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Main Goal of the Talk

e The main goal of the talk is to train neural network models, such as the Long Short-Term Memory (LSTM)
Model and Convolutional Neural Network (CNN) Model, using various hyperparameters like loss functions,
activation functions, different numbers of neurons, batch sizes, and varying numbers of epochs. These
models are trained for a two-step reconstruction algorithm, which involves peak finding and clusterization

e For the peak finding algorithm, a trained LSTM model is used to discriminate between
ionization signals (primary and secondary peaks) and noise in the waveform, addressing a
classification problem

e Concurrently, a Convolutional Neural Network model is utilized to determine the number of
primary ionization clusters based on the detected peaks, dealing with a regression problem

e It should be noted that the trained models (LSTM and CNN) are applied to simulations based
on Garfield++
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Cluster Counting in Drift Chambers

Drift in DC cell
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e A charged particle is passed through mixture of gases (90% He and 10% C4H10) generate
electron-ion pairs causing a read out signal (induce current)

 Task:

* Both primary electrons and secondary electrons contribute to peaks in the waveform
* Find the number of peaks from primary electrons

* Two step reconstruction algorithm:

* Peak finding: Find all peaks (primary and secondary) in the waveform

* Clusterization: Determine the primary peaks from the founded peaks in step 1
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Cluster Counting vs dE/dx
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Deep-Learning-Based Algorithm

e Deep learning: Learn rules from large amount of datasets

« Specifically, for cluster counting reconstruction:
* Machine learning can make full use of the waveform information, not only
information of pulse rising edge (e.g. derivative algorithm).
« Machine learning can learn the hidden relationship in data (signal/noise
characteristics, timing structure of primary/secondary peaks).
* The reconstruction can easily be defined as classification and regression
= apply mature ML tools like TensorFlow, Keras etc.
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Simulation Based on Garfield ++
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° Following the simulation in Garfield++, |
proceeded to plot various results for the study of
the cluster counting techniques Experimental measurement
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° The simulation package creates analog induced
current waveforms from ionizations. The
digitization package incorporates electronics
responses taken from experimental
measurements and generates realistic digital
waveforms
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Simulation Based on Garfield ++
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The above distribution shows the number o
primary electrons per cluster with mean
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Two-Step Reconstruction Algorithm

Step1: Peak Finding

Waveform
X1 > LSTM |—>

X9 » LSTM —>»
125 ¢ ]
gloo % —>
L X3 » LSTM —>»| 5

0 500 1000 1500 2000 2500 Xn > LSTM >
A classification problem to classify ionization
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» Labels: Signal or Noise

» Features: Slide windows of peak candidates, with a shape of (15, 1)
noises in the waveform by using Long Short Term » The data of waveform is time sequence data, which is suitable for

Long short Term Memory (LSTM) model
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Evaluation by Waveform
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Performance of the LSTM Model
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The above plot loss VS epoch show us
that the training and validation loss
decreases over the epochs and then it
become approximately constant which
shows a best trained model
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Performance of the LSTM Model

Receiver Operating Characteristic (ROC) Curve
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The above plot show ROC curve for the
LSTM model with Area under the curve
alue 0.97 with threshold value 0.5 which
show a best classification
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Step2: Clusterization
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Performance of the CNN Model
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The above plot loss VS epoch show us that the The above mean absolute error VS
training and validation loss decreases over the epoch show us that the training and

epochs and then it become constant shows us a best validation loss decreases over the
epochs and then it become constant

shows us a best trained model
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Predictions of the Ncis by CNN Models
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e Number of Primary ionized clusters with mean value (18.94) predicted by CNN
Model based on the detected primary peaks with mean value (19.89)

e Good Gaussian distribution
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Summary

e Particle identification (PID) is essential in most particle experiments

e Cluster counting (CC) in gaseous detector is the most promising breakthrough in PID due to potential of 3 times
better resolution than traditional method

e | executed the code pertaining to the simulation of particles traversing a gas mixture made out of 90% Helium
(He) and 10% Isobutane (C4H10) filling drift tubes with the same geometry of the one used for the beam test at
CERN in 2023

e Following the simulation in Garfield++, | proceeded to plot various results for the study of the cluster counting
technique

e A two-step reconstruction algorithm involving peak finding (Discriminate signal from background in the
waveform) and clusterization (Primary ionization clusters based on the detected peaks) was used in cluster
counting techniques

e For the peak finding algorithm, | trained Long Short Term Memory (LSTM) model by using mean square error
(MSE) as the loss function, sigmoid and rectified linear unit (ReLU) as activation functions, stochastic gradient
descent (SGD) as the optimizer, with a batch size of 250 and 200 epochs

e Concurrently, | trained Convolutional Neural Network (CNN) Model using mean absolute error (MAE) as a metrics,
Root mean square propagation as the optimizer, with a batch size of 250 and 200 epochs to determine the number
of primary clusters based on the detected peaks, dealing with a regression problem
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Future Planning

e Now. we will apply the trained models to the real beam test data to classify signals
from noise in the waveform and determine the number of primary clusters based
on the detected peaks

e Optimization of the pipeline for neural network hyperparameter scan and models
by using local HPC computing Infrastructure

e Test and deployment of the pipeline for machine learning optimization at the
National Computing center and use of Big Data Tools

e Optimization of the simulation tools for the cluster counting and automatized use
of the machine learning pipeline with real data
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ACCURACY and LSTM
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LONG SHORT-TERM MEMORY
NEURAL NETWORKS

LSTM Recurrent Unit
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Long SHort Term Memory (LSTM)
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EXAMPLES of LOSS FUNCTIONS

® Mean Squared Error(MSE)/ Quadratic Loss/ L2:

MSE(y?,y" ) = -

e Mean Absolute Error (MAE)/ L1 Loss:
MAE(y",y% ) =

’ Ipred

e Mean Bias Error (MBE):

MBE((y®,y? ) =
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NUMBER OF EPOCHS

e Epoch: In terms of artificial neural networks, an epoch refers to one cycle
through the full training dataset

e Number of epochs is a delicate choice:
A Alarge number of epochs can induce our model to an overfitting problem
A Too small number of epochs can lead to an under fitting problem

e To avoid a wrong choice we can use the ' EarlyStopping', also implemented by
Keras:
[ It allows to stop the training when a monitor (set by us and tipically the loss

function) has stopped improving.
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OVERFITTING PROBLEM

e The more complex the model is, the higher is

Overfitting in Training

the risk of overfitting 500 { — raining_loss
e Here a clear example of overfittig, the train o e
loss keeps going down while the validation ::Z
loss get worse. It is always important to split 0 1
the training in train and validation set and to -
have a clear picture of the train history 55
e |n order to avoid overfitting and make the b 20 40 &0 ®0 1000

num_epochs

training stable we have different approach
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FACING OVERFITTING PROBLEM

Overfitting in Training

e Introduce a callback function that i
stops the training if the validation w0
loss get worse and restore the best

300 1

parameters (Early Stop function).
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e Dropout: it refers to the practice of rum_epochs
disregarding certain nodes in a layer
at random during training. A dropout
is a regularization approach that O oA
prevents overfitting by ensuringthat 7 ) O T g
no units are co-dependent with one ;”;’{i"?'_'ff;:.-b
another :>
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ACTIVATION FUNCTION

e Most of them provides to add
non-linearity to the mode

e The activation function o has as

input the weighted sum of the
input variables x, added with
the bias b

e The functions are in general
differentiable operators in order
to transform the inputs to
outputs
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RECTIFIED LINEAR UNIT (RELU)

e One the most popular non-linear
activation function is the REctified Linear

(o))
i

relu(x)
£ -3

Unit (ReLU) .

e |t provides a non-linear transformation ottt | |
and returns the max value between the I
input x (the argument) and 0O ReLU(z) = maz(0, z)

e The RelLU function is also differentiable in
as given below:

dReLU(.’B) - 0 £ S 0 02
dx 1 x>0 Yl
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SCALED EXPONENTIAL LINEAR UNIT (SELU)

SELU activation function (a =1.6732 and A = 1.0507)

* Another choice is the Scaled Exponential Linear

3
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* The functions depends on two parameters and the
equation is the following: T
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x x>0 3
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