Progress on ePIC SVT @Bari

D. Colella, D. Elia et al.

(including support from INFN Bari services)

Meeting on Silicon Pixel activities in Bari, 25.3.2024

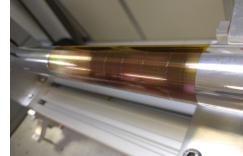
- Inner Barrel (IB)
 - Three layers, L0, L1, L2,
 - Radii of 36, 41, 120 mm
 - Length of 27 cm
 - X/X₀ ~ 0.05% per layer
 - · Curved, thinned, wafer-scale sensor

• Outer Barrel (OB)

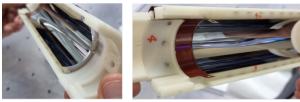
- Two layers, L3, L4
- Radii of 27 and 42 cm
- + X/X $_{\rm 0}$ ~0.25% and ~0.55%
- · More conventional structure w. staves

• Electron/Hadron Endcaps (EE, HE)

- · Two arrays with five disks
- X/X₀ ~0.25% per disk
- More conventional structure


- Inner Barrel (IB) Outer Barrel (OB)
- Lengths for L2—L4 increase so as to project back to z = 0; disk radii adjust accordingly

ePIC SVT IB interested institutions


INFN (DE for Bari, Padova, Pavia, Trieste)

- Focus on L0/L1
- Mechanics/conceptual design of the IB innermost layers:
 - \checkmark definition of the bending and assembly procedure
 - ✓ development of the layer support structure
 - \checkmark explore interconnection to sensors
- Cooling:
 - build dedicated prototype same as for mechanics studies (suitable for wind tunnel tests)
 - test of thermal properties for embedded silicon in a thermal chamber
- Workforce (FTE in 2024):
 - ✓ Research: ~2-3
 - ✓ Mech Eng & CAD: ~0.5
 - ✓ Mech Tech: ~0.5

ePIC SVT IB interested institutions

Towards SVT IB concept \rightarrow map of interests/contributions:

 integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:

uuui

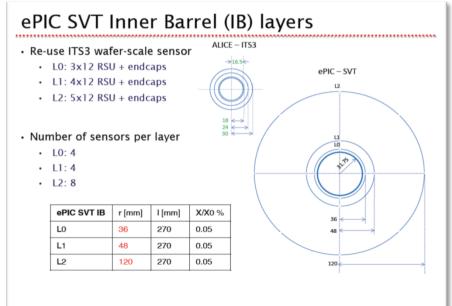
BERKELEY LA

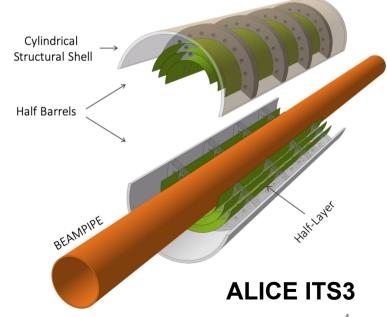
INF

- ✓ develop bending procedure, eg L0 (similar for L1)
- ✓ extend to L2 considering additional issues
- ✓ design L0/L1 and L2 support structures
- integration of the cooling needs
- ✓ development of the edge FPC(s)
- choice of the cooling:
 - ✓ simulation studies with ANSYS Physics
- thermo-mechanical prototypes:
 - ✓ build prototypes for both L0/L1 and L2
 - perform dedicated tests of prototypes in wind tunnel
 - \checkmark test of embedded silicon thermal properties in a thermal chamber
- support structure within the subsystem to keep everything together
 - ✓ connection of L0/L1 to L2
 - explore needs for a (light) supporting external shell (to L2)

l'liiT

Physics


14117


Physics

Basic assumptions:

- use the ALICE ITS3 wafer-scale sensor
- adapt ITS3 detector concept to the (larger) ePIC radii

→ mechanics, services and cooling of the SVT IB need specific development

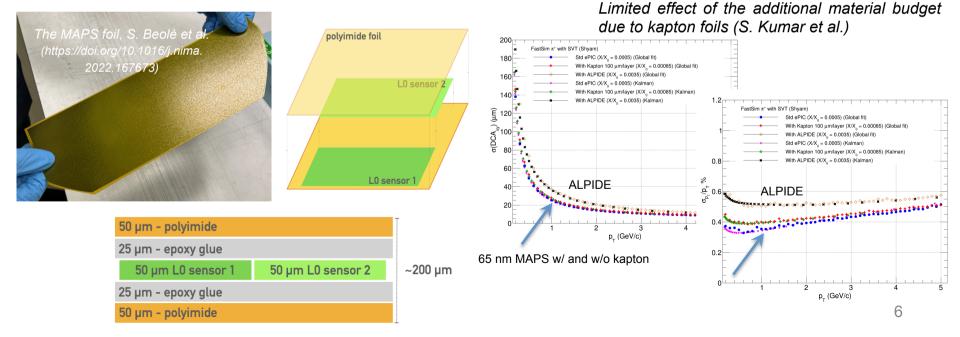
Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

Main differences & challenges wrt ITS3:

- x2 larger radius (18 → 36 mm)*
- need to bend 2 sensors for each half-layer
 * will increase to ~19/~38 mm with ITS3 ER2/3 sensors

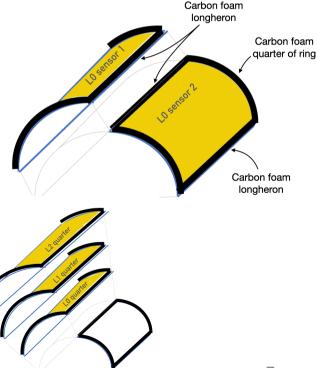
Possible strategies:


- embedding (2 sensors): try to exploit "embedding" the two sensors in kapton foils and bend them as a single object → halflayer based assembly
- independent bending: bend each of the two sensors separately and glue them on independent support structures → quarter-of-layer based assembly

Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

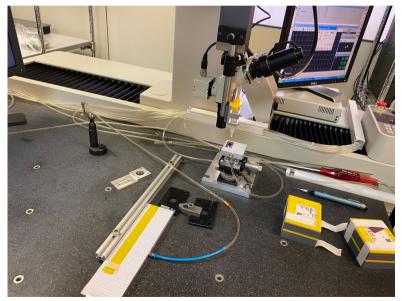
Towards SVT IB concept:


- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

Independent (single sensor) bending strategy:

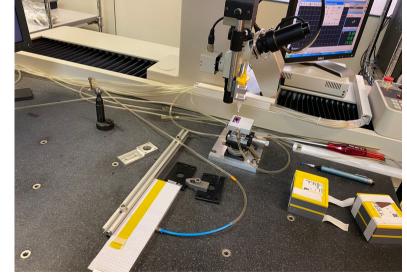
- avoids complications connected to embedding
- introduces further steps and potential issues on positioning procedure and mechanical stability of the bent sensors
- implies that the full IB (or maybe L0+L1) would be built in mechanically independent quarters to be precisely positioned together in the subsequent final assembly*

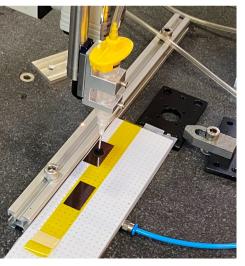
*This basically follows the same strategy used by ITS3 for bending the single sensors (kept on the mandrel by adhesive tape) and assemblying the detector (glueing from outermost to innermost) \rightarrow the assembly of SVT IB will proceed in quarters of layers and not (as for ITS3) in half-layers

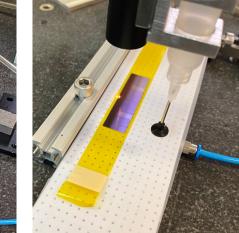

First tests performed in clean room @INFN Bari:

- sensor encapsulation in kapton adhesive tape
- encapsulated sensor bending

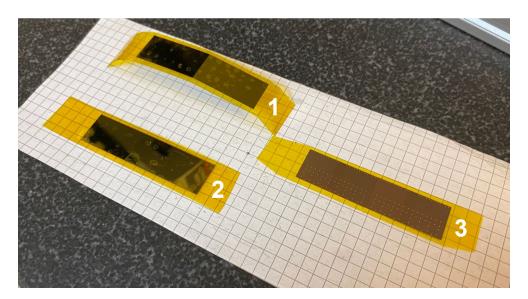
Synergy with ITS3/ALICE 3


Mitutoyo machine equipped with alignment vacuum tool




- sensor encapsulation in kapton adhesive tape
 - available material: \checkmark
 - **kapton tape** (20 mm width, 40 µm thickness)
 - ALPIDE sensors (15 mm x 30 mm, 100 µm thickness, not working samples)
 - precise positioning of the sensors on kapton: \checkmark

Mitutoyo machine equipped with alignment vacuum tool

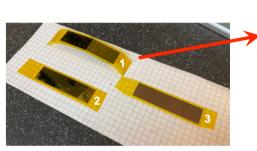

Synergy with ITS3/ALICE 3

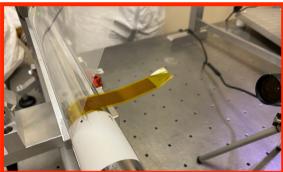
- sensor encapsulation in kapton adhesive tape
 - ✓ available material:
 - **kapton tape** (20 mm width, 40 µm thickness)
 - ALPIDE sensors (15 mm x 30 mm, 100 µm thickness, not working samples)
 - \checkmark precise positioning of the sensors on kapton

Three different samples:

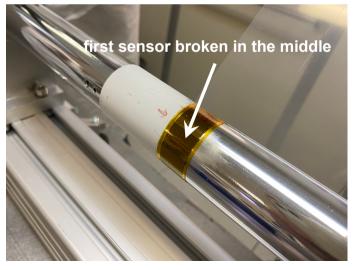
- **S1**:
 - encapsulated sensors
 - top kaption positioning by hand
- S2:
 - encapsulated sensors
 - top kaption by dedicated tool
- S3:
 - single kapton layer (kapton on one side of the sensors only)

- encapsulated sensor bending:
 - ✓ using the setup developed for ITS3 bending
 - ✓ the mandrel had the radius of the innermost ITS3 layer (R ~18mm)
 - ✓ main aim: (re-)excercising the procedure, checking behavious of the encapsulated samples

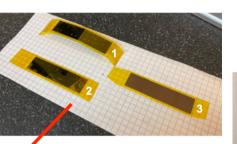


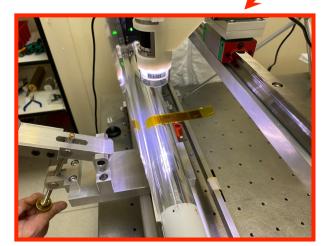


encapsulated sensor bending:



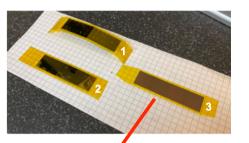
- encapsulated sensors
- top kaption positioning by hand

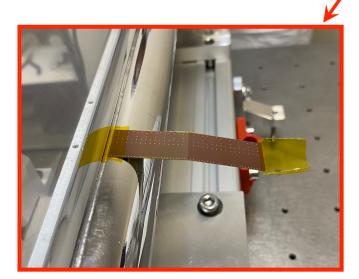


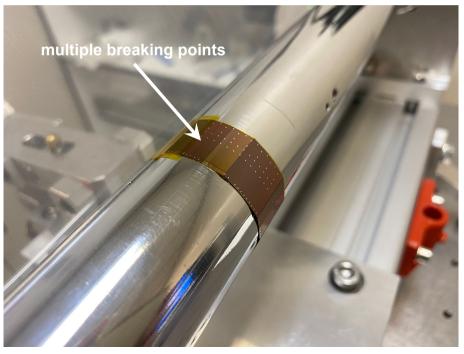


encapsulated sensor bending:

- encapsulated sensors
- top kaption positioning by dedicated tool






encapsulated sensor bending:

S3:

- single kapton sample

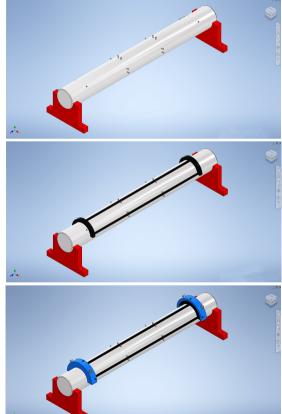
First tests performed in clean room @INFN Bari:

- sensor encapsulation in kapton adhesive tape
- encapsulated sensor bending

Conclusions:

- encapsulation:
 - $\checkmark~$ excercised precise positioning of kapton and sensors (precisions ~10 $\mu m)$
 - \checkmark better ideas of additional tooling needed for large sensors / kapton foils \rightarrow design ongoing
- bending:
 - ✓ (re-)excercised bending procedure used for ITS3 superALPIDE prototypes
 - ✓ understood additional tooling needed (both for ITS3 and SVT)
 - ✓ need SVT dedicated setup (including new mandrel) → design/fabrication/procurements ongoing
 - \checkmark 100 μm sensors too thick for bending tests (independent of the encapsulation)
 - → need to switch to larger and thinner sensors (and larger adhesive kapton foils)
 - → ongoing, connected to procurements for thermo-mechanical prototypes (see Georg)

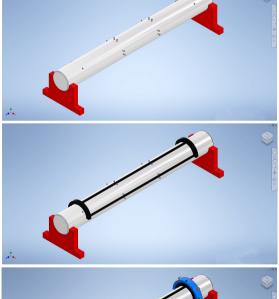
Local support structure

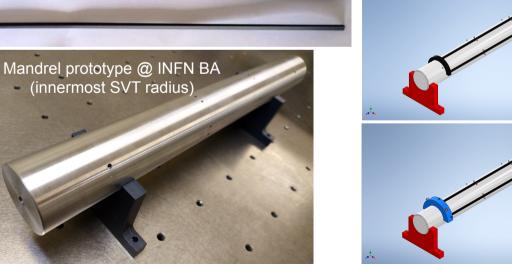

CAD @ INFN Bari

First design and printing of a light support structure:

• obtained by glueing 2 half-rings and 3 longerons

G. Feofilov et al., ITS3 WP4 10 October 2023




Local support structure

First design and printing of a light support structure:

- obtained by glueing 2 half-rings and 3 longerons
- 3-D printed in carbon addicted material
- (partially) in carbon foam for prototype assembly?

Next steps

Finalize bending tool design/production and layer assembly procedure

- material needs for R&D
 - ✓ naked silicon (common order to DISCO for IB, OB and DISKS) \rightarrow ongoing
 - ✓ adhesive polyimide kapton foils (60 x 100 cm², 13 μ m thick) → order submitted
 - ✓ 3-D printed support structures \rightarrow design refinement ongoing, produced @ INFN BA
- dedicated SVT tooling and bending setup
 - \checkmark tools for precise sensor/kapton positioning being modified \rightarrow design ongoing
 - ✓ bending setup being duplicated → design+production @ INFN BA + procurements ongoing
 - \checkmark mandrel \rightarrow investigating high-quality prodution by a local agency (being tested, also for ITS3)

Next steps

Finalize bending tool design/production and layer assembly procedure

- material needs for R&D
 - ✓ naked silicon (common order to DISCO for IB, OB and DISKS) \rightarrow ongoing
 - ✓ adhesive polyimide kapton foils (60 x 100 cm², 13 μ m thick) → order submitted
 - ✓ 3-D printed support structures \rightarrow design refinement ongoing, produced @ INFN BA
- dedicated SVT tooling and bending setup
 - \checkmark mandrel \rightarrow investigating high-quality prodution by a local agency (being tested also for ITS3)

Towards prototype assembly:

- final goal:
 - ✓ single layer: heaters/encapsulated silicon supported by local mechanics
 - ✓ L0 and L1 layers connected by global mechanics
- material needs for prototype assembly:
 - ✓ encapsulated silicon/heaters \rightarrow ongoing with CERN (in common for IB, OB and DISKS)
 - ✓ machined carbon foam \rightarrow to be explored