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INTRODUCTION

In my work | have looked for gamma-ray signals from Jupiter by studiying FermiLAT data.
No signal has been found, but upper limits on gamma-ray flux by Jupiter can be «translated» into
upper limits on cross section for DM-nucleon interaction.




DATA ANALISYS: settings

Jupiter’s path on the sky from 1/1/2009 to 31/12/2023 (15 years of FermiLAT data) has been partitioned into
1202 steps (each one being a 0.5 deg displacement on the sky).
Inside each step, Jupiter can be considered a stationary point-source in the centre of ROI.

NB: We have EXCLUDED data corresponding to Jup-Sun proximity (30 deg theshold), Jup-Moon proximity (15
deg theshold), Jup-GalPlane proximity (15 deg theshold).

Jupiter position in the sky at different
times has been computed by exploiting
CONFIG PARAMETERS Python libra.ries dedicated to ca.lculation
of ephemerides (astropy.coordinates).
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DATA ANALISYS: summary plot
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Results of all stackings are summarized in
this plot, showing that no signal is observed
from Jupiter.



DM MODEL: the annihilation model

Then | have hypothesized a simple scenario in which eventual signals from Jupiter
are all produced by annihilation between dark matter particles.
In order to make annihilation possible, DM particles should be Majorana particles.

y XX> ¢ > 4y
Y ; = -2 !
Schematic of DM annihilation to long-lived particles

in Jupiter. The long-lived particles can decay outside the
Jovian surface, producing a new source of vy-rays.

The emission model | have considered assumes that annihilation produces two mediator scalar
particles ¢ (so 0-spin mediators) [S.Profumo, ISBN:978-1786340016] .
These mediators then decay producing 4 gamma-ray photons (2 for each ¢).



DM MODEL: a box-shape spectra

It can be demonstrated that this model implies a box-shape emission.
In particular: hypothetical emission by Jovian dark matter should be constant between:
E.="2-[1-V1-r%] and E, ==X [1 + V1 = 17]
wherer = % and X indicates the DM particle.
X
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DM MODEL: why Jupiter

Making this study on Jupiter instead of the Sun has two advantages and one disadvantage:
- Jupiter has not the strong gamma-ray background that our Sun has (advantage);

- Jupiter is colder than our Sun, so that evaporation is negligible (advantage);

- Jupiter is less massive than our Sun (disadvantage), so it should contain less dark matter.

Evaporation is the escape rate of DM particles from the planet/star.

Escape happens when velocity of a particle is higher than escape velocity of the planet/star.
It can be showed that evaporation is negligible (for Jupiter) if my > 0.1 GeV'.

Thesold for our Sunis 1 GeV.




DM MODEL: assuming equilibrium

| have assumed that planet has reached equilibrium between capture of dark matter particles and
annihilation.
So total number of DM particles inside the planet is assumed to be constant.

So:

- gamma-ray luminosity of the planet depends on annihilation rate inside it;
- annihilation rate is equal to capture rate divided by two;

- capture rate can be computed with ASTERIA Python Package.

DARKSUSY tool takes as input DM density in solar system environment and other parameters to
compute capture rate for Jupiter [I.Bringmann et al., DOI:10.1088/1475-7516/2018/07/033] .




DM MODEL: the factor ‘a’

DARKSUSY tool shows that Capture rate is always proportional
to Cross section (for Nucleon-DM interaction):

C[Hz] = A[Hz/cm"2] * Ox N [cm?]:
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DM MODEL: the main equation

It can be demonstrated that, in this model:
- assuming that all emission is given by DM annihilation (no cosmic-ray-induced signals)
- assuming that scalar mediators ¢ are fast enough to decay outside Jupiter

(from energy conservation: my, << 0.99999990my)

O-X_N - Z—TC y (Flu,x ’ dZ)

U(mx)

X

where Flux is gamma-ray integral flux (between E_ and E ) by FermiLAT and d is average
distance between Jupiter and Earth.

Since we can only obtain upper limits for emission by Jupiter,
it means that we can only obtain upper limits for oy_y.

DM MODEL: demonstration of MAIN EQUATION
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RESULTS: our Spin-Ind plot compared to other constraints found in recent literature

Now: in the DM-emission model (box-shape), called k the prefactor, we have:

Flux = (E, — E_) ‘k.

Stacking of all 1202 ROIls has been performed with this box-shape-emission hypothesis.

Upper limits on k have been found, corresponding to values of stacked likelihood In(L;,;) = MAX[In(L,:)] — 1.35.
Following plot shows ULs with 95% C.L. on cross section for DM-nucleon interaction, derived from computation of

UL95 on cross section incm”™2

ULs on k and exploitation of the relation seen in the previous slide.
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RESULTS: Spin-Dep plot

Also Spin-dependent capture rates have been computed with DarkSusy Fortran package

[T:Bringmann et al., DOI:10.1088/1475-7516/2018/07/033] .

(Numbers in the legend are ¢/X mass ratios)
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DM MODEL: where is dark matter supposed to accumulate in Jupiter?

All DM particles captured by Jupiter are expected to live in a volume Vx surrounding the planetary centre.
This volume is defined by a radius Ry which is the distance (from planetary centre) at which gravitational energy
and thermal energy of WIMPs are expected to be equal (above this distance,
thermal energy would prevail over gravity). [S. Profumo, ISBN:978-1786340016]

1GeV
my

For Jupiter, we find that Ry ~ 6 - 108 cm - (remind that Ry, ~7 - 10° cm).

Since the equation describing the number of DM particles living in the planetis

dN(t) % i
P = C — Anninitation parameter * N (t) (C = agny) ' 0xesn IS capture rate),
then it is easy to infer that time necessary to achieve equilibriumis T =

b
\/ C - Anpninilation parameter

where Apninilation parameter ~ 10726 cm3s™1 [V [S.Profumo, ISBN:978-1786340016] .
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(Numbers in the legend are ¢/X mass ratios)
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DM MODEL: other channels

The direct channel we have «explored» until now (X sy ¢ ¢ — 4y)isnotthe only possible one
[S.Profumo, ISBN:978-1786340016] [Serini et al., DOI:10.1088/1475-7516/2023/02/025].

For example, other possible channels are:

XX o —2b 2b (bottom quark channel)

s ¢ ¢ — 2t 2t (top quark channel)

XX-> ¢ —4g (gluon channel)

XX-> ¢¢ - utp~ (muonchannel)

XX-> ¢¢ - trt" (tauchannel).

These are indirect channels, meaning that gamma-rays are not primary products of mediator’s decay.
Gamma rays are here generated as secondary particles, from decay or other processes affecting the produced

primary particles.
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DM MODEL: other channels

DARKSUSY: Gamma-ray spectra from a DM ANNIHILATION event (mX=10 GeV)
considering a spinless massless mediator.
Numbers in the legend represent the fraction of DM mass converted to gamma rays.
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DM MODEL: other channels

All indirect channels would be expected to generate less photons than the direct one,

so they give a weaker constraint, i.e. a bigger upper limit on the
X-nucleon cross section.

(Numbers in the legend are ¢/X mass ratios)
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With current instrumental sensitivity and with

current statistics it is impossible to discriminate

the upper limits on cross section given by the different
indirect channels, but we can discriminate between
direct channel and one of indirect ones

(bottom VS direct is shown on the left).
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Thanks for your attention
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DATA ANALYSIS: why sun-jupiter proximity thesold is so high

Sun-Jupiter proximity thesold we have chosen is higher than other ones (regarding Moon and galactic plane).
Indeed we want to avoid contamination from the Sun which (because of inverse Compton scattering) has a very
large emitting disk in gamma-ray window (over 10°) [E.Orlando et al., DOI: 10.1051/0004-6367:20078817].
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DM MODEL: Darksusy input parameters

. : . GeV
Density of dark matter in solar system environment: 0.4 #

{ : . : K
Average velocity of dark matter particles with respect to galactic center: 270 Tm

[Serini et al., DOIL:10.1088/1475-7516/2023/02/025]
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