Pipeline composition via
MLFlow

. Connecting the dots
S .

2. ©eS Diego Ciangottini
ciangottini@infn.it

W ICS (INFN

Centro Nazionale di Ricerca in HPC, Istituto Nazionale di Fisica Nucleare

Big Data and Quantum Computing Sezione di Perugia

Building a ML pipeline

Building machine learning pipeline is

hard: Get (new)
« 100s of software tools to leverage data
« Hard to track and reproduce results:
code, data, params, etc Deploy the
. Hard to share models model Prepare data
« Hard to productionize models
« Needs large scale for best results
Train (and
select the

best model

Building a ML pipeline

Building machine learning pipeline is

mymodel_3
mymodel_3

final_final.ipynb
final_final_final.ipynb

hard: In most cases, you end up like this!

« 100s of software tools to leverage
(base)

« Hard to track and reproduce results: LT s
mymodel_1_bis.ipynb

COdev data1 paramS, etC mymodel_1_bis_different_splitting.ipynb

mymodel_1_bis_lessfeatures.ipynb

- Hard to share models nymodel_2. ipynb

. Hard to productionize models mymodel_3. 1pynb
mymodel_3_best.ipynb

« Needs large scale for best results mymodel_3_final.1ipynb

<numb
er>

What is MLFlow?

MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the

machine learning lifecycle
« Open and extensible

 Platform agnostic for maximum flexibility
It has built-in integrations with many popular ML libraries, but can be used with any library, algorithm, or

deployment tool. It is designed to be extensible, so you can write plugins to support new workflows,
libraries, and tools.

A s e

Experiment tracking Visualization Generative Al

Q & T

Observability Evaluation
™
% @ Im IW

Model Registry Serving

https://miflow.org/

https://mlflow.org/

@ dagster

Ship data pipelines with extraordinary velocity

ee

% Kubeflow

A lot of options out there!

@ dagster

Ship data pipelines with extraordinary velocity
S
/)
y
7 Kubeflow

Main components

- MLflow Tracking:

o Tracking ML experiments to record and compare model parameters, evaluate performance,
and manage artifacts

. MLflow Models:

o Packaging and deploying models from a variety of ML libraries to a variety of model serving
and inference platforms
- MLflow Model Registry:
o Collaboratively managing a central model store, including model versioning, stage transitions,
and annotations
- MLflow Projects:

o Packaging ML code in a reusable, reproducible form in order to share with other data scientists
or transfer to production

How is each component mapped?

Get (new)
data

Deploy the

model Prepare data

\Train (and /

select) the
best model

<numb
er>

How is each component mapped?

Deploy the

model MLflow Tracking

Prepare data

dlN (and
select) the
best model

<numb
er>

How is each component mapped?

MLflow Models MLflow Tracking

Deploy the
Prepare data

dlN (aNngG
select) the
best model

<numb
er>

How is each component mapped?

MLflow Projects

MLflow Models Deploy the

model

Prepare data) MLflow Tracking

select) the
best model

<numb
er>

MLFlow tracking

The MLflow Tracking component is an

APl and Ul for logging parameters, code

versions, metrics, and output files when
running your machine learning code and
for later visualizing the results.

MLflow Tracking lets you log and query
experiments using Python, REST, R API,
and Java API| APIs.

https://mlflow.org/docs/latest/tracking.html

Notebooks

N

Github _———

MLflow
Tracking

/

Tracking API

—

Tracking Ul

<numb
er>

https://mlflow.org/docs/latest/tracking.html

MLFlow tracking - main concepts

product Sales Demand @ Provide Feedback [4§ Add Description

Q

Table Chart

Evaluation Preview

Run Name

MLFlow tracking is organized
around the concept of runs

@ abundant-snip...
@ blushing-crow-...
clumsy-doe-35

® bright-crow-123

like executions of some
piece of data science code,
collected in experiments
(useful for comparing runs
iIntended to tackle a
particular task).

wise-mare-695
useful-skunk-2...
orderly-sheep-15
skillful-ray-613
melodic-mouse...

bright-shark-203

bemused-stork...
D bustling-cod-2...

mercurial-ant-7...

abrasive-slug-59

incongruous-c...
D treasured-smel...
merciful-trout-37
fun-mouse-712

funny-carp-535

bedecked-bass...
tasteful-panda...
efficient-trout-...
learned-pengui...
luminous-moos...

shivering-boar-...

beautiful-boar-...

©@ © @ @ © @ © @ @ @ @ @ @ © © @ © @ @ @ © ©® © @ @ e e o
®

gifted-moth-379

@ Time created ~ State: Active v

Q
v Parameter Ranges (1)

55 Parallel Coordinates
Comparing 475 runs ®

alpha

0.8+

0.6

0.4 -

o2

“ Optimization History (3)

:5 rmse
Comparing first 100 runs

1000 L]

500 L
. s . [. .
comdls T & 10_;".’* sem%ee sbw’ coour o

16:02:30 16:03:00 16:03:30 16:04:00
Jan 23, 2024
Time
= angry-fish-398 (rmse)
= raceptive-stork-597 (rmse)

Datasets

lambda

=l Sort: Created ~

Group by ~

Share

i rmse

Comparing first 20 runs

welcoming-turtle-481
= grandiose-crab-864

500

1000

adorable-sow-598
glamorous-sponge-971

rmse
S _-'. ——
a1 00—
o ~ i
-~ < 800 —
600 —|
+ Add chart

:E rmse vs. eta
Comparing first 500 runs

1
0.8

0.6

eta

0.4

%
}.(-...)- P —

0.2

0

500 1000

rmse

= raceptive-shark-101 = painted-hog-517
== marvelous-fly-146 gifted-moth-379

Tracking Ul

The Tracking Ul lets you visualize, search and compare runs, as well as download run artifacts or metadata for analysis
In other tools.
« If you log runs to a local mlruns directory, run miflow ui in the directory above it, and it loads the corresponding
runs.

. Alternatively, the MLflow tracking server serves the same Ul and enables remote storage of run artifacts.

o You run an MLflow tracking server using miflow server

o In that case, you can view the Ul using URL http://<ip address of your MLflow tracking server>:5000 in your browser from any machine,
including any remote machine that can connect to your tracking server.

o To log to a tracking server, set the MLFLOW_TRACKING_URI environment variable to the server’'s URI, along with its scheme and port (for
example, http://10.0.0.1:5000) or call miflow.set_tracking_uri()

The Ul contains the following key features:
« Experiment-based run listing and comparison (including run comparison across multiple experiments)
« Searching for runs by parameter or metric value
- Visualizing run metrics
« Downloading run results

<numb
er>

Tracking Ul

Experiments Models GitHub Docs

Expenments @E Default @ rprovide Feedback
Experiment ID: 0 Artifact Location: file:///mnt/d/src/lobrien/manta_identification/src/minuns/0

Default - |

> Description Edit

Table view Il Chart view I
o

: i Refresh
Q O] T3 Sort MAP w
Time created: All time ~ State: Active v
'
@ Run MName
5
Y
@ classy-newt-303
= capable-auk-T59
0
& fun-ram-521
@ indecisive-horse-479
MAP .
L] calm-hound-601 .
st 10 mu
= @ caring-crane-218
@& @ efficient-cub-582 J w
I| n&2
L] rebellious-gnat-393
|
& kona-10-batch-similarty-miner |
L] @ capzble-auk-759 1L.48
@ @ whimsical-snipe-770 |
|
] [] clean-midge-959 40
& . -
@ @ shivering 0 0.2 0.4 0.6 0.8 1
& [] intrigued-bear-646
v
44 matching runs -

<numb
er>

Tracking Ul

Experiments Models GitHub Docs

Experiments @E Default @ Provide Feedback

Experiment ID: 0 Artifact Location: file:y///mnt/d/src/lobrien/manta_identification/src/miruns,/0

Default -

> Description Edit

Table view Il Chart view

: i Refresh
Q @ 5} Sort MAFP -
Time created: All time ~ State: Active
@ Run MName -
@& @ classy-newt-303
= capable-auk-T59
(] fun-ram-521
@ indecisive-horse-479
L calm-hound-601 . .
Experiments Models GitHub Docs
@ @ caring-crane-218
[©] @ efficient-cub-582 Default >
I :
- nbeourgne8 | brawny-toad-167 :
& kona-10-batch-similarty-miner |
Run ID: 7f48fe2149e64b298242e85bf52a34cd Date: 2023-04-24 10:17:30 Source: [trainb.py
L] @ capzble-auk-759 1L.48
® ® wh I Git Commit: T2f7f0455fb5a2102c19905ecd24ebad1e49b572 User: lobrien Status: UNFINISHED
& whimsical-snipe-770
| '))
&= @ clean-midge-959 Lifecycle Stage: active
2 = SriveNng 0 0.2 0.4 06 08 > Description Edit
& [] intrigued-bear-646
v
44 matching runs = > Parameters (24)

> Metrics (9)
> Tags

> Artifacts)

Tracking Ul

Experiments Models GitHub

MAP

Completed Runs @

Experiments Models GitHub Docs — 11
Points:
N 1]
Experiments ®0 Default @ rprovice Feedback LpsEnaxima
1 0.8
Experiment ID: 0 Artifact Location: file:y///mnt/d/src/lobrien/manta_identification/src/miruns,/0 6.7
M are:
v Default - | i i Step 0.6
o > Description Edit -
me [Wall) 0.5

© Time (Relative)

Table view Il Chart view I Weatis: 03
2 i MAP X w

H = Refresh e I
Q @ _:+ SOF‘[: Mg‘p e :l S0} 1000 1 S0 2000 2500 3000 3500

¥-axis Log Seale:

Download C3vE

Time created: All time ~ State: Active
@ Run MName -
& Metric Latest Min Max
@& @ classy-newt-303
MAP 081 (stepsl) 0.218 (stepnll) 0.569 (stepn ()
= capable-auk-T59
(] fun-ram-521
P T
@ indecisive-horse-479
L calm-hound-601 . .
Experiments Models GitHub Docs
@ @ caring-crane-218
& @ efficient-cub-582 Default »
203 | :
- nbeourgne8 | brawny-toad-167 :
& kona-10-batch-similarty-miner |
Run ID: 7f48fe2149e64b298242e85bf52a Date: 2023-04-24 10:17:30 Source: [trainb.py
& capable-auk-759 048
Git Commit: T2f7f0455fb5a2102c19905ecd24ebad1e49b572 User: lobrien Status: UNFINISHED

whimsical-snipe-770

®
o o o

clean-midge-959 Lifecycle Stage: active

= @ shivering-

(=]
(=]
]

0.4 0.6 0.8 > Description edit

L L] intrigued-bear-646

44 matching runs > Parameters (24

> Metrics (9)
> Tags

> Artifacts)

Where is data recorded?

- MLflow runs can be recorded to local files, to a SQLAlchemy-compatible
database, or remotely to a tracking server.

- MLflow artifacts can be persisted to local files and a variety of remote file
storage solutions.
For storing runs and artifacts, MLflow uses two components for storage:
backend store and artifact store.

- backend store persists MLflow entities (runs, parameters, metrics, tags,
notes, metadata, etc)

. artifact store persists artifacts (files, models, images, in-memory objects, or
model summary, etc)

How to log?

“Manual” logging:

 miflow.log_param()/miflow.log_params()
o logs a single key-value param in the currently active run. The key and value are both strings.
o Use mlflow.log_params() to log multiple params at once.

 miflow.log_metric() | miflow.log_metrics()
o logs a single key-value metric. The value must always be a number.

o MLflow remembers the history of values for each metric (supports two alternative methods for distinguishing metric values on the x-axis: timestamp and step)
o Use miflow.log_metrics() to log multiple metrics at once.
e miflow.log_input()

o logs a single miflow.data.dataset.Dataset object corresponding to the currently active run.
o You may also log a dataset context string and a dict of key-value tags.

 miflow.log_artifact()/ miflow.log_artifacts()

o logs a local file or directory as an artifact, optionally taking an artifact_path to place it in within the run’s artifact URI.
o Run artifacts can be organized into directories, so you can place the artifact in a directory this way.
o mlflow.log_artifacts() logs all the files in a given directory as artifacts, again taking an optional artifact_path.

Autolog:

« Automatic logging allows you to log metrics, parameters, and models without the need for explicit log statements.
- There are two ways to use autologging:

o Call miflow.autolog() before your training code. This works for each supported library you have installed as soon as you import it.
o Use library-specific autolog calls for each library you use in your code

= available: Scikit-learn, Keras, Gluon, XGBoost, LightGBM, Statsmodels, Spark, Fastai, Pytorch

MLflow Models

https://mliflow.org/docs/latest/models.html

Deploy on
X
YAML file
MLflow -Flavor Deploy on
__|-Signature
Models -Input example Yy

A standard format for packaging machine learning models that can be used in a
variety of downstream tools
- Each MLflow Model is a directory containing arbitrary files, together with an ML
model file in the root of the directory that can define multiple flavors that the model
can be viewed In

https://mlflow.org/docs/latest/models.html

MLflow Projects

MLflow Projects are just a convention for organizing and describing
your code (packaging it in a reusable and reproducible way) to let
other data scientists (or automated tools) run it

A project is simply a directory of files, or a Git repository, containing
your code + conventions for placing files in this directory and a
MLproject file (YAML formatted). Each project can specify several
properties:

- Name: A human-readable name for the project.

- Entry Points: Commands that can be run within the project, and
information about their parameters. If you list your entry points in
a MLproject file, however, you can also specify parameters for
them, including data types and default values.

- Environment: The software environment that should be used to
execute project entry points. This includes all library
dependencies required by the project code (local, Conda,
Virtualenv, and Docker)

https://mlflow.org/docs/latest/projects.html

MLflow

Projects

YAML file

-Name
-Entry point(s)
-Environment

Local
execution

Cloud
execution

<numb
er>

https://mlflow.org/docs/latest/projects.html

MLflow Projects

name: My Project
python_env: python_env.yaml

lentry_points:
main:
parameters:
data_file: path
regularization: {type: float, default: 0.1}

command: "python train.py -r {regularization} {data_file}"

validate:
parameters:
data_file: path

command: "python validate.py {data_file}"

https://mlflow.org/docs/latest/projects.html

Local
_ execution
YAML file
MLflow -Name
. -Entry point(s)
Pro]ects -Environment
Cloud
execution
<numb

er>

https://mlflow.org/docs/latest/projects.html

MLflow Projects

name: My Project
python_env: python_env.yaml

lentry_points:
main:
parameters:
data_file: path
regularization: {type: float, default: 0.1}

validate:
parameters:
data_file: path

command: "python validate.py| {data_file}"

https://mlflow.org/docs/latest/projects.html

command: "python train.py -r {regularization} {data_file}"

python: "3.8.15"

build_dependencies:

- pip
- setuptools
- wheel==0.37.1

[dependencies:
- miflow==2.3

- scikit-learn==1.0.2

MLflow

Projects

'YAML file

-Name
-Entry point(s)
-Environment

Local
execution

Cloud
execution

<numb
er>

https://mlflow.org/docs/latest/projects.html

Building pipelines with MLflow Projects

The miflow.projects.run() API, combined with other functions, makes it possible to build
multi-step workflows with separate projects (or entry points in the same project) as the
individual steps.
« Each call to miflow.projects.run() returns a run object, that you can use with
mliflow.client to determine when the run has ended and get its output artifacts
« These artifacts can then be passed into another step that takes path or uri
parameters.
« You can coordinate all of the workflow in a single Python program that looks at

the results of each step and decides what to submit next using custom code.

o Modularizing Your Data Science Code
o Hyperparameter Tuning

Integration/adoption

- MLflow is well integrated with most of the Machine Learning ecosystem:
o Tensorflow
o Pythorch
o Keras
o Scikit-learn
o XGBoost
o Onnx

. Also integrated with different computing environments: docker, kubernetes,
commercial clouds...

- Adopted by 80+ companies

. Didactic examples: https://github.com/SOSC-School/SOSC24-
class/tree/main/day4/MLflow

https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow

. Didactic examples: https://github.com/SOSC-School/SOSC24-

class/tree/main/day4/MLflow

o Exercise for you:
= Try and add a test for the trained model on a dummy pandas dataframe
= Bonus:
« Try and modify the main.py function in order to make a grid search on the
parameters of the elasticnet model and then test the best model on a dummy
pandas dataframe

https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow

. Didactic examples: https://github.com/SOSC-School/SOSC24-

class/tree/main/day4/MLflow

o Exercise for you:
= Try and add a test for the trained model on a dummy pandas dataframe
= Bonus:
« Try and modify the main.py function in order to make a grid search on the
parameters of the elasticnet model and then test the best model on a dummy
pandas dataframe

« More sophisticated example:
https://github.com/mlflow/mlflow/tree/master/examples/hyperparam

https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/SOSC-School/SOSC23-livesessions/tree/main/day4/MLflow
https://github.com/mlflow/mlflow/tree/master/examples/hyperparam

