
Bayesian Statistics -  Lecture 1, Tuesday

AIPHY school, Monopoli, Sep 30th - Oct 4th 2024
Christopher J. Moore



Outline

Bayes’ Theorem

Bayesian versus frequentist views on probability

Stochastic Samples

Monte Carlo Methods

Bayesian Model Selection, the role of the evidence

Methods for calculating the evidence



Bayes’ Theorem



Bayes’ Theorem

Posterior Evidence Prior Likelihood

Let the “events” be our model parameters and the observed data 



Bayes’ Theorem

Posterior Evidence Prior Likelihood

Let the “events” be our model parameters and the observed data 

In a Bayesian inference, the likelihood and prior are the inputs and the 
posterior (and sometimes the evidence) are the outputs of the analysis



Bayesian versus frequentist views on probability

Historically, there has been a debate between Bayesian and frequentist views of 
probability

The debate does not concern the validity of Bayes’ theorem itself, but rather the 
way it is applied to a model and the values of its parameters

In the frequentist view, probability is defined as a frequency of an event in many trials. 
There must be some random experiment that can (at least in principle) be repeated. The 
likelihood is a valid frequentist probability.

In the Bayesian view, probabilities represent our state of knowledge, or our degree of 
belief. The prior and posterior are valid probabilities only from the Bayesian viewpoint.



The trained weights and biases 
for my neural network?



Bayesian versus frequentist views on probability

Historically, there has been a debate between Bayesian and frequentist views of 
probability

The debate does not concern the validity of Bayes’ theorem itself, but rather the 
way it is applied to a model and the values of its parameters

In the frequentist view, probability is defined as a frequency of an event in many trials. 
There must be some random experiment that can (at least in principle) be repeated. The 
likelihood is a valid frequentist probability.

In the Bayesian view, probabilities represent our state of knowledge, or our degree of 
belief. The prior and posterior are valid probabilities only from the Bayesian viewpoint.

The Bayesian view allows us apply tools of probability to a 
wider range of problems. This has proved to be very fruitful.



The likelihood        is a PDF of the data and a function of the parameters

My notation is, unfortunately, not standard. Common to see it written as L(𝜃 ), 
emphasising its role as a function and suppressing the data dependence

Exercise: 

A source emits unstable particles that decay after travelling a distance x. A 
number N of decays are observed at locations {x

1
, x

2
, . . . , x

N
}.

For each particle, the distance travelled, x > 0, is exponentially distributed 

Write down the likelihood and plot/sketch it. 

The two roles of the likelihood



= the sum



A simple example (conjugate priors)

Exercise: 

Suppose we want to measure the number density of stars, S, in a path patch of sky. 
A survey find n = 5 stars in an area A = 1 square degrees.

What is the likelihood?

We have to choose a prior  -  things work especially nicely for a gamma distribution

What is the posterior?

Gamma dist with shape and 
scale parameters k and 𝜃 



A simple example (conjugate priors)

Exercise: 

Suppose we want to measure the number density of stars, S, in a path patch of sky. 
A survey find n = 5 stars in an area A = 1 square degrees.

What is the likelihood?

We have to choose a prior  -  things work especially nicely for a gamma distribution

What is the posterior?

Gamma dist with shape and 
scale parameters k and 𝜃 

Poisson: 

Another Gamma dist with params 
k’=k+n and 𝜃’=𝜃/(A𝜃+1) 



A simple example (conjugate priors)

This is an example of a conjugate prior  -  this is when the prior and posterior lie in 
the same parametric family of probability distributions

The Gamma distribution is the conjugate prior to the Poisson likelihood function

Conjugate priors allow the process of Bayesian inference to be done analytically 

Conjugate priors also illustrate the iterative nature of Bayesian inference where the 
likelihood acts inside Bayes’ theorem to update our prior state of knowledge



Bayesian inference as an iterative process



Stochastic Samples

The main target of a Bayesian inference is usually the posterior

Models used in research in the modern physical sciences are usually complex, high 
dimensional and non linear  

Q: How to study the resulting posteriors?



Stochastic Samples

The main target of a Bayesian inference is usually the posterior

Models used in research in the modern physical sciences are usually complex, high 
dimensional and non linear  

Q: How to study the resulting posteriors?

A: Draw a large number of i.i.d. samples from the posterior

Such samples can be used to answer virtually any questions about the posterior 

● they can approximate the full n-dimensional distribution; e.g. by a KDE 
● visualising the marginal distributions; e.g. in a corner plot
● computing credible intervals (1D) or regions (2D)
● approximating integrals of the form



Monte Carlo Methods

Two main classes of stochastic sampling algorithms used for Bayesian inference

Markov Chain Monte Carlo

Nested Sampling



MCMC

The defining feature, the next point in the chain depends only on the current point, 
not on any of the previous

The chain is specified by its starting point, x
0
, and the transition probabilities

The chains that we will consider are time homogenous



MCMC

We are usually interested in the long term behaviour of the chain  -  what will 
happen after a large number of iterations?

The chains that we will consider are all irreducible (sometimes called ergodic)

For time-homogeneous and irreducible chains, the long term behaviour of the 
chain does not depend on the starting point, x

0
, it depends only on the transition 

probabilities 



MCMC

We can control the long term behaviour of the chain by designing the transition 
probability 

The limiting distribution must be stationary  -  i.e. if the chain is already in this 
distribution then further iterations will preserve this distribution



MCMC

In order for any of this to be useful, we now need a practical way of designing the 
transition probabilities               so that we can make the chain converge to a 
distribution of our choice… in a Bayesian analysis, this is the posterior  

This is usually done using detailed balance

If a Markov chain satisfies detailed balance with respect to π then π is a stationary 
distribution of the Markov chain



MCMC

Illustration of detailed balance



MCMC



MCMC

The simplest, most widely studied and historically the most important stochastic 
sampling algorithm is Metropolis-Hastings

The most important ingredient is the proposal distribution Q(y|x). 

If the chain is currently at position x
i
, this is used to propose possibilities for the 

next chain position, y ∼ Q(y|x
i
), which is either accepted (x

i+1
 = y) or rejected (x

i+1
 = y) 

with probability



MCMC
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The Antikythera Mechanism

Ancient Greek mechanical calculator, or orrery

Dates from circa 100 BC

Discovered in a shipwreck in 1901

Used for modelling the motions of the Sun,
Moon and planets and for predicting other
astronomical phenomena, such as eclipses

However, precise functionality unknown
and must be deduced from analysis of
incomplete and damaged remains

Impressively complex and well manufactured

Antikythera



The Antikythera Mechanism

X-ray image of the calendar ring

Known to be a calendar from nearby
engravings of the names of the months 

Approx. 25% of the ring survives, split 
into several sections

Originally thought to be a solar calendar
with 365 holes around circumference

Recently suggested actually a lunar 
calendar with 354 holes

Can use Bayesian inference to answer 
the question of the number of holes
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Bayes’ Theorem

Posterior Evidence Prior Likelihood

Let the “events” be our model parameters and the observed data 

In a Bayesian inference, the likelihood and prior are the inputs and the 
posterior (and sometimes the evidence) are the outputs of the analysis



Bayes’ Theorem

Posterior Evidence Prior Likelihood

Previously, we hid the dependence of all probabilities on some important 
assumptions in our notations  -  These assumptions include the model

The evidence is just a normalising constant, but it depends on the model

The assumed model is now shown explicitly in our notation



Bayesian Model Comparison

Why not just pick the model that gives the best fit to the data?

I.e. the maximum likelihood model.



Bayesian Model Comparison

Why not just pick the model that gives the best fit to the data?

I.e. the maximum likelihood model.

Answer: Occam’s razor

The simplest explanation is usually the best one

The Bayesian solution to the model comparison naturally incorporates an 
appropriate penalty for more complicated model 



The Posterior Odds

(definition of odds ratio)

(use Bayes’ theorem)

(use law of total probability)

(use Bayes’ theorem again)

(change notation)

(use definition of evidence)



Bayesian Updating

We have just shown that the posterior model odds ratio is given by

Again, we see that Bayesian inference can be thought of a systematic way of 
updating our beliefs, this time by multiplying by the evidence ratio

posterior odds ratio  =  evidence ratio  ✕  prior odds ratio



The Evidence

As we’ve seen, the evidence is the key ingredient in Bayesian model comparison

Unfortunately, this is usually hard to calculate, especially for high-dimensional, 
models with complicated, multimodal posteriors 



Methods for Calculating the Evidence

We need a method for evaluating integrals of this kind 

We will briefly discuss a few options:

● Analytically, e.g. using a conjugate prior
● The Laplace approximation
● “Normal” numerical integration, e.g. quadrature methods, or trapezium rule
● What about MCMC? 
● Nested sampling



Laplace Approximation

If the data is highly informative, i.e. in the limit of large signal-to-noise ratio, the 
posterior may be approximately Gaussian, at least around the peak

Finding the evidence is then just a simple Gaussian integral

where



“Normal” Numerical integration

We need a method for evaluating integrals of this kind

“This is just a numerical integral, what’s the big deal? Use the trapezium rule!”

Standard numerical integration routines (such as trapezium or quadrature rules) 
scale very poorly with the dimensionality of the space of 𝜃

If we use 100 regularly spaced points along dimension, total points = 100dim(𝜃)

Things are even worse when the typical set of the posterior is small compared to 
the prior, we may need much more that 100 points along each dimension



What about MCMC?

Recall, MCMC methods are able to generate stochastic samples

These are great for visualising the shape of the posterior, but cannot be used to 
the normalising evidence 

(There are variations of MCMC that do compute the evidence using 
thermodynamic integration) 



Methods for Calculating the Evidence

We need a method for evaluating integrals of this kind 

We will briefly discuss a few options:

● Analytically, e.g. using a conjugate prior   Great, but hardly ever possible
● The Laplace approximation              OK when posterior ≈ normal
● “Normal” numerical integration         Only in low dimensions 
● What about MCMC?  Thermodynamic integration 
● Nested sampling   



Nested Sampling

Nested sampling is an algorithm to calculate the evidence, integrals of the form

We are especially interested in high-dimensional problems where this integral 
cannot be evaluated (or suitably approximated) analytically

Let ξ(L) be the prior probability associated with likelihoods greater than L

This is a monotonically decreasing function satisfying

and



Nested Sampling

Illustration of 

Image credit: Handley, Hobson & 
Lasenby (2015) arXiv:1506.00171

https://arxiv.org/pdf/1506.00171


Nested Sampling

We can now write the evidence as

At first, this appears somewhat miraculous  -  we have changed a 
high-dimensional integral into a 1-dimensional integral

Of course, we have just moved the difficulty into finding and inverting the 
function ξ(L)

Given a sequence of points in the prior volume, 0 < ξ
M

 < ξ
M−1

 < ... < ξ
1
 < 1, and the 

likelihoods Li = L(ξi), the evidence can be approximated using the trapezium rule



Nested Sampling



Nested Sampling

The main challenge when designing a nested sampling algorithm is drawing 
samples from the constrained prior

There are many ways this can be done:

● Rejection sampling
● MCMC CPnest
● Slice sampling PolyChord
● Bounding distribution e.g. ellipsoidal sampling, Multinest
● Galilean Monte Carlo Feroz+Skilling (2013)
● Normalising flows Nessai

https://ascl.net/2205.021
https://arxiv.org/pdf/1502.01856.pdf
https://arxiv.org/abs/0809.3437
https://arxiv.org/pdf/1312.5638
https://nessai.readthedocs.io/en/latest/


Nested Sampling Demo

For simplicity, we will demonstrate nested sampling in a 2-dimension unit square, 
(x

0
, x

1
), with a uniform prior

We will explore the following simple likelihood function with 𝜖=2

For this toy problem, the evidence can be calculated analytically in terms of the 
beta function  -  We can use this as a check on our nested sampling


