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● Information: An estimation on 
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intrinsic information in the Data
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The Information Frontier

LHC data is very 
complex and 
sophisticated

Different tools can 
explore differently 
this frontier

How much effort 
should we devote to 
moving the frontier?
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The carrot of a Discovery!
● 1980's: proposal
● 1995: Approved
● 2008: Started
● Huge effort in coordinating 

technology achievements
● Outstanding effort in all fields 

to reach one of the the most 
outstanding machines ever built 
by mankind

2024
All our effort to maximize 
the potential of LHC data
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Typical problem at the LHC

Data Information

Cut based

Misses to take 
benefit of 

correlation at the 
event-by-event 

level

Simulation-based
Neural Networks

Extracts correlations, 
but learns 

"too much" from 
simulations

Bayesian tools

This talk!
Reduce simulation's 

impact at the price of 
increasing modelling 

impact



Summary
● Intro
● ABCD method
● Bayesian techniques

○ No Signal & Background region
○ No hard assignment
○ Probability, correlation and prior-knowledge

● pp ⟶ hh ⟶ bbbb (inspiration & chimera)
○ Compare ABCD Vs Bayesian: multidimensionality!
○ Exploiting prior knowledge

■ Continuity
■ Unimodality

● Outlook
● Conclusions
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Data-driven methods
If simulations are not reliable

Signal is only in A
and its background is 
easily estimated from 
the "control regions"



ABCD data-driven method
Quite simple

● 2 independent observables

● Signal restricted to A

● Immediately:

NA(background) = NB *  Nc / ND

● Signal = NA- NA(background)
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ABCD data-driven method
To notice:

● Prior-knowledge to define A, B, C & D

● Hard cuts (hard assignments)

● Signal and Background regions

● Naturally conflictive hypotheses:

○ Regions close-by to have same 

distributions

○ Regions far away to avoid signal 

contamination

●
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Bayesian Inference
Bayes Theorem:

p(θ|X) = p(X|θ) * p(θ)
                                        p(x)

Real utility: (X = data, θ=parameters)

Model data as being 
sampled from a 
clever PDF with 
parameters θ

Infer θ once you 
see the data X

Connect θ to physical 
parameters of 

interest
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Bayesian Inference:  Mixture models

Dataset X:

● Signal

● Few backgrounds

● Each event is either 

signal or one of the backgrounds

How to create 
such a PDF !?
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Graphical representation 
of a PDF to easily visualize 
the internal structure of 
the random variables



Bayesian Inference:  Graphical models

zn
At each event, sample a 
multinomial random 
variable that decides 
whether is signal or some 
of the backgrounds

          (K classes)
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Bayesian Inference:  Graphical models

zn

E.g.         pT         Emiss     NJ         Nb    …. etc

Better b-tagging scores… 
even if not calibrated!

D

Depending on the 
class of the event, we 
sample D random 
independent variables 
of what we measureD



Bayesian Inference:  Graphical models

zn

Convention:

Empty circles: 
Sampled and unobserved RV 

Filled circles:
Sampled and observed RV D



Bayesian Inference:  Graphical models

zn

N
Procedure that is 
repeated N times

D



Bayesian Inference:  Graphical models

zn

N

K

Each one of the K 
classes has an 
expected distribution 
over the measured 
quantities

D



Bayesian Inference:  Graphical models

zn

N

K

π

Multinomial 
parameters are part 
of the PDF.  
Sampled from  
Dirichlet distribution

D
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zn

N

K

π Mixture Model

● Model data as being 
sampled from a PDF

● Plug our prior knowledge

D
One of the 

reasons why 
Bayesian 

methods are so 
useful!
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Bayesian Inference:  Graphical models

zn

N

K

π Mixture Model

● Model data as being 
sampled from a PDF

● Plug our prior knowledge
● Infer the parameters 

conditioned in the 
observed data

p(θ|X) = p(X|θ) p(θ) / p(x)

● Infer the latent variables

D
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Bayesian Inference

zn

N

K

π ● No hard cuts

● Soft assignments

● No signal/control 
regions

● K classes & 
D observables

● Deployment of data 
internal structure

● Controlled injection 
of prior knowledge

D



ABCD Vs Bayesian

ABCD Bayesian framework

2 observables D observables

Signal & Background Signal & K-1 backgrounds

Prior knowledge to define A, B, C & D, and 
get signal events in A

Visualize, understand and exploit internal 
structure of the data. Plug prior knowledge 
to simultaneously infer classes fractions 
and posterior distributions

Separated: signal & control regions Signal & backgrounds can be mixed in all 
phase space. 

Improvement & Generalization
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pp ⟶ hh ⟶ bbbb 
(inspiration & chimera)

Disclaimer: 
Toy-model on a toy-problem, just a building 
block for a chimera enterprise

2402.08001
E.A., L.Da Rold, S. 
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pp ⟶ hh ⟶ bbbb 
b

b

b
b

p p

h

h

(pictorical)
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pp ⟶ hh ⟶ bbbb 
b

b

b
b

p p

h

h

2202.09617 (CMS)
2301.03212 (ATLAS)

χ2 = (mh-m1)2 + (mh-m2)2

O1:  χ > or < 25 GeV

O2:  3b or 4b

Plus improvements

Bayesian framework

O1: b-tagging score jet 1

O2: b-tagging score jet 2

O3: b-tagging score jet 3

O4: b-tagging score jet 4

O5: m1

O6: m2

2D 6D
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Toy-model and Toy-problem
Setup:

Synthetic signal (bbbb) and backgrounds (bbcc, cccc) and play to distinguish signal using ABCD 
and Bayesian frameworks

Data:

20k events, signal is 1%, 0.5% or 0%

Toy problem:

mbb ~ N(125 GeV,10 GeV)   or ~ Exp(0.003/GeV)

B-tag:   4 x b-scores ~ beta(), sampled from either  bbbb, bbcc, cccc Important 
prior-knowledge

We'll start from biased priors
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Bayes @ Toy-problem
6 Observables Inference results

Biased priors,
but inference 
gets correct 
curves!

??



ABCD Vs Bayesian framework

1% & 
0.5% 
signal
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Experimental current status

        Data                            Signal @simulations

Missing 10-15% of 
signal !!

(many Eur!)

Much more is lost by 
requiring 4 b-tags at 

eff=0.77!!

(0.77⁴=0.35)



Bayesian exploitation
of continuity and unimodality

Yuling Yao + EA
2404.01387



Exploit Continuity and Unimodality

Previous work



Exploit Continuity and Unimodality

We'll infer these continuous arbitrary distributions!
The leverage: continuity, unimodality & multidimensionality!
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Gaussian Processes

We bin the score 
and x contains the 
distribution values 
in each bin

Each bin is sampled 
around some 
expected μ Define uncertainty and how 

related are neighbouring bins: 
Continuity!

2     1   0.5   0   ….
1     2    1   0.5   0  …
0.5  1    2    1    0.5   0  …
  0  0.5  1    2     1    0.5   0 ….  
….  …….           …..      …..

         (        )  Σ-1 = 

We can sample continuous 
curves around a central curve 

with very few hyperparameters

Prior information
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Gaussian Processes
The game:

● Starts with biased prior

● The data will shift the 
posterior to the most likely 
distribution, which should 
be the true

● Leverage:
○ Multidimensionality
○ Continuity
○ bbbb, ccbb, cccc
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Gaussian Processes: Results

This is how we start

After seeing 500 events

Correlation
correlation

 correlation!
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Unimodal model
How to sample unimodal arbitrary continuous  curves ?

Prior information!



Unimodal model

…. ...                           …. ….

Construct strict linear unimodal, one for each bin
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Unimodal model

…. ...                           …. ….

Allow for randomness with a half normal |N(0,0.5)| at each step

…. ...                           …. ….

Apply softmax() to make them integrate to unity

How to have unimodal at any bin and with some freedom of shape in other bins?

Sum orange curves 
weighted by 

w ~Dirichlet(α)

With α small
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Unimodal model: Results

This is how we start

After seeing 500 events

Correlation
+

unimodality 
knowledge



Exploiting prior info: summary results
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Outlook & Conclusions
             pp > hh > bbbb         

● Challenging, beautiful, attractive

● Huge enterprise to ride
○ Systematics (pile-up, etc)
○ More backgrounds
○ Integrate steps in unique Bayes
○ etc

● This could also improve bbγγ & bbττ!

● Caution with "I'm a rabbit, i'm a rabbit" effect (see 
back-up slides)

mmm..
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● No hard cuts. No signal & background regions. No hard-assignments

● Go analytic and probabilistic!

● Multidimensionality: correlation, correlation, correlation!
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● A different approach that may increase pp > hh sensitivity

(We can talk much more about hh!)
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● Bayesian tools look promising

● No hard cuts. No signal & background regions. No hard-assignments

● Go analytic and probabilistic!

● Multidimensionality: correlation, correlation, correlation!

● There is more info in the data that what is currently being used ?

● A different approach that may increase pp > hh sensitivity

(We can talk much more about hh!)

change S/√B
thinking
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p(θ|X) = p(X|θ) p(θ) / p(X)

● Modeling

● Prior-knowledge

● Structured priors

● Techniques &  tools

● Multidimensionality

● Correlation

The Information Frontier

Thank you!!





Backup slides



ABCD for WP = 70%, 80% and 90%



Hard- Vs Soft-assignment

The only way of having 
same number of events is if 
blue area on the left equals 
red area on the right.  Very 
unlikely.

And even in that case the 
behaviors are different



1D inference problem
The problem has non-identification



Joke
Scotland Yard, FBI and Argentine Federal police are in the world's final 
Police-detective Contest, in which a rabbit is set free and it has to be found.

First day, FBI takes 2hs and finds the rabbit.  How did you do it? Well.. we 
computed the wind, the trees distribution and the genetic pattern, and we 
knew where it was going to be.  Clap clap clap….👏👏👏

Second day, Scotland Yard takes 30m! How did you do it?! Well, quite easy, we 
knew its shape, its skills, the forest distribution, we plugged everything to our 
AI, and we knew exactly where to find it.  Wooow…👏👏👏👏👏👏!!!!

And then the third day came the Argentine Federal Police… 30m.. Nothing… 
2hs..nothing….10hs… nothing….1 day…nothing… 2days… nothing!!! And after a 
week they arrived….  [page down]
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Police-detective Contest, in which a rabbit is set free and it has to be found.

First day, FBI takes 2hs and finds the rabbit.  How did you do it? Well.. we 
computed the wind, the trees distribution and the genetic pattern, and we 
knew where it was going to be.  Clap clap clap….👏👏👏

Second day, Scotland Yard takes 30m! How did you do it?! Well, quite easy, we 
knew its shape, its skills, the forest distribution, we plugged everything to our 
AI, and we knew exactly where to find it.  Wooow…👏👏👏👏👏👏!!!!

And then the third day came the Argentine Federal Police… 30m.. Nothing… 
2hs..nothing….10hs… nothing….1 day…nothing… 2days… nothing!!! And after a 
week they arrived….

I'm a rabbit, 
I'm a rabbit!!



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect of Signal and few Backgrounds



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds

Plug theory in simulations and 
compare to data

Signal region: cuts, selections



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds

Plug theory in simulations and 
compare to data

Backgrounds

Use shapes from 
simulations and 
fit yields

Signal region: cuts, selections



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds

Plug theory in simulations and 
compare to data

Backgrounds

Use shapes from 
simulations and 
fit yields

Signal region: cuts, selections



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds

Plug theory in simulations and 
compare to data

Backgrounds

Use shapes from 
simulations and 
fit yields

Signal region: cuts, selections

Train NN, E.g. 
classifier, and 
define signal 
region



Typical problem at LHC
● Theory: SM or BSM

● Data: events with pT, Emiss, Nb, Nj, etc.

● Simulations: a guide of what to expect

● Expected Signal and few Backgrounds

Plug theory in simulations and 
compare to data

Backgrounds

Use shapes from 
simulations and 
fit yields

Signal region: cuts, selections

Train NN, E.g. 
classifier, and 
define signal 
region




