
; :g::j:: K(d, V) =Y Nei(d) - 9;(V), A >0.
3 y =
> Good/used choices of K:
m radial basis func.: K,(U, V) = exp(— "”)

(see Cortes and Vapnik (1995))

m polynomial func.: Ky(d,v) = (1 +U-

HOMEWORK

1. build a SVM for regression (change the classifier constraint to a MSE
loss, see Drucker et al. (1996))

Maximise the separation (i.e.
the margin)!

2. show that the sigmoid can be used as a kernel function

Riccardo Finotello AlPhy 30/09/2024 58 [104
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Decision Trees
Definition

[D]

Riccardo Finotello AlPhy 30/09/2024 59 /104



Decision Trees
Definition
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Decision Trees
Definition
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Decision Trees
Definition

A decision tree .7 is a hierarchical model:
| decision nodes where “splits” are made
m data nodes

| ernCheS parent partitions of data
m /leaves fina partitions of data

Thqt |S ,7 (slight abuse of notation: 9 is both the data and the domain).
T = {Q)Acl) | JDa=o, DAHDB—wforA7éB}
A

where
A={ay, as,...,an}

s.t. |A] is maximal w.r.t. a stopping criterion.

@ Riccardo Finotello AlPhy 30/09/2024 59 /104
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A decision tree .7 is piecewise linear as it
outputs a tesselation of the domain space:

XlA
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A decision tree .7 is piecewise linear as it
outputs a tesselation of the domain space:

1

X°A |

|
,,,,,, 1‘ x1 = X\lU
|
|
|
|
|
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I
‘ X0
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Decision Trees
Definition

Riccardo Finotello

A decision tree .7 is piecewise linear as it

outputs a tesselation of the domain space:

1
X | !
A
! |
,,J,,,jxl .‘X\lU
0 < 0 |
> (1) )
|
|
|
x1 = x1 | Lo
> 0) 1
I
| x°
.
x0 = X0 )
(0)
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Decision Trees
Definition

A decision tree .7 is piecewise linear as it
outputs a tesselation of the domain space:

There exists a huge number of decision tree making algorithms (THAID, C4.5, CART, MARS,
etc.) — we focus on CART and C4.5.
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Decision Trees
Definition

g Riccardo Finotello

In other words:

Require: stopping criterion ., measure of
“goodness of split” G, i - 0
while -.# do
loop

select node i
find the best partition of D; according
tog
create child nodes i, (a=i1,i2,...)
loop for each child node i + i,

return partition assignments of D

AlPhy 30/09/2024 59 /104



Decision Trees
Definition

The CA4.5 decision tree

Use information gain (mutual information) as
criterion G (maximise):
MI(X € D, X; € D) =HX € D) —H(X € D | X; € Dp),

where
K
H(X) = —ZLP(X € Gj)log, P(X € C)),
j=1
H(X | Xj) = iTX/\X)Iog M
= 2p(XeC)

and P(X A Xj) = P(X € D, X; € ;) and C; C D.
(see Quinlan (1994))
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Decision Trees
Definition

The CA4.5 decision tree

Use information gain (mutual information) as
criterion G (maximise):
MI(X € D, Xi € Da) =H(X € D) —H(X € D | Xj € Dp),
Which implies:
m maximise the information acquired by
the split
m pruning based on informative splits

(uninformative branches are replaced by leaf nodes)
m missing values automatically handled
m the split can be arbitrary (g muticiass)

(see Quinlan (1994))
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Decision Trees
Definition

Riccardo Finotello

The Classification And Regression Trees

Use Gini impurity as G (minimise).
Let p, i =1,2,..., K, be the probability of
choosing an item of class C;:

XGQ)A szl—P:fl—ZP/,

that is

the probability of incorrectly classifying an
item, if it were randomly labelled based on the
distribution of the sample.

(see Breiman et al. (1984))
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Decision Trees
Definition

The Classification And Regression Trees

Use Gini impurity as G (minimise).
Let p, i =1,2,..., K, be the probability of
choosing an item of class C;:

XGQ)A szl—P:fl—ZP/,
that is

the Tsallis entropy (generalised
Boltzmann-Gibbs) with deformation 2.

(see Breiman et al. (1984))
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Decision Trees
Definition

Riccardo Finotello

The Classification And Regression Trees

Use Gini impurity as G (minimise).
Let p, i =1,2,..., K, be the probability of
choosing an item of class C;:

XGQ)A szl—P:fl—ZP/,

which enables:

m binary partitions of D,

m pruning to be enforced (eg.cross-vaiidation)
m label = mode of leaf node (mean/median)

(see Breiman et al. (1984))
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Decision Trees
Definition

THINK

Suppose no pruning:
1. at which point does .7 naturally stop?
2. is .7 high bias or high variance?
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Decision Trees
Definition

THINK

Suppose no pruning:
]. at which point does 7 naturally stop? —» |Q)A| = 1, VA
2. is 7 nighbias or nighvariancez — VERY high variance

1

X A : :
ﬂf o T% Decision trees are
i prone to overfitting
T o (train) without
y--"t---o-  appropriate strategies!
‘ >
x0
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Decision Trees
Definition

Dpl =1, VA
RY high variance

ecision trees are
one to overfitting

- o (trein) without
y-------o.  appropriate strategies!
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Decision Trees
Feature ranking

Hierarchical structure enables ranking features = importance of feature for the
split.
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Decision Trees
Feature ranking

Hierarchical structure enables ranking features = importance of feature for the
split.

Let
|Daz|

D

|Da; |
D|

|@A|
1D

the importance of node A.

(X € Dp2)

(X € Dar) —

Ja= (X € Da) —
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WA \? .A .
Decision Trees ~ !!'
Feature ranking

Hierarchical structure enables ranking features = importance of feature for the
split.

Let
|Da; |

D

|Daz|
D]

|Dal,
D]
the importance of node A.

Compute the feature importance of feature i:

Za splits on ,'ja
Za ja

(X € Dar) — (X € Dp2)

Ja= (X € Da) —

Fi=

@ Riccardo Finotello AlPhy 30/09/2024 60/104



Decision Trees
Feature ranking

Hierarchical structure enables ranking features = importance of feature for the

split.

y_train, y_test

(X_train, y_train)

pred = clf.predict(X_test)

Can you produce/guess the output?

@ Riccardo Finotello

from sklearn.tree import plot_tree

plot tree(clf,
feature names=iris.feature names,
class_names=iris.target_names,
filled=True)

AlPhy 30/09/2024 60/104



Decision Trees
Feature ranking

Hierarchical structure enables ranking features = importance of feature for the

split.

g Riccardo Finotello

importance

N

N Q Q
‘(‘\L& K‘\"é\ ‘\\f«é\ ‘(‘\é(\
N o S <
& & & &
& & & 2
& & Qz‘ &
features
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ML Algorithms
‘ Ensemble learning
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Ensemble Learning
Stacking [ Metalearning

Let "M  p{t@M — p(train) g partition of the training set:

Détroin)

Dl(train)

@(vql)

D (test)
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Ensemble Learning
Stacking [ Metalearning

Let "M  p{t@M — p(train) g partition of the training set:

- Ta D (train)

@(trcin) " :
) - - -»{Predictions 1

\
1
1
1
1
1
1
1
1
1
1
1
1
1

-

A
A}

AY
A}
AY
p(val) o

@(test)
Riccardo Finotello AlPhy 30/09/2024 63/104
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1
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1

Predictions 3| !
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Ensemble Learning
Stacking [ Metalearning

Let "M  p{t@M — p(train) g partition of the training set:

@'(trcin)

7 (val)

P (test)
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Ensemble Learning
Stacking [ Metalearning

Let "M | PN — ptrain) g partition of the training set:

ptrain) 1 - = -3 Metamodel >----

Hwa | < -

P (test)
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Ensemble Learning

Stacking [ Metalearning

Let "M | PN — ptrain) g partition of the training set:

Riccardo Finotello

ﬁ(train)

QS (test) o

Though any model will do, linear regression|/logistic classification

are mostly used. Thanks to their simple interpretation, they
--- Metamodel i ity vori
can be seen as a generalisation of majority voting, by

assigning different weights to the predictions of different models

Inference
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Ensemble Learning
Stacking [ Metalearning

Let "M | PN — ptrain) g partition of the training set:

[-_ﬁ
BIAS vs VARIANCE?

Though any model will do, linear regression/logistic classification

-~ . are mostly used. Thanks to their simple interpretation, they
(train) & = = - Metamodel . o
can be seen as a generalisation of majority voting, by

assigning different weights to the predictions of different models

P (test) Inference

Riccardo Finotello AlPhy 30/09/2024 63/104



Ensemble Learning
Bootstrap

Suppose a population with distribution 2 for which you need a statistical
estimate with expected value 6, and variance o

1. take a sample D = {X; = xi, ..., Xn = X} with distribution P
2. estimate 6 using D

@ Riccardo Finotello AlPhy 30/09/2024 64 /104



VA RANN
Ensemble Learning W !!j
Bootstrap

Suppose a population with distribution 2 for which you need a statistical
estimate with expected value 6, and variance o

1. take a sample D = {X; = xi, ..., Xn = X} with distribution P

2. estimate 6 using D

Should you be able to repeat your estimation, you could compute

~ -~ n—1
]EQ’;(X)[ } = 9 (unbiased estimator) VO I‘,I;(X)[ ] =

2
O (biased estimator)

@ Riccardo Finotello AlPhy 30/09/2024 64 /104



VA RANN
Ensemble Learning W !!j
Bootstrap

Suppose a population with distribution 2 for which you need a statistical
estimate with expected value 6, and variance o

1. take a sample D = {X; = xi, ..., Xn = X} with distribution P
2. estimate 6 using D
Should you be able to repeat your estimation, you could compute

n—-1

Ef(x) [é\} =0 (unbiased estimator) Va rf(x) [6] = n 0-2 (biased estimator)
and show R
Es (0] — 0
?(X)([)- ] ~ N(O, 1) (central limit theorem) ..
7

30/09/2024 64 /104
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Ensemble Learning
Bootstrap
Suppose a population with distribution 2 for which you need a statistical

estimate with expected value 6, and variance o
1. take a sample D = {X; = x, ..., Xn = X} With distribution P

2. estimate 6 using D
Should you be able to repeat your estimation, you could compute

) ~ n-1
]EQ”\(X)[ } =0 (unbiased estimator) VCII’,A;;(X)[ ] = 0‘2 (biased estimator)
and show R
Egj .y [0] 0
% ~ N(O, 1) (central limit theorem).
7

This might not be possible!
@ Riccardo Finotello AlPhy

30/09/2024 64 /104



Ensemble Learning
Bootstrap

From the sample D, you can resample with replacement:

Dy =G, 5 — 8]
“bootstrap” — @(*2) ={xX'\ X5, .., x5} — 9;‘2)
Dy =1{x1 x5, ... x5 — 6,

@ Riccardo Finotello AlPhy 30/09/2024 65/104



Ensemble Learning
Bootstrap

From the sample D, you can resample with replacement:

Dy = X X5, Xh — 001
“bootstrap” — Diyy =X X} — 0y
Dy =1{x1 x5, ... x5 — 6,
Bootstrap
r—— /Jﬂmﬂm__ TN o o -~ .
»»»»»»»» Let 8 = [Ep-(x)[07*], where P*(X) is the
T TR h bootstrap distribution:
R -
- 0* = 0.

g Riccardo Finotello AlPhy 30/09/2024 65/104



Ensemble Learning
Bootstrap

(see also Chen (2019), Washington U.)

Consider the Monte Carlo bootstrap estimate

B
A% 1 z A% oy B>1 o
VGrT*(X) (9 ) - ﬁ ( (I) — E[e ]) 2 VOI‘P*(X‘@) (9 ) (“with the sample D fixed").

=1
and prove
Varp- x|m) (é*) SN varg (5)

@ Riccardo Finotello AlPhy 30/09/2024 66 /104


https://faculty.washington.edu/yenchic/19A_stat535/Lec10_bootstrap.pdf

Ensemble Learning
Bootstrap

(see also Chen (2019), Washington U.)

Consider the Monte Carlo bootstrap estimate

B
~ 1 ~ ~ B>1 ~
VGI’T*(X) (6*) = ﬁ Z ( )(kl) — E[G*]) 2 VGI’Q)*(X‘D) (9*> (“with the sample 9 fixed").
i=1
and prove
VCIT?*(X‘@) (9 ) — VC]I'Q';(X) (6)
Sketch of the proof:
Let A™ (D, B) = Varp« (x|p) (@*) — Varg (@),und suppose A* (D, B) < §,withc > 0:

_ 252\/E
= (McDiarmid's inequality) P (|A* (D, B) — E[A™ (D, B)]| > €) < 2e c

B
m (Borel-Cantellilemma) 3~ P (|A*(D,B) — E[A*(D,B)]| > ¢) < co = P (Iim sup |A* (D, B) — E[A* (D, B)]| > s) =0
i=1 B— oo

7

" E[A™(D,8)] = 0 = Varpx (x)p) 8" P varg

x0°

@ Riccardo Finotello AlPhy 30/09/2024 66 /104
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Ensemble Learning
Bootstrap | The bootstrap theorem

With all these elements:

00

Z=vVn—————--— ~N(0,1)
./VOFT(X)(G) . I .
-8 estimated parameters have the same distribution!
Z* =Vn—oo- ~ A[(0,1)
Varg (0)
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Ensemble Learning
Bootstrap | The bootstrap theorem

With all these elements:

-0
Z=vVn—————--— ~N(0,1)
VGrT(X)(G) . I .
-8 estimated parameters have the same distribution!
Z* =Vn—oo- ~ A[(0,1)
Varg (0)

Slightly more formally:
Let
P(x) =P(Z < x) P*(x) =P(Z* < x),

then (see Berry-Esseen theorem):

«
« M3

*
osﬁ

1
POO = P* ()| < IPOO — @ ()| + |00 = @* (0] + P* 0 — @* (0 < c% to (nﬁ) e Lo
3

when n — oo. This shows P — P* in distribution.

]

@ Riccardo Finotello AlPhy 30/09/2024 67/104



Ensemble Learning
Bootstrap + Aggregating = “Bagging”

Given the previous discussion, it becomes natural to define the bagging:

g Riccardo Finotello AlPhy 30/09/2024 68/104



Ensemble Learning
Bootstrap + Aggregating = “Bagging”

Given the previous discussion, it becomes natural to define the bagging:

/ Agg rethion (e.g. classification: majority voting, regression: average prediction) /

more on this later...

Riccardo Finotello AlPhy 30/09/2024 68/104



Ensemble Learning
Boosting

Weak Learner

Strong Learner

Let D = {(X,y)} be alabelled dataset, Let D = {(X,y)} be a labelled dataset,
then a model f is a strong learner if then a model f is a weak learner if
Ve >0 P(f(X)#£y) <e. Je¢' >0 P(f(X) #£y) <¢.

@—) weak learner A
N

~
~
~
~

A
weak learner’ /- - - -»{ processing »——>{ strong learner |——3 prediction

D" weak learner” /
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Ensemble Learning
Boosting algorithms

LetD ={(X,y) | yie {-1,1}Vi=1,2,...,N},and # be a weak learner on D:

AdQA(pive)BOOSt(ing) Gradient boosting

weighted

weighted

training data
o

1o
Jaudalt
il Fe
.
| ! 5
o
 Classifier 11— | Classifier 2|/ [ Classifier 3| +-- [ Classifier N o
1o, o, o, Jon m;'»m N
‘ Ensemble classifier —
P
...... 2
o = |\ = |
' 20 o0 e
output o A ...'c. : >
® Iterations
test data
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Ensemble Learning
Boosting algorithms

LetD ={(X,y) | yie {-1,1}Vi=1,2,...,N},and # be a weak learner on D:

AdQA(pive)BOOSt(ing) Gradient boosting

Idea: weighted maijority voting Idea: improving on previous attempts

Require: M > 0,m = 0,v > 0, 7 (X) = v + Z v (M) p (M) (%), h (M)
i=1

Require: M > 0 weak learner, ¢ (0) (X) = argmin L(y, v)
Y

ire: m — 0, w(®) -1 yi—
Require: m = 0, w. +~ N , Vi=1,2,..,N
5 g Require: # (M = #(M=1) 4 argmin £(y, s (M=1) (%) +

foro < m < Mdo
run 2 (M) on@ S v (M) p(m)
ﬁ(m) — z w(m) 0(—yj (M) ) > error rate foro <Vm < MdO(X))
(m) _ 5L 7=
«lm = 1 1=8(™ 17 = = | e i = 12N
B (™M train 20 (M) on {(%, (M)}
WMD) ) SOMMAX (1) (312 (X)) y(m arg min £ (v, 22 M= %) + v vh(™ 7))

(M) e (M=1) 4 (M)p(m)
return oz (M) (X).

v learning rate

return 22 (X) = sign ( g o (M) (M) ()?)).
m=1

ifx>0

exp(—p2z)
ifx <o N )

Remeber that 0 is the Heaviside function: 0 (x) = {Ll)
2 exp(—PB2z)
i=1

,and softmcxﬁ (2) =

71/104



Ensemble Learning
Random forests and boosted decision trees

??? | Random Forest ??? | Boosted Decision Trees

Error

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

&2 £

Majority Voting / Averaging [ Y

Final Result Iterations
Remember that for Y = (y1, ..., yg) iid. (variance
02 and pairwise correlation p):

__ Cov(Y) v\ 2, 1—p 4
p= g @COV(Y)pr +?c

Riccardo Finotello AlPhy 30/09/2024 72/104



Ensemble Learning
Random forests and boosted decision trees

WY

??? | Random Forest ??? | Boosted Decision Trees

Decision Tree-1 Decision Tree-2
Result-1 Result-2
Final Result

Variance — ?
Bias — ?

Riccardo Finotello

Decision Tree-N

Result-N

Error

£ 82
Iterations
Variance — ?
Bias — ?
AlPhy 30/09/2024



Ensemble Learning
Random forests and boosted decision trees

Bagging | Random Forest Boosting | Boosted Decision Trees

-
N v
s
i
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
. )
Final Result Iterations
. . — B>1 . .
Variance — reduction (Cov(Y) 3" po? < o2) Variance — increase
Bias — increase (more restrictions) Bias — decrease
Trees in random forests are usually fully-grown to start with a low bias, and Trees in gradient boosting are usually shallow to start with high bias, and
to reduce bias after bagging. decrease it after boosting.

Riccardo Finotello AlPhy 30/09/2024 72/104



Neural Networks

. Computational graphs
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AR

Computational Graphs
Preliminaries

Let f(" be one of N affine functions:

(. R% -1y 5 R, n=1,2,....,N

OOOOG
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Computational Graphs
Preliminaries

Riccardo Finotello

Let f(" be one of N affine functions:
f0: RWo-n 5 R%», n=1,2,..,N
s.t.

ym — fn) (y<n71>) — W= | pm

Gnd }‘/'(0) = )? (W: "weights”, b: “bias”)+

y N — fN) o fIN=1) oo £ (k)
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Computational Graphs
Preliminaries

Riccardo Finotello

AR

Let f(" be one of N affine functions:
(N RY-1 s R%», n=1,2,..,N
s.t.

ym — fn) (y<n71>) — W= | pm

Gnd }‘/'(0) = )? (W: "weights”, b: “bias”)+

y N — fN) o fIN=1) oo £ (k)
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Computational Graphs
Preliminaries

Let f(" be one of N affine functions:
(N RY-1 s R%», n=1,2,..,N
s.t.

ym — fn) (y<n71>) — W= | pm

Gnd }‘/’(0) = )? (W: "weights”, b: “bias”)+

y N — fN) o fIN=1) oo £ (k)
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Computational Graphs
Linearity vs non linearity

Linearity of the network

FN — WM wN=-1 ) x4

w
BN 4 wMBN-1) 4

b
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Computational Graphs
Linearity vs non linearity

Linearity of the network

FN — WM wN=-1 ) x4
w
BN L wNBIN-1) |

b

Activation functions

Let a”: R x R non linear:

(Q(n)()}'))ij — am ((f(n) (;())Ij) ,

where i =1,2,...,wp and j = 1,2, ..., W_y).

@ Riccardo Finotello AlPhy 30/09/2024 76 /104



Computational Graphs
Neural networks

Call (® is the Hadamard product)
g™ (Fn=1y = g & (W<n> yn-n 4 5<n>>

the n-th layer in the graph.

Neural network
The non linear function:

@ activation

(N) (
g og

is called a (fully connected) neural
network (NN) with N — 1 hidden layers.

N-1) oo gD

The activation on the last layer strongly depends on the task..More on

this later!

g Riccardo Finotello AlPhy 30/09/2024 77 /104



The (Multi-Layered) Perceptron
The historical context

is called perceptron rosensiar (955) ANd it represents the fundamental unit of a NN.
A stack of perceptrons is called Multi-Layered Perceptron (MLP.)

The structure

@ Riccardo Finotello AlPhy 30/09/2024 78 [104
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Neural Networks

. Non Linearity of Neural Networks
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L R % 5 %
Neural Networks w

Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Sigmoid
a(x) = o(x) = 1
= =
0.6 1 + e_x
T m classically the first...
m gradients might saturate for x — oo seelater
m good interpetation as GLM (probability)
Riccardo Finotello AlPhy 30/09/2024 81/104



L R % 5 %
Neural Networks w

Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Hyperbolic Tangent

075 62)( =1l
050 a(X) = thh(X) = %0 .
e +1

g oo m outputs naturally centred

m might saturate for x — +oo
m good alternative to o

m traditionally in (old) GANs

-100 -7.5 -50 -25 00 25 50 75 100
x
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L R % 5 %
Neural Networks w

Activation functions
Activation functions might depend on the task, to ease the training. For instance:

REctified Linear Unit

10

x, ifx>0
a(x) =RelU(x) =max(0,x)=<"" = —
() () (0.%) {0, 0
omnipresent powerful sparsifier see clorot et al. (201)
gradients might saturate for x — —oo

slightly non differentiable

=
=

: m forces positive outputs (1) a st good for output layerz
=
=

-100 -75 50 -25 0.0 2.5 5.0 75 100

computationally fast

Riccardo Finotello AlPhy 30/09/2024 81/104
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L R % 5 %
Neural Networks w

Activation functions
Activation functions might depend on the task, to ease the training. For instance:

Leaky REctified Linear Unit

5

. a(x) = LeakyRelU (x) = {

X, if x>0
ax, ifx<o0

3

aly)

new slope hyperparameter o € R
solves the saturation problem
negative outputs are slightly allowed

slightly non differentiable

-4 -2 2 4

computationally fast
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L R % 5 %
Neural Networks w
Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Scaled Exponential Linear Unit

10

a(x) = SELU(x)
= v (max(0, x) + min(0, x(e* — 1)))

8

6

improve NN beahviour see kiambauer et al. (2017)
solves the saturation problem

negative outputs are not sparsified
slightly non differentiable

°
" B B BB

-100 -7.5 -50 -25 00 25 50 75 100
x

requires good initialisation see (ater..
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L R % 5 %
Neural Networks w
Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Gaussian Error Linear Unit

5

' a(x) = GELU(x) = x ®(x)

3

aly)

m stochastic regularisation method see Hendrycks and
Gipel (2016)

1 m might saturate at x — —oo, but discouraged
m good normalisation of the activations
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Neural Networks
Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Homogeneous activation

3000

a(x) = xP, | a(Ax) = APa(x)

2000

1000

m good behaviour of the network

aly)
°

m might help approximations

~1000

m useful in scientific/“physics informed” scenarios

—2000 .
m use at your own risk...

~3000

“We are all responsible users” (from the python guide)
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Neural Networks
Activation functions

Activation functions might depend on the task, to ease the training. For instance:

Last layer activations

Binary classification Multiclass Regression
" classification "
a™(X); = o(x) a™ (X); = 1d(x;)
' ’1 aV)(xX); = softmax(x;) : :
= — € [0, 1] %
LA E = Ke e [0,1]¥
> e
i=1

Activations are quite flexible and strongly depend on the type of task required (e.g. if all outputs are
positives, ReLU might be used for a regression task)!
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Neural Networks w %

Universal approximation theorems

Theorem (Cybenko | Approximation by sigmoid-activated NNs)
Let F be the set of €([0,1]") scalar functions, and o be a sigmoid function. Then

N
IN>0 | f(X)=) a;o(W-X+b)
i=1
is dense in F.

In simple words: using a 1-layer deep sigmoid-activated scalar NN we can approximate with
arbitrary precision any ¢([0, 1]) scalar function. Let g(X) € ¢([0, 1]) and f(X) be such NN, then

Ve >0, supllf(X)—g(X)|| < e.
%

@ 84 /104



Neural Networks w %

Universal approximation theorems

Theorem (Kolmogorov-Arnold | Approximation theorem)
Let f be a function in F, then

f(X) =Y &g (Z ©qp (Xp) )
q=0 p=1

where ¢ and ¢ are continuous scalar functions of a single variable.

In simple words: the only “needed” functions are single-variable activations and sums. Technically, if
we could choose the activations of each unit (neuron), we could exactly write any multivariate
function as superposition of univariate functions.

might be interesting to some of you: Liu et al. (2024)

84 /104


https://arxiv.org/abs/2404.19756

Neural Networks
Universal approximation theorems

|

Theorem (Width expressivity of NNS <.

Let g: R" — R be a Lebesgue integrable function, and § be the set of fully
connected RelLU-activated NN with width w < n+ 4:

e | Vs>0/|g(>?)—f(>?)|<£
Rn

In other words: width-bounded NNs can be used as universal approximators on the entire domain of
definition. It is also curious to see:

w<n— / 19(%) — 1(%)| diverges,
]Rn
hence the restrictions to [—1, 1]” (ie. good normalisation):
W<n—1=3¢ >0 | / 19(%) — F(R)] > €.
[-11]"

@ 84 /104


https://arxiv.org/abs/1709.02540

Neural Networks w %

Universal approximation theorems

Theorem (Trade-off width/depth s )

Let n be the input dimensions. For any integer k > n + 4, there exists a
RelU-activated NN f: R" — R with width w = 2k? and depth d = 3, such that

vb >0, Vg: R" — R,

where g is a ‘ReLU—activated NN whose parameters are bounded in [—b, b, with
width w' < k% and depth d < k + 2, it is true that

>0 | [ (f(R)—g(X) >e.
/

In other words: any decrease in width, should be compensated by an increase in depth to keep the
same expressivity of the NNs.

@ 84 /104
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Neural Networks w
Universal approximation theorems

Some needed questions

Ql: fully connected NNs are universal approximators! Did we answer the ultimate
question of life, the universe and everything?
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Universal approximation theorems

Some needed questions

Ql: fully connected NNs are universal approximators! Did we answer the ultimate
question of life, the universe and everything?

m the answer is “42", not “neural networks”... &
m existence of sth # easy to find
m fully-connected NNs low bias == not all kinds of inputs are adapted
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Neural Networks
Universal approximation theorems

Some needed questions

Ql: fully connected NNs are universal approximators! Did we answer the ultimate
question of life, the universe and everything?

m the answer is “42", not “neural networks”... &
m existence of sth # easy to find
m fully-connected NNs low bias == not all kinds of inputs are adapted

Q2: @ shut up, | don't care! Suppose we found a perfect NN: can we deploy it for
the world to see and use?
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Neural Networks
Universal approximation theorems

Some needed questions

Ql: fully connected NNs are universal approximators! Did we answer the ultimate
question of life, the universe and everything?

m the answer is “42", not “neural networks”... &

m existence of sth # easy to find

m fully-connected NNs low bias == not all kinds of inputs are adapted

Q2: @ shut up, | don't care! Suppose we found a perfect NN: can we deploy it for
the world to see and use?

m you would lead us to another Al winter...
m NNs are trained on samples = predict conditioned on that (+ some extrapolation)

m probably ok with infinite amount of data (population), but how to train?
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Neural Network Training
Backpropagation

see Rumelhart et al. (1986)
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Neural Network Training
Backpropagation

see Rumelhart et al. (1986)

Let £ : R"®™ — R be a loss function (:depends ontne
ws) ANd append it to the NN, where at the £-th

layer:

yE = a0,

wie—1)

Z WOy 4 b0
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Neural Network Training
Backpropagation

Riccardo Finotello

see Rumelhart et al. (1986)

Let £ : R"™ — R be a loss function (:depends on tne
wsy AN append it to the NN, where at the £-th

layer:
T = a®),
w(e=1)

Z W(e) (5 1)+b(£)

We can perform gradient descent (GD) for
each WY, ¢ =1,2,..., N by computing:

w®

oL  _ or 07" _ (¢=1)

ow,® Z 0z ow® az(‘>yl
W(z) @

aL - %z _ oL

ab® = 020 ob®@ T 020

AIPhy 30/09/2024 87/104
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Neural Network Training
Backpropagation

see Rumelhart et al. (1986)

From the previous expression:

6(571) _ oL
i T4 e-1)
0z
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Neural Network Training
Backpropagation

see Rumelhart et al. (1986)

From the previous expression:

6([ 1) _ oL
az (£—1)

()
_WZ oL sz
azk az“ R
® -1 1)
_wzwz © 020 oa; "

(=) A (=D
k=1 h=1 oa,, azi

w®

(a(l 1)> ZS(Z k/
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Neural Network Training w%
Backpropagation

see Rumelhart et al. (1986)

Training a NN is a two steps procedure:

1. during the forward pass the outputs and

outputs of each layer (loss included) are
computed and stored

forward pass
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L R % 5 %
Neural Network Training w

Backpropagation

see Rumelhart et al. (1986)

Training a NN is a two steps procedure:

1. during the forward pass the outputs and
outputs of each layer (loss included) are
computed and stored

2. in the backward pass the gradients of
each layer are assembled iteratively

forward pass

backward pass
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Neural Network Training
Backpropagation

see Rumelhart et al. (1986)

Training a NN is a two steps procedure:

1. during the forward pass the outputs and
outputs of each layer (loss included) are
computed and stored

2. in the backward pass the gradients of
each layer are assembled iteratively

Finally, the update of the parameters is:

{W(l) - W-(-e) _ q 9L

forward pass

if if aw®
if
(£ ©) oL ’
b; —b” -« ab®

backward pass

where « is the learning rate hyperparameter.
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L R % 5 %
Neural Network Training w

Backpropagation
forward pass Q: what are good initialisations of weights
> and biases?
m NNs propagate by matrix multiplication
m gradients large to update
m gradients small not to explode

\07;\

a0

‘ ‘.‘i":' Y
A‘&.@i/ R
JRI

backward pass
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Neural Network Training
Backpropagation
forward pass Q: what are good initialisations of weights
> and biases?
m NNs propagate by matrix multiplication
m gradients large to update
m gradients small not to explode

However, we know:

£ -1
s =87y
oL _ 4
a0 i

backward pass
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Neural Network Training
Backpropagation

Backpropagation: usually boilerplate code which is already available in most frameworks
forward pass

(Pytorch, Lightning, Tensorflow, Keras, etc.)

T DUNNO-- /
DYNAMIC TYPING?, I JUsT TvPED
wimECE? import ontiyaty
/ coeTons! | [T IT? [
T PROGRAIIMING ... T ALSO SAMPLED.
NiGHT] EVERYTHNG 1S FUN AGAIN! EVERYIING INTHE
5 60 SMPLE! IT's A WHOE VEDICINE (PBINET
) NEW WORLD FOR COMPARISON
HELLO WORLD 15 JUST \, UP HERE! !
print "Hello, world!" BUT HOWARE .?1; gmgles
FLING? "
backward pass e
(xkcd.com)
Riccardo Finotello

AlPhy 30/09/2024 87/104
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Neural Network Training
Backpropagation

forward pass

> THINK

What would happen if all W,./(.‘) were to be

initialised to the same constant (say 0)
Ve=1,2,...,N?

D),
7D\
et B
/B D,
Ji @4#} <5
R\

N\
/1

)
/Y @/
£ 54

backward pass
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Neural Network Training
Backpropagation

forward pass > THINK

4/® What would happen if all W,./(.‘) were to be

k{,/}@\ initialised to the same constant (say 0)

w‘”;fw&@ Ve=1,2,.., N?

LGP R, '

Wiy 41:‘1} All activations y'*) would be the same!
A

A

»4/:
D /
&

backward pass
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Neural Network Training
Backpropagation

forward pass > THINK

4/® What would happen if all W,./(.‘) were to be

k{,/}@\ initialised to the same constant (say 0)

L=<\ Ve=1,2,..,N?

MQ"”@ All activations y© would be th !
i activations y® would be the same!

R
it L
"3&@‘»
.

What about §©?

4/

backward pass
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Neural Network Training
Backpropagation

forward pass > THINK

i (£
//’@ }N.h-ot.would happen if all W;* were to be
' / ‘ initialised to the same constant (say 0)
i‘% <\ Ve=1,2,..,N?
il 1 — Ly 4y e,y H
Dy

== )
S

N

L 'D)
@}

/ All activations y® would be the same!
\
N

4/

What about §©?

All updates 5 would be the same!

backward pass
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Neural Network Training
Backpropagation

forward pass > THINK

4/® What would happen if all W,./(.‘) were to be

\“ﬂé@\ initialised to the same constant (say 0)
Qﬂ%@‘}}\},@ Ve=1,2,.., N?
R A
%”%f'g\ @ﬁi\"/@ All activations y® would be the same!
NG
}}3%@7/ What about §©?
~ @ All updates 5 would be the same!
< .
backward pass Nothing to learn!
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Neural Network Training W !!j

Weight initialisation

Initialisation

It is fundamental to break the symmetry (at
least for W®):

m initialise with random values A (y, 0?)
m avoid large entries
m follow good rules of thumb:

efp] e ]
Var (y(‘)> = Var (y“fl))

@ Riccardo Finotello AlPhy 30/09/2024 88 /104



Neural Network Training
Weight initialisation

Some examples

B LeCun initialisation (tecun et al. (1998))

¢ _n\ ! L
W,-,O~9\C(o,(w<‘ U) ) b® =0

for normally centred activations

m Xavier/Glorot initialisation (siorot and Bengio (2010))
=1l
W ~ 2 (0, 2 (w® 4+ wlt-D) ) b® =0

for sigmoid/tanh activations

m (Kaiming) He initialisation (+e et al. (2015))

¢ 1\ ?! {
v|/l,j<.>N9\((0,2(w<‘ V) ) b® =0

for ReLU-family activations

@ Riccardo Finotello AlPhy 30/09/2024 88 /104
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Neural Network Training
Weight initialisation

Some examples

B LeCun initialisation (tecun et al. (1998))

¢ —1n\ ! [
W,-,O~9\C(0,(w<‘ ) ) b® =0

A

m Xavier/Glorot initialisation (ciorot and sengio (2010))

=il
o0 (03 (w0 4w 0) )

)
A

P A
/i i
‘,'c“« >

Wy
el
g

M

O

m (Kaiming) He initialisation (+e et a. (2015))

¢ —n\ ! ¢
'A/,-,()~9\£<0,2(w<4 2) ) b® =0

HOMEWORK
m Derive the formula of LeCun initialisation - or look it up, it is still cool!
m Derive the formula of Kaiming He initialisation (what is the difference?)
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Neural Network Training
Mini-batch gradient descent

Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Performance

Traditional Machine Learning

Data

m NNs are powerful at learning/digesting
huge amounts of data

m PCs might not be able to load
everything all at once

m how to process lots of data?

Riccardo Finotello AlPhy 30/09/2024 89 /104



Neural Network Training
Mini-batch gradient descent

D | D

Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Performance

Traditional Machine Learning

Data Require: dataset D = {(X,y)}

. . . B—1
m NNs are powerful at learning/digesting Require: {Dyy}bpeiis St U Dy =D
huge amounts of data i=0
foro < b < Bdo

= PCs n:;?ht nc|>|t bte able to load compute forward pass on Dy,
everything all at once perform backpropagation
m how to process lots of data? update W® and b
return trained NN

Riccardo Finotello AlPhy 30/09/2024 89 /104
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Neural Network Training B2
Mini-batch gradient descent
Deep Neural Networks SR
§ Medium Neural Networks
g e Shallow Neural Networks
¢ Traditional Machine Learing
03 510 animation by Luis Medina

Data Require: dataset D = {(X,y)}
B—1
® NNs are powerful at qurning/digesting Require: {D[b]}be[lygl st U D) =D
huge amounts of data i=0
for0 < b< Bdo

m PCs might not be able to load compute forward pass on D
everything all at once L perform backpropcr%qation
(

® how to process lots of data? update W® and b
return trained NN

Riccardo Finotello AlPhy 30/09/2024
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Neural Network Training
Mini-batch gradient descent

Define:

m iteration: one pass of
mini-batch GD

m epoch: one pass over the

dataset
Optimisation o
C-10l0 animation by Luis Medina
Q: how to choose the size of the Require: dataset D = {(X,y)}
mini-batch? 51

Require: {D[b]}be[l,’B] s.t. 'UO @[b] =D
1=
for0 < b< Bdo
compute forward pass on Dy,
perform backpropagation
update W® and b
return trained NN

Q: what happens if B = |D|?
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Neural Network Training
Mini-batch gradient descent

Define:

m iteration: one pass of
mini-batch GD

m epoch: one pass over the

dataset
Optimisation o
C-10l0 animation by Luis Medina
Q: how to choose the size of the Require: dataset D = {(¥,y)}
mini-batch? 51

Require: {D[b]}be[lﬁ] s.t. U @[b] =D
Even though it has a regularisation effect, | would not consider it as i=0
for0 < b< Bdo
compute forward fpass on D[b]
perform backpropcr%qation
L update W® and b

This is called “stochastic” GD. Useful for huge datasets. return trained NN

hyperparameter: it mostly depends on memory constraints.

Q: what happens if B = |D|?
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Neural Network Training
Advantages of mini-batch gradient descent

Honest question

Why should we use mini-batch gradient descent? What if my entire dataset fits
into memory? smith et al. (2021)

Consider the gradient flow © = f (@) and the discrete update
Orp1 = O+ ef (©;) ©PLANd 9t 1 ¢) ~ O(1) + € F(O(1))

&)
Decompose f (@) = Y " f; (©). Then, we have, after n iterations with step size
n=0

E=No:

®t+n =0+ f (®t) + of (®t+1) + =0+ of (®t) + of (@f + of (G)t)) + ...

n—1-
= O + nafg) () + n*o’ <f(1) (©r) + ﬁVf(o) (©1) - fo) (@t)) + .
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Neural Network Training
Advantages of mini-batch gradient descent

Honest question

Why should we use mini-batch gradient descent? What if my entire dataset fits
into memory? smith et al. (2021)

Consider the case of gradient descent (full):
f(O) (@) = —ﬁL(G‘)) s.t. ®H-1 =0; — 56[4(@)

Then n — co we need to introduce a counterterm if we proceed “step-by-step”:

does “renormalisation” ring a bell?

O(tt+e) = O(f)—eL(O) f(l)(®):—i§ W(@)Hz ;
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Neural Network Training
Advantages of mini-batch gradient descent

Honest question

Why should we use mini-batch gradient descent? What if my entire dataset fits
into memory? smith et al. (2021)

Consider now the mini-batch loss:
fioy=L OIe)
(0)=L(© Z L - B Z |B| Z L
keB
and compute the discrete update over one epoch (n = |B|):
Op =0y — eVLO(Oy) — VLD (O,) — VLA (O,) +

B—-1 B—1
=0y —¢ Z ﬁL(I)(BO) + e? Z Z ﬁﬁ[/m (@()) . ﬁ[z(j) (@()) +
i=0 i=0 j<i

@ 90 /104
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Neural Network Training
Advantages of mini-batch gradient descent

Honest question

Why should we use mini-batch gradient descent? What if my entire dataset fits
into memory? smith et al. (2021)

After one epoch is ¢ < 1, the mini-batch update does not introduce noise.
However, if ¢ is finite, we have a O(¢?) term to keep in mind:

= 2 1 &
9 ([ez@n- 52

282

_ _, . 2
F[©p] = O — ¢ BYL(Og) + 2 VL<’)(®0)H2 ) +0(B%?)
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Neural Network Training
Advantages of mini-batch gradient descent

Honest question

Why should we use mini-batch gradient descent? What if my entire dataset fits
into memory? smith et al. (2021)

The first term in the paranthesis comes from the correction to the gradient
descent f), but there is one additional term!

Let us recover the continuous update (the gradient flow):
B Le > 1S lesoe)|]
E[0g ~0(Be) & L(®)<—L(®)+4HVL(G))H2+4B;HVL (@)H2

The last is a regularisation term added “automatically” by mini-batch gradient
descent!
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Neural Network Training
Optimisation
The naive GD is good but can be improved:
m weight update might get stuck
m weight update might be too slow

A simple example
Let

= 1
£(6) = 5 (A10F +2A203), 0 <A1 <Az,

st. VL(6) = (A161,A202) to compute

D — G0 — oL (@), a>0,

in order to find 6* = 0.
see Waldspurger (CEREMADE)
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https://www.ceremade.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pdf

WNT ORI
L] o /; ”
Neural Network Training w%
Optimisation
The naive GD is good but can be improved:

m weight update might get stuck
m weight update might be too slow

A simple example

We would like
g+n) — ((1 —on)el?, (1 — m)egﬂ)

st |l — oA < 1, fori=1,2.

see Waldspurger (CEREMADE)
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WNT ORI
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Neural Network Training w%
Optimisation
The naive GD is good but can be improved:

m weight update might get stuck
m weight update might be too slow

A simple example

We would like
g+n) — ((1 —on)el?, (1 — m)egﬂ)

st |l — oA < 1, fori=1,2.
However,
=il A2
a=0(A] ):>1700\2:17)\— <0
1

and the update of 6, diverges.
see Waldspurger (CEREMADE)
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Neural Network Training
Optimisation
The naive GD is good but can be improved:

m weight update might get stuck
m weight update might be too slow

A simple example

We would like
g+n) — ((1 —on)el?, (1 — m)egﬂ)

st |l — oA < 1, fori=1,2.
And

A
oc:O(Aj):>1—aA1:1—)\i<<1
2

and the update of 0; is slow.
see Waldspurger (CEREMADE)

Riccardo Finotello

1. is the loss landscape still “nice™?

2. are all “nice” losses still convex?
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Neural Network Training
Gradient descent and momentum

Introduce the GD algorithm with momentum (Q set of weights and biases):
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Neural Network Training
Gradient descent and momentum

Introduce the GD algorithm with momentum (Q set of weights and biases):

The “Heavy Ball” algorithm | Polyak’s Momentum (see )

Require: x c R, Q®), £, Te N\ {0}, m® ={
for0 <t < Tdo
L GO« vVLQWD)

AD — yA® + (1 —y)GO > momentum
QD) o _ xmt+1) > “educated” steepest descent
return Q(7)
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Neural Network Training
Gradient descent and momentum

Introduce the GD algorithm with momentum (Q set of weights and biases):

The “Heavy Ball” algorithm | Polyak’s Momentum (see )

Require: x c R*,Q), £, Te N\ {0}, m® =0
for0<t< Tdo
GO « VL(QW)
L MY — ym 4 (1-— y)g(t) > momentum
QD) o _ xmt+1) > “educated” steepest descent
return Q(7)

This can be equivalently expressed by:
QD) — o _ v (Q(f)> + B'(Qm _ Q<H>), 4

where & = «(1 —y) and f = 2. at-1) o

[0
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Neural Network Training
Gradient descent and momentum

Introduce the GD algorithm with momentum (Q set of weights and biases):

ADA(ptive) M(omentum estimation) (see )

Require: « c R, 0, £, T e N\ {0}, m® =0, v(©) =0
for0<t< Tdo
GO «— VLQW)

M — By mA® 4+ (11— B1)GO > first momentum estimate (B, = 0.9)
N 2

vt « B,V 4 (1 - By) (g(’)) > second momentum estimate (B, = 0.999)
= (t+1) = (t+1)
m =g
St ey
 1-B%

(t+1) Q) B ta- t td t

Q — — CXW > momenta-aware steepest descen

return Q7
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Neural Network Regularisation
Weight decay

Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

aL(Q")

(t+1) — (1 — () _ ==
Q (1-mQ TR

n > 0.

(see also Loshchilov and Hutter (2017))
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Neural Network Regularisation
Weight decay

Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

aL(Q")

(t+1) — (1 — () _ ==
Q (1-mQ TR

n > 0.

The regularisation helps reducing the magnitude of the parameters during
training.

THINK
m Is weight decay equivalent to a L, regularisation term in vanilla GD?

L(Q) < L@+ 123

(see also Loshchilov and Hutter (2017))
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Neural Network Regularisation
Weight decay

Idea: avoid large parameter updates when in advanced training
Response: add an (exponential) “weight decay” term in the optimisation,
proportional to the magnitude of the parameters themselves:

oL(Q")
QM

The regularisation helps reducing the magnitude of the parameters during
training.

QY — (1) — « n > 0.

THINK
m Is weight decay equivalent to a L, regularisation term in vanilla GD?

L@ < L@+ 103

Technically, iff. n + na~1!, but this is usually ignored, so, yes!

(see also Loshchilov and Hutter (2017))
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Neural Network Regularisation
Weight decay

Idea: avoid large parameter updates when in advanced training

Response: add an (exponential) “weight decay” term in the optimisation,

proportional to the magnitude of the parameters themselves:

(0 ,0LQ")
oQm 7

The regularisation helps reducing the magnitude of the parameters during

training.

Q) —(1-n)Q n > 0.

m Think about momentum-GD (e.g. ADAM or SGD). Is L, regularisation still equivalent
to weight decay? Remember that the regularisation leads to

Gz (Qm) nQ®

in the olgorithm. Can you think of a straightforward modification to recover the “correct” weight decay?

(see also Loshchilov and Hutter (2017))
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (training phase)

Introduce v/ =1,2,..., NandVvb=1,2,...,B:

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (training phase)

Normalize V/=1,2,..., Nand Vb =1,2,...,B:

-

(o} Gfﬁ]) + €

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (training phase)

Interpolate v/ =1,2,..., Nandvb=1,2,...,B:
© ‘
BNy, (Z()A/ ﬁ) b]Z[b + By

where v and p® are learnable scalars

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (training phase)

Replace v/ =1,2,...,NandVvb=1,2,...,B:
yO —a® oz y{(ﬁ}) —a® o BNfﬁ]) (EW; v, ﬁ>

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (inference phase)

Inference must not depend on batch size!
Compute (after training) V£ = 1,2,..., N:

@ _ 1 = @\?_ 1 © _ ©®)\°
h :Ebzu“’]’ (0) =7 2 (ui —u) -
=1
N.B.: the original paper uses the unbiased estimate of the variance.

see loffe and Szegedy (2015)
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Neural Network Regularisation
Batch normalisation

Is there a way to contain the growth/variation of the layers?

Idea: eliminate/reduce the internal covariate shift, i.e. the change of distribution
of the activated outputs y® = a® @ z®

Batch normalisation (inference phase)

Inference must not depend on batch size!
Replace all BN®) operations V£ = 1,2, ..., N:

()
Y YH
NG(vp) o 0 (5o 1)

see loffe and Szegedy (2015)
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Neural Network Regularisation
Dropout

For the sake of simplicity, consider the
following regression linear model
(homogeneous) for i =1,2,..., h

k
X) = W
j=1

and let Q € {0, 1}"*¥ a matrix of Bernoulli
variables

Some remarks: P(Qj=1)=p=1-P(Q;=0),

m NNs are high variance models  fori=1,2,...,h,andj=1,2,..., k.

m some paths might be strongly ~ In other words, E[Q;] = p, and
correlated (co-adaptation) var(Qy) = p(1 —p):

(see Wager et al. (2013))
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Neural Network Regularisation
Dropout

Then, define the “dropout model™:

NN:

O/
AN
-v,éo\\.'.,,o§\

7
A /“"0"0\ 5
" .wf&w O30

Some remarks:

L
= NNs are high variance models "“ .,'AQ
m some paths might be strongly

S
correlated (co-adaptation)

Riccardo Finotello AlPhy 30/09/2024 97 /104
(see Wager et al. (2013))
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Neural Network Regularisation
Dropout

We can compute the loss

_ 1 n k
L(y,y) = %ZZ (vi— Qq‘Win/)2,

i=1 j=1

W)
i ‘\\‘.'4’
i )
T q
/’L"““" \ @

whose gradients are:

~ K
oL
aw, = —Qjxj <,Vi - r:z1 Qi WM)

Some remarks: k
X . = —Quyixi+ QFWpx? + D QiQuWirxixe
m NNs are high variance models t=1, t

m some paths might be strongly
correlated (co-adaptation)

(see Wager et al. (2013))
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Neural Network Regularisation
Dropout

Let us compute the average value of the
gradients over the dropout distribution:

or
" [aw,-j} = -E[Q]yx +E [Qﬂ Wi

K
+ Z E [Q;] E [Qi] Wirx;xt.
t=1, 1]

Remember that E [X?] = Var(X) + E[X]*:

oL
B [ ] = —pyixj + P*Wix? + p (1 — p)Wyx?

Some remarks: oW
. . k
m NNs are high variance models 02 S Wi
m some paths might be strongly t=1,t4

correlated (co-adaptation)

(see Wager et al. (2013))
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Neural Network Regularisation
Dropout

Some remarks:
= NNs are high variance models

m some paths might be strongly
correlated (co-adaptation)

g Riccardo Finotello

Though perturbed by constants p and p?,

we can reconstruct the usual loss + a
regularisation:

oL
aw;

Dropout is a “feature noising”
regularisation technique, which can be
applied to NNs to prevent overfitting and
co-adaption.

E ~E

+p(1—p) Wyxi.

Dropout replaced by Id in inference
(usually).

(see Wager et al. (2013))
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Neural Network Regularisation N !!j

Dropout

;“' m& ) \

‘Mv \m\

<'~‘~<3 S
D

""4\\
AN
«\»d/

Some remarks:
m NNs are high variance models

B some paths might be strongly
correlated (co-adaptation)

g Riccardo Finotello

Dropout

Dropout is a “feature noising”
regularisation technique, which can be
applied to NNs to prevent overfitting and
co-adaption.

The elegant idea is to average the outputs of the models over a noise component &,
Consider an exponential family of likelihood functions, and take the log-partition

function A:
3 (]E& [A (11&,)()]) =L(A(Q.X) +R(Q),

where the regularisation
R(Q) ~ Eg [A (Qa,x)] —A(Q,x) ~ L (Q,x) Varg, (A (Qa,x)),
2

inthe case B¢ [Qa} = Q.

(see Wager et al. (2013))
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Neural Networks
Graph visualisation

g @@ B i

‘E"'
R EEEEE RN

Every single object has its place in the model, which is (should be) well connected from input to
output. This makes it exportable, reusable and deployable.
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Conclusions

A quick summary

In summary, you should now have a good understanding of:

what ML is, and what are its principles

how to work with ML pipelines for high quality research

how to perform validation of ML models

how to evaluate the performance of ML models

what is the “variance vs bias” trade-off

what a loss function is, and what its purpose

several regularisation techniques

different unsupervised and supervised techniques (including ensembles)
what a NN is and how to train one

Hoping that | did not bore anyone to death..
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