Plans for testing during EC assembly

Marianna Testa LNF-INFN ITK OEC Integration Workshop in Otranto (LECCE)

With many contributions from Z. Chubinidze, B.Buadze, L.Vannoli, G. Cesarini, E. Dane', P. Albicocco, M. Beretta

Overview of EC Testing during Integration

	Power mode	Cooling	Granularity
Insertion of individual HR	LP	Convective	After each HR insertion
Fully populated HS	Normale	CO ₂ "cold"	2 (1) steps for HS of L2-L4 (L3)
Thermal Cycle HS	off	Climate chamber	
Complete layer	LP	CO ₂ "warm" and/or climate chamber	2 (1) steps per HS of L2-L4 (L3)
Complete layer after manifold welding	LP	Reduced flux CO ₂ "warm" and/or climate chamber	2 (1) steps per HS of L2-L4 (L3)
Full EndCap	LP	Reduced flux CO ₂ "warm" and/or climate chamber	2 (1) steps per HS of L2-L4 (L3)

13/14 July 2021

EC Testing during Integration

0. Half-ring reception test 1.insertion of services – cooling lines, data/pwr cable - and test 2.Insertion of half-ring with silicon modules 3.Low Power mode connectivity test 4. Testing connectivity with cold CO₂. 5. Thermo-cycles test with detector Off 6.Testing again connectivity with cold CO₂ 7. Mating couple of halfshells to form a layer 8. Testing connectivity of complete layer cooling with Lp mode /warm CO2 9.Bring layer on platform 10.Repeat for the three layers 11. Final test on transport box

ITkPixelIntegration-ElectrialEquipment-v10_docx_cpdf.pdf

Insertion of cooling type-1 services

S. Coelli A. Capsoni

Simone Slides

- Type 1 pipes and capillaries will be isolated from halfshells or any other conductive surface using ULTEM clip
- The resistance to the support structure will be measured and recorded to ensure compliance with the grounding and shielding including ground fault monitors specifications
- See L. Vannoli talk for baseline proposal and functionality
- If pipes are grounded, GFM can spot unwanted connections
- TBD: Do we want to keep it during all integration tests?

Cooling system in PP1 Volume

- PP1 EC cooling manifold installed during EC integration
- Two welds after piping installation on HS
- Other welds after HS mating
- Leak test, pressure test @ 162 Bar, leak test
- In case of failure, remove remove the entire piping, rework in workshop and restart the process or we can use another brand new one set of pipings

Connection to CO₂ plant

Type-1 services insertion

Test after Insertion of data/pwr and env type-1 services

Data Connectivity			
Already Tested	To be tested after insertion		
Twinax bundle and terminations on insertion tools before installation	Eletr. Continuity between Twinax bundle terminations		
Fibers & their connectors			
Twinax Extensions			
Mapping extensions-optoboards-felix			
Electrical Connectivity			
Already Tested	To be Tested after insertion		
Type-1 pwr and env. bundles and termination on insertic tools before installation	Electr. continuity from PP1 connectors to PCB termination		
PP1 connectors, Type2, Type3 cables (all off-detector cables)	Mapping of pwr and env bundles - PP2/PP3 - PSU		
	Env. Sensors respone with Localized heat input / 'cold-spray' (check on humidity sensors TBD).		

AT

Test after insertion of Half-Rings & connection to Electrical services

- After insertion, before connecting the services, the HR should be electrically isolated from HS through mounting lugs
- After services are connected, the HR are grounded through PP1 connectors
- Grounding through Type2,PS,..?
- GFM can spot unwanted connection
- See L. Vannoli presentation for baseline proposal

Connectivity Test on each HR before and after welding with Low Power Mode

Test after HR insertion: Setup

- Connect the type-2 cable to PP1 connectores
 - If structure holding PP1 connectores is not stiff enough need an external trolley to support type-2 cables
- Optopanel installation on the cradle
 - Connections between extenders and twinax bundles
- Fans installation
- Convective cooling demonostrated with HR prototype (Z. Chubinidze, B. Buadze, backup)

Test after HR insertion: Setup II

- To test EC we would need 4 M and 3 N type optoboxes
- But during EC integration we may use only 4 M optoboxes, if we change SW configuration
- First proposal from Bern group: Optopanel should contains 4 optoboxes
- The optoboxes can then be screwed on mounting plates, to bed designed by ourselves

Test after HR insertion: LP mode

- Connectivity Test on one HR at the time
 - LV lines:
 - chip register reading: NTC T, VinA, VinD
 - MOPS reading of module V and T
 - data transmission:
 - Uplink: digital scan and BERT
 - Downlink: Configure a FE in each module
 - Tilock
 - HV lines: work in progres
 - PS accuracy ~50 nA not to spot individual modules
 - Option: small bias and light from LED as studied in OB
 - Preferably do not use dark enclosure

Welding

- Leak test
- Pressure test 162 bar
- Leak test
- Re-test connectivity one HR at the time after welding to check no damage to module or services
- Repeat until Half-shell is populated
- Choice about gas (Ar in SR1) to be made by the responsible of the welding

Functional and Connectivity test on populated HS with cold CO₂

Functional test on populated Half-Shell

Previous Step: connectivity of individual HRs with LP mode	Current Step: populated HS
Electrical and Data connectivity for each HR	CO ₂ Cooling
	GS cooling
	Overall connectivity at low T
	Thermal cycles
	 Post-thermal cicle connectivity at low T

Full equipment for EC integration in <u>ITkPixeIIntegration-ElectrialEquipment-v10_docx_cpdf.pdf</u>

Test step	Detector Tested Section	Number of Serial Power Chains	NumberData(Up/Down)Links	
1/6	5 HR L2 (0.5 link/FE) left/right 10		160/80	
2/7	/7 6 HR L2 (1 link/FE) left/right 12		384/96	
3/8	8 HR L3 (0.5 link/FE) left/right		352/176	
4/9	/9 4 HR L4 (0.25 link/FE) left/right		104/104	
5/10	5 HR L4 (0.5 link/FE) left/right	10	182/130	

Table 2: Table of testing steps for one half-shell of layers 2, 3 and 4 of one EC.

The largest testing step and thus required equipment is step 3.

- 4 PP1 connector, 4 type-2 cables,
- 1 Env-terminal PP1 connector (2 wire T-sensor), 1 Extra Env PP1 connector, 2 Env. Type-2 cable
- 2(4) LV(HV) PSU
- 32 twinax bundles, 3 trunk fibers
- •

. . .

Interlock

- PLC handles environmental sensors insides test box
- PLC provides outputs for LISSY interlock matrix
- Need to define number of sensor to proceed with order, common to OB

PLC inputs

PLC INPUT SIGNALS	All signa	als are processed in the interloc	k matrix	
			Rang	ge
Sensor type/name	Qua	ntity Signal	from	to
Door switch	1	2 DIGITAL INPUT	0 V	24 V
Dewpoint sensor	4	ANALOG CURRENT	4 mA	20 mA
Flow meter	1	ANALOG CURRENT	4 mA	20 mA
emergency button	1	DIGITAL INPUT	0 V	24 V
CO2 plant flow moni	tor to check cooling	with ANALOG VOLTAGE		
CO2 plant status		DIGITAL INPUT	0 V	5 V
Light Sensor	3	твр	TBD	
Smoke Sensor	1	ANALOG CURRENT	30uA	25mA
Spares	2	ANALOG CURRENT		
Spares	2	DIGITAL INPUT		
PLC OUTPUT SIGNALS				
EMERGENCY off (fo	orce off) 1	DIGITAL OUTPUT	0 V	24 V
box bad	1	DIGITAL OUTPUT	0 V	24 V
light bad	1	DIGITAL OUTPUT	0 V	24 V
cooling bad	1	DIGITAL OUTPUT	0 V	24 V
Spares	2	DIGITAL INPUT		

•Starting list from Outer Barrel edms doc

• In red proposal modification for Endcap

•Note: the PLC will be same for EC and OB. The requested channels will be the sum of the two.

13/14 July 2021

Test on populated Half-Shell: Setup

- Move HS into climate chamber which serve also as test box
- Connect type 2 cables
- Connect twinax extensions
- Need EB between cooling transfer lines from lucasz plant and on-detector cooling pipes to reduce noise fr
- GFM is connected

OEC Half-cylinder integration & test

- Move HS into climate chamber which serve also as test box
- Function cold test
 - Dew Point < -60 C
 - $T_{ev CO2} \sim -15 C$
 - Normal powering mode
 - Digital, Analog, Threshold scan, Disconnected bumpbond scan
- Thermal cycle [+40 45C]
 - Detector Off
 - All service can be kept inside (TBC)
- Repeat cold test

Connectivity test on Complete layer

HS mating

HS mating (continue): alignment

- Tool is sitting on 3 points allowing vertical, horizontal and angolar movements
- The empty HS are pre-aligned (SL 5)

Length

Distance

- After HS loading, re-adjust alignment if needed
- An optical survey of the tool and of the detector foreseen with a laser tracker.

Manifold weldings in PP1 volume

To be decided: electrical test before and after manifold welding?

Tool to move Layer

- Under design a movable platform which supports the central tool
- Passive and active pillars (only active shown in the pictures) passing through the fixed platform at the floor level
- Embedded wheels or external spring wheels

Test on full layers: Setup

Climate chamber or external box

- Connect type 2 cables
- Connect twinax extensions
- Plug and un-plug type-2 cables from PP1 connectors and twinax extension from termination board, to test all detector regions

Test on complete Layer: LP test

- Connectivity Test for complete layer
 - Use Lowe Power mode
 - Cooling through climate chamber
 - Demonstrated with prototype with.
 T_{air} ~ 35 C (Z. Chubinidze, B. Buadze)
 - CO₂ cooling is still possible

- LV lines:
 - chip register reading: NTC T, VinA, VinD
 - MOPS reading of module V and T
- Data transmission:
 - Uplink: digital scan and BERT
 - Downlink: Configure a FE in each module
- HV lines: Under Investigation. Can not use light because structure is closed
- Tilock and MOPS readback

Complete Endpcap

Endcap test in Transport Box: Setup

- Support structure for Optopanel insed
 - Connect type 2 cables
 - Connect twinax extensions
- Connect CO₂ lines
 - Cooling with halved Flux in LP mode demonstrted with HR prototype (backup)
- Plug and un-plug type-2 cables from PP1 connectors and twinax extension from termination board, to test all detector region

Transport Box

S. Tomassini

Design of Dumping System on going

Reception Test at SR1

- Use Transport Box as Enclosure
- Feedthoughs for services and CO₂ pipes
- Same testing steps as in integratino sites
- Same equipment used in Integration site
- At SR1 no cooling limitation
 - Test with CO₂ there instead of a LP mode for the final tests in integration site

Test step	Detector Tested Section	Number of Serial Power Chains	NumberData(Up/Down)Links
1/6	5 HR L2 (0.5 link/FE) left/right 10		160/80
2/7	2/7 6 HR L2 (1 link/FE) left/right 12		384/96
3/8	8 HR L3 (0.5 link/FE) left/right	16	352/176
4/9 4 HR L4 (0.25 link/FE) left/right		8	104/104
5/10	5 HR L4 (0.5 link/FE) left/right	10	182/130

Table 2: Table of testing steps for one half-shell of layers 2, 3 and 4 of one EC.

ITkPixelIntegration-ElectrialEquipment-v10_docx_cpdf.pdf

Connectivity test on completed layers

Previous Step: tests on HS	To be tested	How?
 Overall connectivity at low T pre and after thermal cycle on individual HS CO₂ Cooling 	Connectivity of complete layer after mating	 Pending: tests before or after (preferred) welding of manifolds Granularity same as for individual HS Cooling options Low pow mode in climate chamber Nominal (Small) flux CO₂ + low power mode if manifolds are not (are) welded Nominal (Small) flux CO₂ + low power mode in climate chamber if manifolds are not (are) welded Short connectivity test: configure one module per SP chain all return data lines with digital scan or electrical&optical alignment
32	Marianna Testa	ATLAS X ITK

Connectivity test on complete endcap

Connecivity test on complete endcap

Already checked in previous steps	To be tested	How
Overall connectivity	Full endcap connectivity	Granularity same as for individual HS
 For HS at low T CO₂ For completed layer at high T CO₂ and/or LP mode 	 Final Comissioning Test Reference for SR1 post-shipment test 	 Where: TBD in shipping box or climate chamber Cooling options Low pow mode in climate chamber Small flux CO₂ + low power mode Small flux CO₂ + low power mode in climate chamber
		 Test: Short connectivity test: configure one module per SP chain all return data lines with digital scan or electrical&optical alignment
34	Marianna Testa	ATLAS X IT

Completed Endcap

- All mainfolds are welded →CO2 flux reduced by 2
- Final reference warm test to be compareted with reception test at SR1

Cooling Options

- Low pow mode in climate chamber
- Small flux CO₂ + low power mode
- Small flux CO₂ + low power mode in climate chamber

Services handling during test on full layers

Climate chamber or external box

- Connect type 2 cables
- Connect twinax extensions
- Plug and un-plug type-2 cables from PP1 connectors and twinax extension from termination board, to test all detector region
- No need to change Outlines • from Optopanels

Reception Test at SR1

• Same Testing step and

ITkPixeIIntegration-ElectrialEquipment-v10 docx cpdf.pdf

• Same Equipment used in Integration site

Test sten	Detector Tested Section	Number of Serial	Number Data		
		Detector rested Section	Power Chains	(Up/Down) Links	
	1/6	5 HR L2 (0.5 link/FE) left/right 10		160/80	
	2/7 6 HR L2 (1 link/FE) left/right 12		384/96		
	3/8	8 HR L3 (0.5 link/FE) left/right		352/176	
I	4/9 4 HR L4 (0.25 link/FE) left/right		8	104/104	
	5/10	5 HR L4 (0.5 link/FE) left/right	10	182/130	

- At SR1 no cooling limitation
- We may have a test with CO2 there instead of a LP mode for the final tests in integration site

Reception Test at SR1

- Feedtough still to be designed
- Support for Optopanel i(not shown) is inside

Optoboard servicesType-2 cables

Test on Thermal HR in small climate chamber

- Preliminary, work in progress
- Rough enclosure to emulate low air conduction regime; less volume wrt to <u>LNF WS slides</u>

Next steps:

• Aluminium HRs with heaters to emulate neibourgh HRs

Z. Chubinidze, B. Buadze

Test on Thermal HR with CO2

Thanks to Ian, Jo, Alex, Paki for providing us the Fred-fittings!

Z. Chubinidze, B. Buadze C. Ligi, M. Beatrici, G. Cesarini

ATI

Speaker - Title

13/14 July 2021

Test on Thermal HR with CO2

Goal:

- Study T distribution of heater in Low Power mode_in nominal and halved CO2 flux, before and after manifold welding
- Study Dry Out condition

Limitation:

- Heater Resistance inhomogenity of ~%30
- Only L2 HR available

Methodology:

- Configurations with
 < 3 W > and < 3.5 W > and < 10 W >
- average power among heaters
 - <10 W > Max power with current PS
 - Cover the L4 case
- Configurations with 2.0, 1.0 and 0.5 g/s
- Configurations with set T $CO_2 = 5$, 13 C

Flux per HR [g/s] from plant	L2	L3	L4
Before Manifold Welding	1.7	2.2	2.0
After Manifold Welding	0.8	1.1	1.0

Power per HR (W)(*)	L2	L3	L4
Low Power Mode	~48	~66	~ 78
Nominal Power (SF 1.2)	224.8	309.0	365.2

(*) Assume 3W per module in Low power mode; neglecting other power contributions

13/14 July 2021

Raw Measurements

G. Cesarini, Z. Chubinidze, C. Ligi, B. Buadze

T on heaters along HR with CO_2 set T = 13 C

- Stable T on HR in direction of CO2 flux with 2 g/s and 1 g/s
- Increasing T with 0.5 g/s and 10 W
- Further test will be performned to study the effects of dependence on enclosoure thermal conducibility
- Do we expect effects from nearby HR ?

T on heaters along HR with CO_2 set T = 5 C

- Stable T on HR in direction of CO2 flux with 2 g/s and 1 g/s
- Increasing T with 0.5 g/s and 10 W
- Further test will be performned to study the effects of dependence on enclosoure thermal conducibility
- Do we expect effects from nearby HR ?

Lucasz plant configuration

2 g/s 3 W 13 C

1 g/s 3 W 5 C

Are this sub-cooling conditions expected? Do we need in general needle valve?

Speaker - Title

13/14 July 2021

AT

Functional test on populated HS: G&S. Cooling scheme

• When testing with CO2, proper G&S scheme should be adopted

 Need EB between cooling transfer lines from lucasz plant and on-detector cooling pipes to reduce noise fr

27/05/24

Connectivity Test with Low Power Mode

Data Connectivity

Already Tested on the HR	Already tested after twinax harness installation	To be Tested
Module-PP0	Electrical continuitiy of twinax cables	Twinax – PP0 connectivity
		Mapping twinax- extensions- optoboard- felix

- **Granularity:** one PPO-twinax-extension per time
- Switch on modules in LP mode.
- DAQ Felix-Module basic connectivity :
 - Optical and electrical alignment
- **Downlink** checks from Felix to Modules:
 - Configure a FE in each module
- **Uplink** check: digital scans / BERT

Electrical Connectivity					
Already Tested on HR side	Already tested on type-1 cable side after insertion	To be Tested			
Bus Tape-EoS (HV,LV, Vcan,Canbus, T- ilock)	Electrical continuity between type-1 cable termination	Type1 bundle - EoS connection			
	Mapping of pwr and env bundles - PP2/PP3 - PSU				

- Granularity: one Type1 bundle per time
- Connectivity of HV/LV/Canbus/Vcan/ T-lock lines
 - Switch on modules in LP mode.
 - LV lines:: Register Reading
 - HV lines: PS not enough sensitivity. Alternatives under investigation.
 - Canbus Line: MOPS reading with PP3
 - T-lock lines: NTC reading

Low Power Mode on Thermal Half Rings using Fans

Heaters with P>3W	C7	C 8	A 7	C2	C5	C6
Air velocity m/s	3.3	3.2	3.6	5.3	4.2	4.3

More details in

air velocity >= 3.2 m is enough to maintain T<40 C

Z. Chubinidze

HR SideA Heater Power A5[W]

HR_SideC Heater_Power_C7[W]

17:28:00

Side A-C Temperatures

40 °C

38 °C

32 °C 30 °C 28 °C

24 °C

Test on Thermal HR in small climate chamber

- Preliminary, work in progress
- Rough enclosure to emulate low air conduction regime

Further tests will come with CO2 flux

Z. Chubinidze, B. Buadze

Mating of Half-shell

FARO Laser Tracker Vantage: Measurement of the target position (contact measurement)

Point to Point Accuracy***

In-Line Distance Measurement								
Lei	ngth	2-5m (6.6-16.4ft)	2-10m (6.6-32.8ft)	2-20m (6.6-65.6ft)	2-30m (6.6-98.4ft)	2-40m (6.6-131.2ft)	2-60m (6.6-196.9ft)	2-80*r (6.6-262.)
Dis	tance	3m (9.8ft)	8m (26.2ft)	18m (59ft)	28m (91.9ft)	38m (124.7ft)	58m (190.3ft)	78m (255.9f
W	MPE	0.018mm (0.0007'')	0.022mm (0.0009*)	0.030mm (0.0012'')	0.038mm (0.0015")	0.046mm (0.0018'')	0.062mm (0.0025*)	0.078m (0.0031
AD	Typical	0.009mm (0.0004")	0.011mm (0.0004")	0.015mm (0.0006")	0.019mm (0.0008")	0.023mm (0.0009")	0.031mm (0.0012")	0.039m (0.0015

"With selected largets. "*Product complies with radiation performance standards under the food, drug, and cosmetics act and international standard IEC 60825-1 2001-08. ***MPE and all accuracy specifications are calculated per ASME 889.4.19 - 2006. Variation in air temperature is not included. Specifications, descriptions, and technical data may be subject to change. ***With integrated weather station. Protected by U.S. patents: 7,327.446 7,352.446 7,466.401 7,701,559 8,040,525 8,120,780

Н	Horizontal Scale Bar Measurement (2.3m, 7.55ft)								
Ra	inge	2m (6.6ft)	5m (16.4ft)	10m (32.8ft)	20m (65.6ft)	30m (98.4ft)	40m (131.2ft)	60m (196.9ft)	80°m (262.5ft)
W	MPE	0.044mm (0.0017")	0.064mm (0.0025*)	0.099mm (0.00397)	0.170mm (0.0067")	0.240mm (0.0095'')	0.311mm (0.0122")	0.453mm (0.0178')	0.594mm (0.0234")
AD	Typical	0.022mm (0.0009*)	0.032mm (0.0013*)	0.049mm (0.0019")	0.085mm (0.0033")	0.120mm (0.0047")	0.156mm (0.0061")	0.226mm (0.0089*)	0.297mm (0.0117)

Status of datase extenders extension

- Ordered 6x data extender prototypes for electrical test
 - 3x 2m, 3x 3m

Prototypes expected in ~2months

- Mechanical aspects are still to be evaluated:
 - the definition of the termination boards position and orientation on trolley are not available
 - Tehcnical design and mapping in backup slides

G. Cesarini

Feedthrough Options

Reception Test and Transport Box

- Preliminary design: $L \times W \times H = 4250 \text{ mm} \times 2200 \text{ mm} \times 2000 \text{ mm}$ •
- To be checked: space for optopanel trolley
- Note: The width of the door in SR1 is slightly more than 3000mm •

200

0.11

Test of pwr bundles on trolley

4) harness dressing on EC/tro	olley jig:						
routing & fixa	ation on loom:						
	mounting of E	oS connectors					
	cable routing v	within EC, with	CTE expansion	loops			
	cable routing a	round EC endfl	ange				
	cablelooming	between endfla	inge and PP1 (t	o remain after	assembly)		
cable routing toward			vards trolley & storage/coiling of excess cabling				
	PP1 connector	mounting/adj	ustment (in ext	ended trolley	position)		
test of transit	ion of trolley cor	nfiguration betw	veen expanded	l and retracted	position		
5) post dressing QC testing:							
connection o	f non-data cable	s (both sides)					
non-data cab	non-data cable harness connectivity test (LV)						
disconnection of non-data cables (both sides)							
analysis / QC	decision & docur	nentation non-	data cables				

Stolen from S. Eisenhardt harnesses timeline

Test of env. bundles on trolley

4) harness	dressing on EC/tro	lley jig:							
	routing & fixation on loom:								
	mounting of vo			(2-wire)					
		cable routing	within EC, with	CTE expansion I	oops				
		cable routing	around EC endfl	ange					
		(transport cor	npatible) mount	ting of cooling l	oop T-sensors (2-wire)			
		cable routing	within EC, with	CTE expansion l	oops				
		cable routing	around EC endfl	ange					
	(transport co			mpatible) mounting of manifold T-sensors (2-wire & 4-wire)					
		cable routing	around EC endfl	ange					
		cablelooming	g between endflange and PP1 (to remain after assembly)						
		cable routing	g towards trolley & storage/coiling of excess cabling tor mounting/adjustment (in extended trolley position)						
		PP1 connecto							
	test of transit	ion of trolley co	nfiguration betw	veen expanded	and retracted p	osition			
5) post dre	ssing QC testing:								
	connection of env cables (PP1								
	non-data cable harness conne								
	disconnectio	n of env cables (F	PP1 side)						
	analysis / QC o	decision & docu	mentation env o	ables					

Cooling temperature and environmental sensors are installed. Electrical connectivity tests will be made to ensure that those sensors and their associated cabling are free from damage. Localized heat input / 'cold-spray' will be used to make sure the sensors respond appropriately (need to understand how best to check humidity sensors).

Test of data bundles on trolley

4) harness dressing on EC/tro	olley jig:					
routing & fixa	ation on loom:					
	mounting of da	ata pigtail conn	ectors			
	cable routing v	withing EC, with	n CTE expansion	loops		
	cable routing a	around EC endfl	ange			
	cablelooming	between endfla	ange and PP1 (to	o remain after a	assembly)	
	cable routing t	owards trolley	& storage/coili	ng of excess cab	oling	
optoboard adaptor mount			;/adjustment (ir	n extended trol	ley position)	
test of transit	ion of trolley cor	nfiguration betw	ween expanded	and retracted	position	
5) post dressing QC testing:						
connection of data cables (both sides)						
data cable ha						
disconnectio	both sides)					
analysis / QC	decision & docur	nentation data	cables			

Stolen from S. Eisenhardt harnesses timeline

Status Infrastrucure: Lucasz Plant at LNF

C. Ligi, G. Cesarini

Feature	Performance
Cooling loop maximum flow	10g/s per loop 🛛 🖌
Total plant flow	20g/s
Min evaporating T	-30°C, depending on heat load, see graph
Max evaporating T	+18°C
Number of cooling loops	#2
Max DP across cooling loop	<15 Bar
Cooling loop max power	2000 W
Dimensions (LxWxH)	1125/1475* x 1300 x 1820 *Lite/Full version

- Merging of lines to reach 20 g/s
- With VP = 0.5 proposal:
 - $T_{C02 evap}$ -15 C for cold test
 - $T_{C02 evap}$ +15 C for warm test

