Search for Higgs boson pair production in the $bb\tau\tau$ channel with the CMS experiment

Speaker: Marco Del Vecchio

XXXV International school "Francesco Romano" on Nuclear, Subnuclear and Astroparticle physics Monopoli (BA)

4th October 2025

Overview

- The Higgs potential and the Higgs self-coupling
- The di-Higgs production @ LHC
- HH $\rightarrow bb\tau\tau$: CMS analysis with Run-2 dataset and Run-3 perspectives
- My current work: derivation of scale factors for $b \, \overline{b}$ taggers
- Conclusions

The Higgs boson in the SM

- 1960's → Theorization of the Brout-Englert-Higgs mechanism Spontaneous Symmetry Breaking (SSB) of the SU(2)_L × U(1)_Y symmetry
 - → the gauge bosons acquire mass via their interaction with a new scalar field, the Higgs field
 - → also the **fermions** acquire mass via their Yukawa interaction with the Higgs field

 $m_{\rm H} \rightarrow$ free parameter in the Standard Model

04/10/2025

The Higgs boson discovery

- 1960's → Theorization of the Brout-Englert-Higgs mechanism Spontaneous Symmetry Breaking (SSB) of the $SU(2)_L \times U(1)_Y$ symmetry
 - → the gauge bosons acquire mass via their interaction with a new scalar field, the Higgs field
 - → also the **fermions** acquire mass via their Yukawa interaction with the Higgs field

 $m_{\rm H} \rightarrow$ free parameter in the Standard Model

2012 → The CMS and the ATLAS experiments discovered the Higgs boson @LHC

 $m_{
m H} pprox 125 \
m GeV$ prediction of the **Higgs** potential according to the SM

The Higgs potential in the SM

$$V(H) = \frac{1}{2!} m_H^2 h^2 + \frac{1}{3!} \lambda_{HHH} h^3 + \mathcal{O}(h^4)$$

- m_H: measured for the first time in 2012
- λ_{HHH} : known from the **SM theory**

$$\lambda_{\rm HHH}^{\rm SM} = \frac{m_{\rm H}^2}{2v^2} \approx 0.13$$

 λ_{HHH} directly accessible via di-Higgs production @LHC

The di-Higgs production

Main **production modes**:

- gluon-gluon fusion (ggF)
- vector boson fusion (VBF)

 $\sigma_{\rm ggF} > \sigma_{
m VBF}$

Very rare process $ightarrow \sigma_{
m HH} \sim 10^{-3} \sigma_{
m H}$

For ggF, the 2 diagrams interfere destructively

→ Difficult observation, we need a **lot of statistics**

BSM effects

BSM effects incorporated in an **EFT** (effective field theory)

 $ightarrow \mathcal{L}_{EFT}$ with 6-dim operators

$$\sigma_{\rm HH} = 68.5624 - 48.3673 \times k_{\lambda} + 10.5635 \times k_{\lambda}^{2}$$

$$k_{\lambda} = {^{\lambda_{\mathrm{HHH}}}}/_{\lambda_{\mathrm{HHH}}^{\mathrm{SM}}}$$

Direct measurement of λ_{HHH}

- ightarrow measurement of $\sigma_{
 m HH}$
- → SM validation or BSM evidence

The HH observation channels

Rare process

- → best channels: **high BR** and **clean final state**
- $b\overline{b}b\overline{b} \rightarrow$ the highest BR
- $b\overline{b}\tau\tau$ \rightarrow quite high BR and leptonic decays
- $b\overline{b}\gamma\gamma \to \text{low BR}$ but very clean final state

CMS Run-3 analyses

CMS Run-2 limits

Rare process

- → best channels: high BR and clean final state
- $b\overline{b}b\overline{b} \rightarrow \text{the highest BR}$
- $b\overline{b}\tau\tau$ \rightarrow quite high BR and leptonic decays
- $b\overline{b}\gamma\gamma \rightarrow \text{low BR but very clean final state}$

CMS Run-3 analyses

CMS Run-2 results

 $\sigma_{\rm obs} \sim 3\sigma_{\rm SM}$

No evidence of HH production, upper and lower limits

- → with **Run-3** we will approach the **SM prediction**
- → **HL-LHC direct observation** of HH production

CMS Run-2 limits

Jets reconstruction

2 categories:

- resolved regime → clearly separable jets
- boosted regime → one "fat" jet containing two prong jets

04/10/2025

b-tagging algorithms

- **Jets** are **produced frequently** in p-p collisions at the **LHC**
- Different particles produce different type of jets
- Many products to be reconstructed
 - → jet-tagging necessary!

b-tagging algorithms

- **Jets** are **produced frequently** in p-p collisions at the **LHC**
- Different particles produce different type of jets
- Many products to be reconstructed
 - → jet-tagging necessary!

My current work on behalf of the CMS HH \rightarrow bb $\tau\tau$ group:

Evaluation of **tagging efficiency** for $b\overline{b}$ **taggers**

- → improves the according of MC simulation and data
- → extraction of scale factors to apply to MC simulations
- → reduces systematic uncertainties and improves results reliability

04/10/2025

Conclusions

- Measurement of λ_{HHH} crucial for characterizing the Higgs potential shape
- CMS (and also ATLAS) Run-2 results \rightarrow no evidence, $\sim 3\sigma_{\rm SM}$
- Run-3 perspectives → approaching SM prediction
- HL-LHC → direct observation of di-Higgs production

My work

- Complete the study on scale factors, fundamental effort for the final result
 - → end of October
- Starting the Run-3 analysis on HH $\rightarrow b \bar{b} \tau \tau$
 - → Goal: full Run-3 study during my PhD (2022-2026 dataset)

Conclusions

- Measurement of λ_{HHH} crucial for characterizing the Higgs potential shape
- CMS (and also ATLAS) Run-2 results \rightarrow no evidence, $\sim 3\sigma_{\rm SM}$
- Run-3 perspectives → approaching SM prediction
- **HL-LHC** → **direct observation** of di-Higgs production

My work

- Complete the study on scale factors, fundamental effort for the final result
 → end of October
- Analysis goal: full Run-3 study during my PhD (2022-2026 dataset)

BACKUP

Objects reconstruction with CMS

Tracker

→ curvature of the charged particles

$$\mathbf{p} = \mathbf{q} \times \mathbf{B} \times \mathbf{R}$$

Calorimeters

→ energy released by the particles

γ/e

hadrons/jets

Primary and secondary vertex

 $\rightarrow \tau$, b, c, etc... travel different distances before decaying

μ -tagged method in a nutshell

❖ Idea

- \triangleright 20% (10%) of jets originated from b (c) quarks contain an e/μ
- Select the $g \to b\bar{b}$ ($c\bar{c}$) QCD proxy requiring a **soft muon** inside the **AK8 jet ("fat" jet)** to enhance the $b\bar{b}$ ($c\bar{c}$) component

- \triangleright Select two prong jets with an extra requirements on τ_{21}
- \blacktriangleright Vary the cut on au_{21} to extract a systematic uncertainty for the SF

Pros

- Orthogonal phase space
- > Suitable for **calibration** of **taggers** not using the muon information

N-subjettiness ratio

$$au_{MN}^{ ext{h}} = rac{\sum_{i \in \{ ext{had.}\}} p_{ ext{T},i} \; \min_{j=1}^{M} \{\Delta R_{i,\,\hat{n}_{M,j}}\}}{\sum_{i \in \{ ext{had.}\}} p_{ ext{T},i} \; \min_{j=1}^{N} \{\Delta R_{i,\,\hat{n}_{N,j}}\}}$$

$$\tau_{21} \in [0,1]$$

 au_{21} near 0 ightarrow 2 prong jets inside the AK8 au_{21} near 1 ightarrow 1 prong jet inside the AK8

