

A time-based search for new physics at the CMS Experiment

XXXV ISFR, Monopoli (BA)

Participant Student Talk

4th October 2025

Tiziano Pauletto

Introduction

There are several reasons to search for **Beyond the Standard Model** (BSM) physics.

In this presentation:

- A search for BSM physics focusing on Heavy Stable Charged
 Particles exploiting timing information at the CMS
 experiment
- An overview of the MIP Timing Detector that will be installed in CMS in the next years & its impact on searches

- Dark Matter
- Baryon Asymmetry
- Hierarchy problem
- ...

X-ray: NASA/CXC/M.Markevitch et al. Optical: NASA/STScl;
Magellan/U.Arizona/D.Clowe et al.
Lensing Map: NASA/STScl; ESO WFI;
Magellan/U.Arizona/D.Clowe et al.

The physics landscape: Heavy Stable Charged Particles

Namely Beyond Standard Model particles which are:

- Massive (m ≥ 200 GeV)
- Long lived (can travel through whole detector)
- |Q| > 0, also fractionally charged or multiply charged

Can be:

- **Lepton-like:** only EM interaction
- **Hadron-like:** EM and strong interaction

Experimental signature:

- → High p_T track
- \rightarrow Travelling at $\beta \le 0.9$
 - ◆ Lower Bethe-Bloch region, higher dE/dX
 - ◆ High Time-of-Flight → delayed time signature in muon detectors
- → (In hadron-like case): interaction with calorimeters

Without 8

100

[GeV/c]

Muon momentum

105

[TeV/c]

Nuclear

0.01

 $\lceil MeV/c \rceil$

100

0.001

Physics models

Search is mainly **signature-driven**. But with various theory motivations:

Can be:

 Lepton-like: stau pair production from <u>GMSB</u> models, or tau-prime models with |Q|=1,2e, or fractionally charged in <u>superstring</u> models.

 Hadron-like: gluino or stop pair production in some SUSY scenarios. These kind of particles could elude other searches, due to reco algorithms usually assuming |Q|=1 and $\beta \sim 1$.

Moreover, hadron-like HSCPs can interact w. SM particles in the detector and change their properties.

Key variables in the HSCP search

Searches for HSCPs can exploit information from different subdetectors:

$$I_{\rm h} = K \frac{m^2}{p^2} + C$$

- Tracker: dE/dX info
 - Pixel & strip detectors can give information on deposited charge (I_b value)
 - \circ Relate I_h to mass of particle \rightarrow use to discriminate signal

Key variables in the HSCP search

Searches for HSCPs can exploit information from different subdetectors:

- $I_{\rm h} = K \frac{m^2}{p^2} + C$
- 25 (13 TeV)

 \tilde{g} (2000 GeV)
 $\tilde{\tau}$ (557 GeV)
 Z' (3 TeV) $\rightarrow \tau'^{2e}$ (600 GeV)
 Z' (4 TeV) $\rightarrow \tau'^{2e}$ (600 GeV)
 Z' (6 TeV) $\rightarrow \tau'^{2e}$ (600 GeV)
 Data

 15
 Data

- Tracker: dE/dX info
 - Pixel & strip detectors can give information on deposited charge (I_b value)
 - \circ Relate I_h to mass of particle \to use to discriminate signal
- Time-of-Flight (ToF): time info given by DTs and CSCs
 - Time resolution ~ 1.5 ns
 - Two variables are available:
 - **time (a) IP** (t_{TP}) computed assuming $\beta = c$
 - lacksquare assuming in-time production of particle
 - \circ Time & β are measured by computing δ t between signal and signal of muon produced at IP in-time w. collision
 - Use β as discriminating variable in combination w. dE/dX
 - Used in two Run 1 analyses [1,2]

State of the art & perspectives

- CMS Run 1 analyses Tracker-only [1,2]
- CMS Run 1 analysis using **Tracker+ToF** [1,2]-
- <u>ATLAS Run 1</u> analysis **Tracker-only**
- ATLAS Run 2, Tracker(+ToF), 3.3 σ excess observed in dE/dX but not ToF signature
- CMS Run 2 analysis, using Tracker-only signature, no excess seen w/ model addressing ATLAS analysis
- Now investigating Run 3 with a ToF-based approach

arXiv:2205.06013v2

Brief introduction to MTD

During **High-Luminosity LHC** (HL-LHC): **increase** of number of **mean collisions per bunch crossing** (pileup, PU), from <PU> \sim **60** \rightarrow <PU> \sim **140-200**. Overlapping in \sim **10 cm**, up to \sim **2 vtx/mm** density. Degradation of reconstruction performance.

The **MIP Timing Detector** (MTD) will be introduced in CMS for HL-LHC & will assign **charged track times** with a resolution of ~ **30-60** ps

Improvement in event reconstruction & physics using MTD

- **Effective PU suppression**: making it possible to run with effective PU comparable to now, during all the HL-LHC data-taking
- Identification of charged hadrons via time-of flight
- Improving sensitivity to new physics searches through non-conventional time signatures

• ...

CMS-TDR-014

Outlook: analysis exploiting MTD at HL-LHC

MTD detector will change the landscape of HSCP searches:

- Going from \sim 1.5 ns track time resolution (now) to \rightarrow \sim 30-60 ps (MTD)
- Assignment of vertex time:
 - Possibility to **measure Time-of-Flight** $\rightarrow \beta$
 - In combination with p measurement \rightarrow estimate mass of particle

CMS-TDR-014 & CMS-DP-2022-25

 In MTD TDR and DPS notes feasibility studies on HSCP already exist at gen level (+delphes)

Plan to compare **muon detector-TOF based Run 3** with **MTD-TOF based HL-LHC** performance on a benchmark HSCP scenario **with full simulation** for the very first time.

Next steps

• Carrying out analysis & setting limits on new physics models predicting this time signature

• Ambitious upgrade program for CMS during HL-Lumi: **contribution to the software development**

Carrying out study of impact of the novel MTD

Backup

A closer look at time measurement w/ muon system

Muon system is comprised of

Drift Tubes (DTs), Resistive-Plate-Chambers (RPCs),
 Cathode-Strip-Chambers (CSCs) and
 Gas-Electron-Multipliers (GEMs).

Time measurement available offline given by:

- **DTs** in the barrel ($|\eta| < 1.2$)
- **CSCs** in the endcap ($0.9 < |\eta| < 2.4$)

Exp. time **resolution around** ~1.5-2 **ns** for both detectors.

Time info can be used to compute:

- Time computed @ Interaction Point (t_{TP}) assuming $\beta = c$
- **Velocity** assuming muon is produced in-time w/ collision
- Details in the backup

NIM-A 2010.06.303