
Distributed Dask
Mirko Mariotti

mirko.mariotti@unipg.it

original slides by Tommaso Tedeschi
tommaso.tedeschi@pg.infn.it

Single machine vs multiple machines

As we have seen, Dask runs perfectly well on a single machine with or without a
distributed scheduler. But once you start using Dask in anger you’ll find a lot of
benefit both in terms of scaling and debugging by using the distributed scheduler.

● Default (single-machine) Scheduler
○ The no-setup default. Uses local threads or processes for larger-than-memory processing

● Dask.distributed
○ The sophistication of the newer system on a single machine. This provides more advanced

features while still requiring almost no setup.

2

Dask.distributed

● Dask.distributed is a centrally managed,
distributed, dynamic task scheduler:

○ The central dask scheduler process coordinates the
actions of several dask worker processes spread
across multiple machines and the concurrent requests
of several clients.

○ a worker is a Python object and node in a dask Cluster
that performs computations and serves computed
results

● Users interact by connecting a local Python
session to the scheduler and submitting work,
via client.submit(function, *args,
**kwargs) or by using the large data collections
and parallel algorithms of the parent dask
library.

○ the simple client.submit interface provides users
with custom control to submit fully custom workloads.

3

https://distributed.dask.org/en/stable/

https://distributed.dask.org/en/stable/

Why dask.distributed?

Dask.distributed meets the following needs:

● Low latency: 1ms task overhead

● Peer-to-peer data sharing: Workers communicate with each other to share data

● Complex Scheduling: Supports complex workflows (not just map/filter/reduce)

● Pure Python: Built in Python using well-known technologies

● Data Locality: Scheduling algorithms cleverly execute computations where data
lives

● Familiar APIs: Compatible with the concurrent.futures API in the Python standard
library and dask API for parallel algorithms

● Easy Setup: As a Pure Python package distributed is pip installable and easy to set
up on your own cluster.

4

Cluster Manager class

Best way to start the distributed
scheduler and worker components
way is to use a cluster manager
utility class

● These cluster managers
deploy a scheduler and the
necessary workers as
determined by communicating
with the resource manager

● All cluster managers follow the
same interface, but with
platform-specific configuration
options

○ you can switch from your local
machine to a remote cluster with
very minimal code changes 5

Available Cluster Managers

6

When we instantiate a Client() object with no arguments it will attempt to locate
a Dask cluster. It will check your local Dask config and environment variables to
see if connection information has been specified. If not it will create an instance of
LocalCluster and use that

Dask-Jobqueue

Dask-jobqueue is a set of cluster managers for HPC
users and works with job queueing systems

● Supports PBS, Slurm, SGE and HTCondor
○ typically found in high performance supercomputers, academic

research institutions, and other clusters
● Provides a convenient interface that is accessible

from interactive systems like Jupyter notebooks, or
batch jobs.

● Creates a Dask Scheduler in the Python process
where the cluster object is instantiated

● The cluster generates a traditional job script and
submits that an appropriate number of times to the
job queue

● Jobs are resources submitted to, and managed by,
the job queueing system:

○ a single Job may include one or more Workers 7

https://jobqueue.dask.org/en/latest/

https://jobqueue.dask.org/en/latest/

Interactive dashboard

Dask’s distributed scheduler provides an interactive dashboard to live monitoring of your Dask
computations.

● The dashboard is built with Bokeh and will start up automatically, returning a link to the dashboard
whenever the scheduler is created.

There are numerous diagnostic plots available:

● Bytes Stored and Bytes per Worker:
○ Cluster memory and Memory per worker

● Task Processing/CPU Utilization/Occupancy/Data Transfer:
○ Tasks being processed by each worker/ CPU Utilization per worker/ Expected runtime for all tasks currently on a worker.

● Task Stream:
○ Individual task across threads.

● Progress:
○ Progress of a set of tasks.

8https://docs.dask.org/en/latest/dashboard.html

https://docs.dask.org/en/latest/dashboard.html

Interactive dashboard

9

The JupyterLab extension

The JupyterLab Dask extension allows you to embed Dask’s dashboard plots directly
into JupyterLab panes.

10

Once the JupyterLab
Dask extension is
installed you can
choose any of the
individual plots available
and integrated as a
pane in your JupyterLab
session.

Further reading

To dive deeper into Dask distributed:

https://tutorial.dask.org/04_distributed.html

Screencast example:
https://drive.google.com/file/d/1Sgn9rZiKXKeUgYUt2w-oOv3ZCTE17Zbz/view?us
p=share_link

11

https://tutorial.dask.org/04_distributed.html
https://drive.google.com/file/d/1Sgn9rZiKXKeUgYUt2w-oOv3ZCTE17Zbz/view?usp=share_link
https://drive.google.com/file/d/1Sgn9rZiKXKeUgYUt2w-oOv3ZCTE17Zbz/view?usp=share_link

Backup slides

Dask at INFN

12

Next-gen HEP data analysis

Two main analysis tools arising:

● ROOT’s RDataFrame
● HSF’s Coffea (based on awkward array +

uproot libraries)

They are both thought to use different backends,
including Dask

Dask capability to be deployed on
batch/distributed resources (Dask-Jobqueue and
Dask-Kubernetes) is a game-changer in the
utilization of legacy resources:

● Coffea/RDataFrame + Dask is emerging as
the “standard” solution for the current/future
high-throughput analysis

13

https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://coffeateam.github.io/coffea/

Example - RDataFrame + Dask

What happens under the hood in Distributed
RDataFrame on Dask?

● Dask delayed is used to create a
map-reduce task graph

● then results are computed and persisted
persisted

14

https://github.com/root-project/root/blob/master/bindi
ngs/experimental/distrdf/python/DistRDF/Backends/
Dask/Backend.py

https://github.com/root-project/root/blob/master/bindings/experimental/distrdf/python/DistRDF/Backends/Dask/Backend.py
https://github.com/root-project/root/blob/master/bindings/experimental/distrdf/python/DistRDF/Backends/Dask/Backend.py
https://github.com/root-project/root/blob/master/bindings/experimental/distrdf/python/DistRDF/Backends/Dask/Backend.py

Future analysis at LHC

15

source

R&D on analysis at High Luminosity LHC (HL-LHC)
- Promote adoption of reduced data formats
- optimizing the computing and storage resource utilization

Testing software featuring a declarative
programming model and interactive workflows

- Increasing data processing throughput is crucial
- Ergonomic interfaces remove the lower-level programming burden

from analysts
- Fast Turnaround Reducing analysis “time to insight”

Prototype resources integration models to efficiently
leverage computing capacity

- Integrate already deployed (grid) infrastructure
- Transparently access specialized HW
- Scale toward opportunistic (cloud/HPC)

https://indico.cern.ch/event/773049/contributions/3476049/attachments/1933365/3203526/poster_v3.pdf

The INFN solution

Interactivity is reached via
Dask distributed, deployed
on existing HTCondor
distributed resources via a
custom version of
Dask-jobqueue
https://github.com/comp-de
v-cms-ita/dask-remote-jobq
ueue

16

What users
see

What the
offloading

hides to the
user

Instructions
https://infn-cms-
analysisfacility.r
eadthedocs.io/e
n/latest/

https://github.com/comp-dev-cms-ita/dask-remote-jobqueue
https://github.com/comp-dev-cms-ita/dask-remote-jobqueue
https://github.com/comp-dev-cms-ita/dask-remote-jobqueue
https://infn-cms-analysisfacility.readthedocs.io/en/latest/
https://infn-cms-analysisfacility.readthedocs.io/en/latest/
https://infn-cms-analysisfacility.readthedocs.io/en/latest/
https://infn-cms-analysisfacility.readthedocs.io/en/latest/

