

DEVELOPMENT OF A MPGD-BASED HADRON CALORIMETER FOR MUON COLLIDER.

Muhammad Ali^{1,7}, M. Alviggi⁵, M. Bianco⁶, M. Biglietti⁴, M. Buonsante^{1,2}, M. Borysova³, A. Colaleo^{1,2}, M. T. Camerlingo¹, M. Della Pietra⁵, R. Di Nardo⁴, L. Generoso^{1,2}, P. Iengo⁵, M. Iodice⁴, L. Longo¹, M. Maggi¹, L. Moleri³, F. Nenna^{1,2}, A. Pellecchia¹, R. Radogna^{1,2}, G. Sekhniaidze⁵, F. M. Simone^{1,2}, A. Stamerra^{1,2}, R. Venditti^{1,2}, P. Verwilligen¹, D. Zavazieva³, A. Zaza^{1,2}

• XXXV International School "Francesco Romano" on Nuclear, Subnuclear and Astroparticle Physics

¹ INFN Bari

² University of Bari

³ Weizmann institute of science

⁴ INFN Roma 3

⁵ INFN Napoli

⁶ CERN

⁷University of Padova

Introduction to Muon Experiment

The Muon Collider is a proposed option to investigate Standard Model and beyond after HL-LHC.

Advantages:

- multi-TeV energy range in **compact circular** machines;
- well defined initial state and cleaner final state;
- all collision energy available in the hard-scattering process.

Section of the Muon Collider experiment:

- Tracking system
- · ECAL
- **HCAL**
- Magnet return yoke + MuonSystem

For future colliders:

Jet energy resolution for Z/H

separation:

 $\sigma_{\scriptscriptstyle E}$ /E< 3% - 4%

→ 60%/sqrt(E) for HCal

Challenges for HCal design

Beam Induced Background in HCAL:

- Mostly photons (96%) and neutrons (4%)
- Asynchronous time of arrival
- Occupancy ~ 0.06 hit/cm² (x10 the one at HL-LHC)

HCAL requirements:

- Radiation hard technology total ionizing dose: 10⁵ GRad/year
- Good time resolution (few(ns))
- Good energy resolution
 - ~ 10% / VE for ECAL
 - ~ 55% / VE for HCAL
- Fine granularity (1 3 cm²)
- Longitudinal segmentation
- Good response uniformity for the active layers.

MPGD-based HCAL for Muon Collider

Why resistive MPGDs for calorimeters?

Cost-effective for large area instrumentation

Radiation hardness (up to few C/cm²)

High rate-capability O(MHz3232/cm²)

Readout granularity at-will (~cm² or less)

Space resolution $O(100\mu m) \rightarrow Low pad multiplicity$

Response uniformity

Operational stability (low discharge rate)

Time resolution with MIPs of few ns

Large community developing these detectors

2 MPGD technologies studied in this project

RµMegas

μ-RWELL

HCal standalone simulation

Standalone Geant4 simulation technology-

independent (8 layers 20x20 cm²)

- Geometry of single layer:
 - 2 cm of iron for absorbers
 - \circ 5 mm gas (Ar/CO₂)
- Readout granularity 1x1 cm²

Result: longitudinal containment in 10 λ , transversal in 3 λ

Energy resolution simulated in two scenarios:

- **Digital** calorimeter: shower energy proportional to total number of hits
- **Semi-digital** calorimeter: hits are weighted based on three thresholds (using CALICE thresholds) $E_{\pi} = \alpha N_1 + \beta N_2 + \gamma N_3$

Result:

- resolution at 8% for $E_{\pi} \sim 80$ GeV with semi-digital readout
- resolution saturates at 14% for E ~ 30 GeV for digital readout.

Characterization in test beams at SPS

MPGD technologies:

- 5 μRWELL
- 3 resistive RµMegas
- Detector **layout**: 20x20 cm²
- ~6 mm drift gap
- Common readout board: 1x1cm² pad

- Pad chambers under test (RμMegas, μ-RWELL)
- Ar/CO₂/CF₄: μRWELL Ar/CO₂/iC₄H₁₀: RμMegas.
- Particles O(100GeV) μ beam

2 different hybrids tested with <u>SRS back-end</u>:

- APV25
- VMM hybrids tested in 1 μ-RWELL in a different test beam (thanks to DRD1 collaboration)

Performance to MIPs

Uniformity (%) Detector $(12.3 \pm 0.8)\%$ MM-RM3 MM-Na $(11.6 \pm 0.8)\%$ MM-Ba $(8.0 \pm 0.5)\%$ **RPWELL** $(22.6 \pm 4.7)\%$ $(11.3 \pm 1.0) \%$ µrw-Na $(16.2 \pm 1.7)\%$ µrw-Fr2 $(16.3 \pm 1.1)\%$ µrw-Fr1

Plateau Efficiency: about 95% for μMegas, 75% for μ-RWELL.

Response Uniformity: 10% RμMegas, 16% μ-RWELL

MPGD-HCAL prototype

Data taking based on analog FE (APV25 + SRS)

Runs at different π^- energy (up to 11 GeV)

- Two TB campaigns: August 2023, July 2024
- Data analysis ongoing
- Developed G4 simulation for comparison with TB prototype.

With absorbers

New Prototypes for HCal

CMS

- Two HCal Geometries Under Study:
- Analyzing Energy Containment, Resolution & Shower Profiles in GEANT4.

- First 8 layers: Compact modules with 20 × 20 cm² active area with of 4cm(2 cm) absorber.
- Last 4 layers: Large modules with 50 × 50 cm active area and 2 cm absorber.
- Active gap: 6 mm spacing between layers.

- First 2 layers: Steel absorbers with 4 cm thickness. (1x1 m²)
- Remaining 10 layers: Steel absorbers with 2 cm thickness.
- Active gap: 6 mm spacing between layers.

Simulation of new Prototype

INFN

Standalone Geant4 simulation technologyindependent

- Different configurations of layers are tested in this analysis:
 - $20 \times 20 \text{ cm}^2 + 50 \times 50 \text{ cm}^2 \text{ and } 1 \times 1 \text{ m}^2$
 - 4cm (2cm) Stainless steel.
 - 6mm gas (Ar/CO_2) .

Readout granularity 1x1 cm²

Energy containment studied for the geometries:

Two 12-layer geometries are analyzed longitudinally:

- i. 1×1 m² transverse for all 12 layers,
- ii. First 8 layers: 20×20 cm²; last 4 layers: 50×50 cm²
- About 58% of the total energy is contained up to layer 12 longitudinally for 1x1 m².
- For the geometry 20x20 + 50x50 cm², the energy containment is around 48%.
- The remaining energy is attributed to invisible energy losses.

Simulation of new Prototype

Energy reconstruction using Digital readout:

- Method basis: Relies on total number of hits in active layers.
- Hit definition: Energy deposited in a cell exceeds
 0.01 MIP threshold..
- Event selection: Events with < 4 hits per layer are excluded from analysis.

Energy resolution:

• Calculated as σ / $\langle E \rangle$ of the reconstructed energy distribution.

For a 10 GeV pion:

- $\sigma / \langle E \rangle \sim$ 30% (12 layers, 1 x 1 m²)
- $\sigma / \langle E \rangle \sim 25\%$ (8 layers 20x20 cm² + 4 layers 50x50 cm²)

CONCLUSIONS

Calorimeter Test: An 8-layer MPGD calorimeter (3 Micromegas + 5 µ-RWELL, 20×20 cm²) was tested with pion beams at CERN.

Detector Upgrade: Updated geometries, including larger MPGDs, are under production.

Energy Resolution: Semi-Digital readout provides better performance at high energies.

Containment Studies: Tests on a 1×1 m² and 20x20 + 50 x 50 cm² setup showed 58% and 48% containment.

Future Plans: The next test beam is planned for October 2025 at CERN PS to validate results for 50x50 cm².

Thank you!

Back up

PEP grooves

2022

PEP-Groove: DLC grounding through conductive groove to ground line

Pad R/O = 9×9mm² Grounding:

- Groove pitch = 9mm
- width = 1.1mm
- → 84% geometric acceptance

INEFFICIENCY OF INEFFICIENCY OF MRWELLDD

Investigation on inefficiency of µRWELL

Inefficiency of μ -RWELL due to PEP-Groove introducing dead areas

- Locally very high efficiency
- PEP lines introduce a region of ~ 1 mm with ~50%
 efficiency drop
- At increasing drift field, efficiency drop region gets thinner and smaller

Excluding PEP areas, the efficiency is up to 95%

→ Optimization of drift field to be repeated

New prototypes will follow DOT grounding scheme

Response uniformity

Response uniformity measured using clusters matching muon tracks

- Good uniformity for MicroMegas (~10%)
- Regions of non-uniformity observed on some µ-RWELLs
 → under investigation in lab
- Slightly worse uniformity for RPWELL

Detector	Uniformity (%)
MM-RM3	$(12.3 \pm 0.8)\%$
MM-Na	$(11.6 \pm 0.8)\%$
MM-Ba	$(8.0 \pm 0.5)\%$
RPWELL	$(22.6 \pm 4.7)\%$
µrw-Na	$(11.3 \pm 1.0) \%$
μ rw-Fr2	$(16.2 \pm 1.7)\%$
μrw-Fr1	$(16.3 \pm 1.1)\%$

Digital vs Semi digital readout

Digital Readout (Digital RO)

- Digitization: 1 hit=1cell with energy deposit higher than the applied threshold
- Calorimeter response function:
 <N_{hit}>=f(E_π)
- Reconstructed energy: $E_{\pi} = f^{-1}(\langle N_{hit} \rangle)$

Semi-digital Readout (SDRO)

- Digitization: defined multiple thresholds
- Reconstructed energy: $E_{\pi} = \alpha N_1 + \beta N_2 + \gamma N_3$ with:
 - N_{i=1,2,3} number of hits above i-threshold
 - α,β,γ parameters obtained by $χ^2$ minimization procedure

