
ciangottini@infn.it - INFN - #SOSC24

Dockerfiles and how to get lost

<numb
er>

It’s not that you cannot get assisted
by AI...

Just be sure to know the error it can
make in advance.

Now let’s build a cool data-science
container image for humans

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Dockerfiles and how to get lost

<numb
er>

Let’s take a look at the
image you are going to

use for the school

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Containers Orchestration

Diego Ciangottini
INFN

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Introduction

Hand-on session

<numb
er>

Take-home messagge session

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Introduction

We explored how containers help us to easily create applications that are – as the
name says – self-contained.
We discussed docker applications and explored a bit the docker-compose

What we need then? we’d explore how to effectively orchestrate many containers
across distributed hosts.

container orchestration.

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Orchestrating containers

Container

VM 1 VM 1 VM 1 VM 1 VM 1

Overlay network

Scheduler State
controller

API server

Container
It looks easy, isn’t it?

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Docker swarm

Docker Swarm is the traditional way of orchestrating containers with Docker
through docker-compose. Compared to other methods we’ll see later, it is
relatively easy to use. Its main features are:

Cluster management integrated with Docker Engine: no other software than
docker is needed.
Decentralized design: this means that any node in a Docker Swarm can assume
any role at runtime.
Scaling: the Swarm manager can automatically scale up and down services,
adding or removing tasks.
Desired state reconciliation: if something happens to a Swarm cluster (e.g.
some containers crash), the Swarm manager will try to reconcile the state of the
cluster to its desired state (e.g. bringing up some more containers).

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Docker Swarm (cont)

Docker Swarm features, continued:
Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.
Service discovery: there is a DNS server embedded in each Swarm. The Swarm
manager discovers services and assigns to each of them a unique DNS name.
Load balancing: you can specify how to distribute services among nodes.
Secure by default: the communication among all nodes in a Swarm cluster is
protected by the cryptographic protocol called TLS (Transport Layer Security).
Rolling updates: if anything goes wrong, you can roll-back a task to a previous
version of the service.

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Where to get started

Hands-on with Docker Swarm:
https://docs.docker.com/engine/swarm/swarm-tutorial/
You will learn how to:

Create a Swarm service
Deploy a load balancer
Create swarm cluster
Create swarm service

<numb
er>

mailto:ciangottini@infn.it
https://docs.docker.com/engine/swarm/swarm-tutorial/

ciangottini@infn.it - INFN - #SOSC24

Kubernetes

Kubernetes is an open-source platform that
coordinates a highly available cluster of
computers that are connected to work as a
single unit. It is backed by Google and RedHat.

Applications need to be containerized.
Kubernetes automates the distribution and
scheduling of application containers across a
cluster in a fairly efficient way.
A Kubernetes cluster can be deployed on
either physical or virtual machines.

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Cluster Resources

A Kubernetes cluster consists of two types of resources:
The Master coordinates the cluster
Nodes are the workers that run applications

The Master is responsible for managing the cluster
coordinates all activities in your cluster, such as scheduling applications,
maintaining applications' desired state, scaling applications, and rolling out
new updates.
A node is a VM or a physical computer that serves as a worker machine in a
Kubernetes cluster

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Master/node processes

The Kubernetes Master is a collection of three processes that run on a single
node in your cluster, which is designated as the master node. These processes
are:

kube-apiserver
kube-controller-manager
Kube-scheduler

Each individual Node in your cluster runs two processes:
kubelet, which communicates with the Kubernetes Master.
kube-proxy, a network proxy which reflects Kubernetes networking services on each node.

Moreover, each Node runs a container runtime (like Docker) responsible
for pulling the container image from a registry, unpacking the container,
and running the application.

A Kubernetes cluster that handles production traffic should have a minimum of three nodes

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Objects

Kubernetes contains a number of abstractions that represent the state of your
system: deployed containerized applications and workloads, their associated
network and disk resources, and other information about what your cluster is
doing.

These abstractions are represented by objects in the Kubernetes API.
The basic Kubernetes objects include:

Volume
Namespace
Deployment
Pod
Service

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Deployment

Once you have a running Kubernetes cluster, you can deploy your
containerized applications on top of it. To do so, you create a Kubernetes
Deployment configuration.
The Deployment tells Kubernetes how to create and update instances of
your application. Once you've created a Deployment, the Kubernetes
master schedules application instances onto individual Nodes in the
cluster.
Once the application instances are created, a Kubernetes Deployment
Controller continuously monitors those instances. If the Node hosting an
instance goes down r is deleted, the Deployment controller replaces it.
This provides a self-healing mechanism to address machine failure or
maintenance.
In a pre-orchestration world, installation scripts would often be used to
start applications, but they did not allow recovery from machine failure.
By both creating your application instances and keeping them running
across Nodes, Kubernetes Deployments provide a fundamentally
different approach to applications

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Pod

A Pod is the basic building block of Kubernetes. It represents a
running process on your cluster.
A Pod encapsulates an application container, storage
resources, a unique network IP, and options that govern how
the container(s) should run.
Pods that run a single container. The “one -container - per -
Pod” model is the most common Kubernetes use case; in this
case, you can think of a Pod as a wrapper around a single
container, and Kubernetes manages the Pods rather than the
containers directly.
Pods that run multiple containers that need to work together. A
Pod might encapsulate an application composed of multiple co -
located containers that are tightly coupled and need to share
resources. The Pod wraps these containers and storage
resources together as a single manageable entity.

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes Services

A Kubernetes Service is an abstraction which defines a
logical set of Pods and a policy by which to access it.
Although each Pod has a unique IP address, those IPs are
not exposed outside the cluster without a Service. Services
allow your applications to receive traffic.
Services match a set of Pods using labels and selectors, a
grouping primitive that allows logical operation on objects in
Kubernetes.
Labels are key/value pairs attached to objects and can be
used in any number of ways:

Designate objects for development, test, and
production
Embed version tags
Classify an object using tags

<numb
er>

mailto:ciangottini@infn.it

ciangottini@infn.it - INFN - #SOSC24

Kubernetes as a Service

Deploying and managing a Kubernetes cluster is generally not trivial (that’s why
Minikube was introduced), since it requires effort and several skills.

It would be nice to automatize this part as well, and focus just on deploying
our containers on a Kubernetes cluster that somebody else instantiates for
us.

Many Cloud providers give us just that: a Kubernetes as a Service.
Amazon provides what they call the “Elastic Container Service for Kubernetes”, or
EKS for short. Other providers have similar offerings.
INFN Cloud also offers its own

Monitoring tools: Headlamp or Portainer

<numb
er>

mailto:ciangottini@infn.it
https://headlamp.dev/
https://www.portainer.io/

ciangottini@infn.it - INFN - #SOSC24

Tutorial ref K8s

https://kubernetes.io/docs/tutorials/kubernetes-basics/

Here you can see in 4 episode, what it took to build the SOSC platform you are
using right now (trivial issues included):
Link to youtube series

On Thursday we will see how all of that can be further simplified!

<numb
er>

mailto:ciangottini@infn.it
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://www.youtube.com/playlist?list=PLnm27H265Le4X3UtVLpkZDyZCc_yoV-i6

ciangottini@infn.it - INFN - #SOSC24

Docker compose vs Kubernetes

We have seen (with different degrees of in-depth analysis) the three current
major solutions for container or resource orchestration.
Question now should be: which one to use ?
Some general considerations on when to use what:

Docker Swarm/Compose for smaller projects and for testing purposes.
Easy to use if you are already familiar with Docker.
For larger, enterprise-like solutions, Kubernetes. It’s also “the Google way
of doing it”. But mind the rather steep learning curve.

<numb
er>

https://www.youtube.com/watch?
v=9_s3h_GVzZc

mailto:ciangottini@infn.it
https://www.youtube.com/watch?v=9_s3h_GVzZc
https://www.youtube.com/watch?v=9_s3h_GVzZc

https://labs.play-with-k8s.com

https://labs.play-with-k8s.com/

