The Linear Point Standard Ruler with the Euclid galaxy survey

Euclid Standard Project Euclid GC SWG Additional Probes

(Lead/Secretary) Stefano ANSELMI

GOALS of Baryon Acoustic Oscillations (BAO) distances

- Constrain cosmological models (at the DE time)
- Consistency tests (e.g. tensions)

HOW

- BAO distances combined w/ other Cosmological observations.
 Degeneracy among parameters are reduced.
- BAO distances alone (e.g. Dark Energy detection)

Late Universe Acceleration <-> Dark Energy

65

45

0.00

PROBE COMBINATION

DIFFERENT PROBES

energy densities 0.7 - 0.6 - 0.5 - 0.4 - 0.4 - 0.4 - 0.4 - 0.3 - 0.3 - 0.3 - 0.5 -0

-0.10

Planck 2018

-0.05

 Ω_K

Early Limes...

Initial fluctuations temperature fluctuations in the CMB $(\delta T/T \sim 10^{-5})$

...Late times

100 -**I** DR9 I DR10 I DR11 I DR11 ₽ pre-recon ₽ s²{₀(s) (h-² Mpc²) 50 BAO 0 BOSS 50 100 150 200 $s(h^{-1}Mpc)$

Baryon acoustic oscillations in the galaxy Correlation Function

4

The Linear Point (BAO) standard ruler

S.A, Starkman, Sheth - MNRAS (2016)

<u>Cosmological distances</u> with the Linear Point

- Relevant features
- 1) A geometrical point
- 2) Redshift independent at 0.5%, i.e linear Weakly sensitive to: Non-linear gravity, RSD, scale dep. bias
- 3) Cosmological Model Independent cosmological distances
- 4) Correlation-function Model independent cosm. distances

S.A, Starkman, Sheth - MNRAS (2016)

S.A, Starkman, Corasaniti, Sheth, Zehavi - PRL (2018)

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019)

What is done

- Tested with N-body and Validated with SDSS galaxy mocks S.A. Corasaniti, Starkman, Sheth, Zehavi - PRD (2018)

- Cosmological distances estimated from SDSS galaxy data S.A. Starkman, Corasaniti, Sheth, Zehavi - PRL (2018)

- Accurate comparison with the sound horizon standard ruler O'Dwyer, S.A., Starkman, Corasaniti, Sheth, Zehavi - PRD (2020)

- Standard ruler also for massive neutrino cosmologies; it constrains neutrino mass Parimbelli, S. A, et al - JCAP (2021)

- Forecasts: Linear Point cosmic distances expected from Euclid, DESI, 4MOST, Roman, Subaru Prime Focus Spectrograph (PFS)

S.A., Starkman, Renzi - PRD (2023)

The Linear Point Standard Ruler with the Euclid galaxy survey

Standar Project OVERVIEW:

We will <u>describe the validation procedure</u> developed to estimate the linear point standard ruler from the clustering correlation function. We will <u>identify the optimal setup to</u> <u>estimate the linear point</u>. We will as well <u>assess estimation</u> <u>uncertainties</u> of the linear point standard ruler within the Euclid mission. To achieve these goals we will <u>employ the</u> <u>Euclid Flagship simulation and large sets of mocks</u>. We will finally apply the validated methodology to Euclid data.

FIRST GOAL:

estimate the Linear Point from the Euclid Flagship Simulation snapshots

Linear Point from Flagship Simulation snapshots

- Euclid Flagship I halo snapshots
 - 2pcf measurements on Flagship I halo snapshots
 - Development of algorithms for large data-sets
 - Snapshots' redshift: z = 0.9, 1.2, 1.5, 1.8
 - Different cuts in halo mass
 - 2pcf covariance: Gaussian recipe

EFFORT: Stefano Anselmi, Filippo Oppizzi, Alessandro Renzi,

example

Euclid Flagship I – halo snapshots

- Real space
- Estimated 2pcf
- First cut in halo mass

N-body 2pcf estimated points (connected by straight lines)

Linear Point estimation

- Model-independent polynomial estimator

For each redshift and mass cut:
 Validation procedure to obtain:
 unbiased and optimized estimator

- Uncertainties properly propagated

z = 0.9

Linear Point estimation

- Results: Halos in Real space
 - Linear Point from Flagship
 - Agreement with linear pred.
- Ongoing
 - <u>Halos:</u> Redshift Space
 - <u>Galaxies:</u> Real Space Redshift Space
 - <u>Expected Euclid errors</u> scaling to Euclid volumes

Next Steps

- Euclid Flagship lightcone
 - Partial Sky coverage & irregular geometry
 - 2pcf Landy Szalay estimator
 - Redshift evolution
 - Magnitude cut
 - 2pcf covariance
 - GR effects
 - Redshift Bin optimization
- Observational Systematics
 - Redshift error, purity & completeness
 - Noise/Line interlopers