. +

Managmg ML prOJects W|th
i CI/CD automatlon e

~ D. Clangottml INFN |

_ ThIS |s .
take-home-messagge =
- sessmn

Papermill

) I/\I papermill

AY Ve Ve W

Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.
Papermill lets you:

« parameterize notebooks
. execute notebooks

You can programmatically execute a workflow without having to copy and paste from notebook
to notebook manually

To parameterize your notebook designate a cell with the tag parameters:
« Papermill looks for the parameters cell and treats this cell as defaults for the parameters passed
In at execution time. Papermill will add a new cell tagged with injected-parameters with input

parameters in order to overwrite the values in parameters. If no cell is tagged with parameters
the injected cell will be inserted at the top of the notebook.

https://github.com/nteract/papermill

https://github.com/nteract/papermill

~ Why should | automate the way
.t 1build and distribute my model ?

Reproduclblllty and Accuracy
Automating the build and dlstrlbutlon of your models ensures that experiments can

be consistently reproduced

'Eff|C|ent Resource Management e 4
| efﬂuently managing computatlonal resources by schedullng and executlng tasks +
~ without manual intervention, allowing to'focus on analysis and interpretation.

Scalablllty of Experiments .
~ With automated pipelines, you can easily scale your experlments to handle Iarger

datasets and more complex models

Why do we need CI?

Conside.k-an application that has its code stored in a Git repository in

- Gitlab --> Develepers push code changes everyday,*multiple times a day.

For every push to the repository, you can create a set of scnpts to bUI|d
and test your application automatically.

This practice is known as Continuous Integratien

Each change submitted to an application, even to development branches |

IS bth and tested automatlcally and contlnuously

These tests ensure the changes pass all tests, gwdelmes and code
compllance standards you establlshed for your application.

.

~ When do you need CD?

Contihuo’_us Deli\{ery is a step beyond'Continu_ous Integration.

Not only is yoUr appli'ca'ticn built and tested each time a code changeis
pushed to the codebase, the application is also deployed continuously.

However, with continuous delivery, you trigger the deployments manually.

Continuous Delivery checks the code automatically, but it requires human
intervention to manually and strategically trigger the deployment of the
changes. 32 ' ' '

Do | really need all of this ?

Be aware of the excel rollercoaster: the tools | know have to be all | need
to know. | can do everything with that’

ClI/CD mechanisms are crucial to achieve;
- reproducibility
- automation (new data, new model, tests)

Non-negligible features for a scientific computing model development :) r
\ '

: i - How a typical CI/CD looks like ?
In this session we are going to go through the CI language adopted by
~ Gitlab and Github, as the two main software hosting services out there.

‘We are going to look at a simple_application that should give you already
an idea of 'how a proper workflow can be integrated.

 GitHub

Demo'timle |

Some real world ref: |
‘https://github.com/interTwin-
eu/mteerk/bIob/mam/ glthublworkflows/buﬂd images.yaml|

o . S
- e L
oA, 4
- e .l
; ; r
. & :
i a wih !

. =
'
i i e
" 7 2!

d

e

ck

v

+

~
- B
-

L

then

d.

CI/CD tools overview'

It does not end here a LOT more'tools have been developed! Each one
© with its own sintax and behaV|or '

All of them, very difficult'to reproduce on your machine. Not havinga '

simple way to test things locally, translates in a common inefficiency
when developing pipelines :

PUSH to git repo'sitory;AND PRAY. for the test to become green. ' e

+

+

DOESN'T WORK ON
YOUR MACHINE

Usual issues

“PUSH AND PRAY”

ulhs

COMPLEX CI SCRIPTS

QO

X

e o 1o s

<+

+

CI/CD Solutions with Dagger

WORKS ON YOUR
MACHINE

NO MORE "PUSH
AND PRAY"

b

PROGRAM IN THE LANGUAGE .

OF YOUR CHOICE

DAGGER ENGINE

PIPELINE A

L= 01> (10> 0 S>E

PIPELINE B

@002 0->0>0-008

¢---—--ccmcmccce=- -
e : i
- ; : :
< - I | :
I ' 0 '
| | 0 |
| | 0 |
| | 0 |
@ ® @ L
Local Local Local Local
] Ammf)]
PIPELINE A
eSS > 0= 0> 0=
PIPELINE B
@@ O > O > O >0

Eliminate
Push And Pray

If it works on your laptop
it'll work in CI

+

This iIs the result...

Dag on pc, on gh and glab the same!
Just a single command that you can replicate everywhere (GHA, gitlab, your laptop)

— name: Integration Test
uses: dagger/dagger-for—-github@v?
with:

workdir: ci
verb: call

args: -s ——name slurm-test build-images new-interlink test stdout

cloud-token: ${{ secrets.DAGGER_CLOUD TOKEN }}
version: "0.13.0"

And more...

You can literally spin up an environment like the one you are using in a single command

