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Limitations of the Standard
model



Limitations of the Standard model

. the
SM does not contain a quantum
theory of gravity

: the SM can not explain
dark matter/dark energy

: the hierarchy
problem

However: the SM explains very well the
phenomena to which we have access with
our experiments.

- A < Mp, — otherwise quantum
gravity effects are important
- stability of the Higgs potential

Hierarchy problem: Higgs mass
unstable under quantum
corrections oM? ~ A2
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The hierarchy problem



Loop corrections to the propagator

The mass of a particle is defined as the pole of the propagator

: ) - H H =i
Free propagator:  “L____________ P2

—i

Corrected propagator: PZ*MiﬁrzH

Let's take a look at the structure of the quantum corrections
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Sensitivity to the UV scale and fine tuning

For A = My (i.e. NP is at the Planck scale)

o oMy ~ME = MY R 10°0M],

No additional symmetry for My = 0

No protection against large loop corrections

The hierarchy problem is the sensitivity of the Higgs to the UV scale, in a theory where
the is a new UV scale very high above the weak scale It is also called the fine-tuning
problem because one needs to cancel this very large corrections up a very large
precision in order to have a weak-scale Higgs mass

Example: the grand unification scale (i.e. the scale at which gauge couplings unify), in
a Grand Unified Theory: 6M?% ~ MZ, ¢

There is another fine tuning problem in elementary physics, namely the cosmological
constant problem
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Solution to the hierarchy problem

The hierarchy problem has been for many years one of the driving efforts of the
theory community (but not the only one) Many different solutions has been devised

- Supersymmetry — add an additional symmetry that “protects” the Higgs mass
from these corrections

Composite models - the Higgs is a composite object (as the hadrons are in
QCD), and not far above the EW scale one could probe its constituents

- Cosmological solution - the relaxion mechanism and its derivation (the Higgs
potential evolves as a function of the time scale of the Universe, being the vev
another field with its own evolution)

Other solutions (Neutral naturalness etc.)
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Supersymmetry



Supersymmetry

Supersymmetry is a symmetry that links fermions and bosons, schematically we have

Q|boson) = |fermion)

Qlfermion) = |boson)

where Q is the supersymmetry generator. At the pratical level, that means that for
each SM state there is a SUSY partner

The Standard Model of particle physics Supersymmetric particles

L 204 3ra Lae 2nd 3ea
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The hierarchy problem in Supersymmetry

The scalar superpartners to a (heavy) fermion contributes as well to the Higgs mass
correction

7 1 1
ZL = N};)\% /dz*l? o + pPo——; + terms without quadratic divergeces

Z mz
ft fr
From which we have
Fo N2 A2
N=oo = T RNAA
We see that the quadratic divergences diverge if
Ni = Ny = Nr
2 _ 2
A} =X

while the complete correction vanishes if furthermore we have
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(Soft) SUSY breaking

However, we are interested in the case where SUSY is not exact, i.e. the mass of the
selectron (if it exists) is clearly not the same as the mass of the electron

2 _ 2 2 _y2
mf_mf-&-A7 >‘f—/\f

results in

f+f 2 A2
TN A% 4

- We see that if the split is sufficiently small, the corrections are still at an
acceptable level.

- This is realized if the SUSY mass scale is Mgysy < 1TeV
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SUSY breaking

How does this work? First we recall that supersymmetry relates bosonic and fermionic
states

Q|fermion) > = |boson)

Q|boson) > = |fermion)
In a simplified way we can write for instance write

Q|top t, fermion) > = |scalar top f, boson)

Q|gluon g, vector) > = |gluino §, fermion)

— We double the degrees of freedom of the SM
Unbroken SUSY: all the states belong to the same multiplet — they have the same
mass

The breaking of SUSY is achieved by hadding SUSY-breaking terms to the Lagrangian

In this we can make the SUSY states heavy and satisfy the experimental observations
that they are not at the same mass scale as their “SM partners”.
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SUSY multiplets

- The SUSY multiplets that we need are of two kinds, chiral and vector
- The chiral multiplets contain spin-0 and spin-1/2 states

- The vector multiplets contain spin-1/2 and spin-1 states

Therefore, if we want to build the minimal supersymmetric extension of the SM (i.e. we
simply makes the SM Lagrangian supersymmetric) we have

- SM spin 0 bosons
spin-0 state — (spin-0, spin—%) chiral multiplet (LHySF)
SM spin-1 fermions
spin-J state — (spin-0, spin-7) chiral multiplet (LHSF)
- SM spin 1 bosons

spin-1 state — (spin-1, spin-1) vector multiplet

1
71
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How to achieve soft SUSY breaking?

- We have understood that SUSY must be broken

- The only satisfactory way to do that is via spontaneous symmetry breaking

Soft SUSY breaking terms do not alter dimensionless couplings (i.e. the dimension of
the coupling constants of soft SUSY breaking terms is one or more). If that is not the
case, one re-introduces the hierarchy problem. Indeed, in this way the cancellation of
the quadratic divergences still persists.

Unfortunately we do not know how SUSY is broken (otherwise we would now the mass
of the SUSY partners). There are different soft SUSY breaking schemes that yield at low
scale a Lagrangian which is supersymmetric aside from the so-called “soft SUSY
breaking terms”.
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Soft SUSY breaking terms

There are different kinds of SUSY breaking terms [L. Girardello, M. Grisaru '82]

scalar mass terms: rné’ | ]2

- trilinear scalar interactions: Tjji¢;¢r + h.c.
gaugino mass terms: ImAX\
bilinear terms: Bjj¢;¢; + h.c.

linear terms: C;¢;

Note that all the couplings are dimensionfull, and that there are no additional mass
terms for the chiral fermions.

Open questions in particle physics Emanuele A. Bagnaschi (INFN LNF)

/77



SUSY breaking scenarios

Two classes of models:
Unconstrained models

No assumption is made on the SUSY breaking mechanism; one writes the most
general low-energy effective Lagrangian with soft SUSY breaking terms.

In the most general case we have 105 new parameters with respect to the SM: new
masses, phases and mixing angles.

Constrained models

One assumes a specific SUSY breaking scenarios. This in turn yields a specific
prediction for the structure of the Lagrangian at the low scale. In this case one has
specific patterns for the soft SUSY breaking terms. In principle the breaking
mechanism could be pinpointed experimentally, once the low-energy SUSY
parameters are determined experimentally.
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SUSY breaking scenarios

The core idea of SUSY breaking is that there is a “Hidden sector” where SUSY is broken,
and this is “transferred”to the “visible sector”, i.e. the MSSM. Schematically, we have

“Hidden sector” — “Visible sector”
SUSY breaking MSSM MSSM

Examples of SUSY breaking mechanisms are

“gravity-mediated” - CMSSM/mSUGRA, where the mediating interaction is the
gravitational one

“gauge-mediated” - GMSB, for which mediating interactions are EW or QCD
interactions

- “anomaly-mediated” = AMSB, in the case of which the breaking happens on a
different brane in a higher-dimensional theory
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The Minimal Supersymmetric Standard Model (MSSM)

We want to build the minimal SUSY extension of the SM (i.e. keeping the field numbers
at minimum)

- The SM matter fields have different quantum numbers that SM gauge bosons

— the fields have to be included in different supermultiplets
— no SM fermion is a gaugino

Moreover, in the MSSM the Higgs is not to be the scalar superpartners of the neutrinos
(gauge numbers ok, but it does not work due to the Yukawa pattern; one needs
modifications, see e.g. [Riva, Biggio, Pomarol "12].

We are agnostic on how SUSY breaking is achieved — parametrization of all the
possible soft SUSY-breaking terms — the most general case has 105 new parameters
(mass terms, mixing angles, phases)
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Building the MSSM: fermions and sfermions

SM fermions are part of left-handed chiral supermultiplets, together with their
partners, the sfermions (right handed (s)fermions are included via their conjugate).
We have, for each generation

- LHySF Q: quark, squark - SU(2) doublets
- LHySF U: quark, squark, up-type, SU(2) singlets
+ LH,SF D: quark, squark, down-type, SU(2) singlets

And for the leptons

- LHySF L: lepton, slepton - SU(2) doublets
- LH,SF E: (charged) lepton, slepton, SU(2) singlets

We see that we need 5 LH, SF to describe a single SM generation.
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Gauge bosons and gauginos are embedded in a so-called vector supermultiplet. We
have

- gluons g and gluinos g
- W bosons W'%3 and the winos W"%?3

B boson By and the bino B°

For the Higgs boson the situation is slightly more complicated. As we will see in the
next slides, we need two Higgs doublets. Those two Higgs doublets (scalars) are part
of two different chiral supermultiplets. Their fermionic partners are called Higgsinos.
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The Higgs sector of the MSSM

If you remember, in the SM, to give mass to both LH and RH fermions we used the
same Higgs filed, writing the Yukawa terms as

Lsm yukawa = MgQuHdr + muQifug
—— N——

d—quarkmass u—quarkmass

Q = <Z>L . H=ioH* sothat H — <8) A — <;>

However, supersymmetry forbids the O, H*. The superpotential is a holomorphic
function of chiral supermultiplets, i.e. it should depend only on ¢; (and not on ¢/.*).
Moreover, we have seen that soft SUSY-breaking masses are allowed for chiral
fermions.

— We need two Higgs doublets, Hy and H, to give mass (separately) to down- and
up-type fermions

where

Moreover, two doublets are required so that the fermion partners (the
Higgsinos) do not break the cancellation of the anomalies
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The fields of the MSSM

Chiral supermultiplets

Name Symbol spin 0 spin 1/2 (SUB)c, SU@)., U(T)y)
squarks,quarks Q (DL,aL) (ug,dr) (3,2,%
(x3 families) 0 s u% (311, 7%)
d di dr (31,5)
sleptons,leptons L (7, 81) (v,er) (1727_%)
(x3 families) e & ey (1,1,1)
(Hi HY)  (HE D) (1,2,3)
Gauge supermultiplets
Name spin1/2 spin 1 (SUB)c, SU)., U(T)y)
gluino,gluon g g (8,1,0)
winos, W bosons wE Wo o wE pe (1,3,0)
bino, B boson B° BO (1,1,0)
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R-parity

On the top of this theoretical structure, we add another discrete Z, symmetry called
R-parity (not to be confused with R-symmetry).
We assign the R-parity to a field with the assignment rule

P = (71 )3B+L+25

where B is the baryon number, L is the lepton number and S is the spin of the field.
Note that

- all SM fields, and the Higgs bosons, have even R-parity Pgp = +1

all superpartners have odd R-parity Pp = —1
There are two very important implications for phenomenology from this

SUSY particles can be produced/appear only in pairs

- The lightest SUSY particle (LSP) is stable
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Soft SUSY-breaking terms

The most general soft SUSY-breaking Lagrangian is

1 ~ ~ o
Lot == 5 (/VIWBB + My + /\/l3gg) +he
— miy, HIHIHY — m} HiHg — (B HuHg + h.c.)
. (URTUQHU — dRT4QHy — éTeZHd) +he
— QfmiQ — [Tm2l — tgm?0 — dgm?d — 8gm2é
where ml? and T; are 3 x 3 matrices in family space.

Source of the many new parameters that depend on the SUSY breaking
mechanism and that we do not know.
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The effect of EWSB on

- We will discuss more in details the Higgs sector in the next lecture. For now, the
important point is that both Higgs doublets acquire a non-zero vacuum
expectation value, v, and vy (with the parameter tan 8 = v /vg.

- The Higgs spectrum is larger than in the SM, with five physical states: h® and
HO, neutral and CP-even; A, neutral and CP-odd; H¥ is a charged Higgs.

- The breaking of EW symmetry also causes the mixing of left- and right-handed
sfermions with each other, and of the higgsinos with the EW gauginos.

fi,fr—=Hh
W, Flid — )2%2 (charginos)
By, WO, F/S_,d — )2%27314 (neutralinos)
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Sfermion mixing

Taking as an example the stop and shottom mass matrices (with X; = A; — pu/ tan 3,
Xp = Ap — ptan B) we have

2 2 . diagonalization 2
M= /\/lEL +mi + Dt1 meXe ~ ma 0
t mXe M% + m% =+ D'E 0 m2
R 2 5]
2 2 . diagonalization 2
M= MBL +my+ wa mpXp . mBW 0
b mpXp M2+ mj + Dg, o m
R 2

where the D represents the so-called D-terms, and M% = Mg = Mé3 due to gauge
L L
invariance. In other terms, the mass eigenstates are obtained by rotation of an angle

0
t _ [cost; —sinb; f
) \sin 0% cos 0; fr
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Charginos

As you remember we have that
it oE ~+
W=, Hu,d — X7,
Diagonalization of the mass matrix

y M, V/2sin My
~ \ V2 cos BMyy o

that we can diagonalize using two unitary matrices U and V
m.+ 0

_ T X
M)Zi = V*XTUT = 01

to obtain the chargino mass eigenstates 92%2.
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Neutralinos

As you remember we have
B0 0 ~0
Bo, W™, Hy g = Xi0,34

To obtain the mass eigenstates we diagonalize the neutralino mass matrices

M, 0 —MzsycosB Myzsysin 8
v— 0 My MzCw cos B —MzCy sin 8
| =Mzsycos B MzCy cos B 0 —u
MzSw sin 3 —MyzCy sin B — 0
obtaining
M)ZO = N*YI\/T = dlag (m.-o, I'T"l)zo7 m>~<27 m>22>
Note that

The chargino mass matrix depends on M,, u and tan 8

The neutralino mass matrix depends on My, My, i and tan g8

The neutralino and chargino spectra are connected — important element for
collider phenomenology
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Features of SUSY theories




Gauge coupling unification

- What happens if we evolve the gauge couplings to high scales? Theoretical
arguments would like to see the unification of the forces, but this does not

happen in the SM

However, this comes for free in the MSSM

1/«
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Radiative electroweak symmetry breaking

If you recall, in the SM we have that
. (on
Higgs field, SU(2) scalar doublet: ® = o
Higgs potential
V(®) = 2 |dTo| + A|oTo)?

with A > 0 (vacuum stability)
- To have EWSB one imposes j? < 0

+ Minimum of the potential for

— 2
(@0} = | S5 = =
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Radiative electroweak symmetry breaking

In the MSSM the sign of the equivalent of u comes for free if

One assumes SUSY breaking at the GUT scale

One assumes universal input parameters at the GUT scale (as in the CMSSM)
One run the parameters down to the EW scale

M,

400

200

100

Sparticle Mass (GeV)

300 [=.

300 GeV, M,

Open questions in particle physics

100 GeV, A,

0

This works only if

- M7 =150...200 GeV (satisfied
experimentally, Mt ~ 173 GeV)

. MSUSY =1TeV
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R-parity

The most general gauge-invariant and renormalizable superpotential with chiral
superfields in the MSSM is

1. m /- 1 e
V = Vussm + EA”kLiLjEk + X RLQD, + 1 LiHY + A U;D;Dg

violates lepton number violates baryon number

If both lepton and baryon numbers are violated — rapid proton decay

Experimentally, the proton is very long lived 7, > 103 seconds

Imposing R-parity (Pr = —138+L+25) ‘under which all the SM states and the Higgses
have R-parity 1, and the SUSY partners have R-parity —1, do now allow us to write
these operators — good motivation to impose R-parity
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R-parity and dark matter

Due to R-parity, the lightest supersymmetric particle (LSP) is stable
If the LSP is neutral, it could be a good DM candidate

Indeed, if the LSP is the lightest neutralino £?, we can satisfy the constraint on
the measured relic density

The consequence of this on the collider phenomenology is that

- The decay chains of sparticles produced (in pair) at the LHC contains two 9

Large MET in the detector - typical SUSY signature (caveat: long lived charged
state)
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Relation between SUSY parameters and other

constraints

SUSY imposes specific relations between couplings, for instance we have that
gauge boson-fermion coupling = gaugino-fermion-sfermion coupling

for all the gauge groups. Moreover

- There is an upper bound on the mass of the lightest CP-even Higgs boson (and
a prediction of its values in terms of the other parameters of the Lagrangian)

- There is a relation between the mass of charginos and neutralinos
- There is a relation between the mass of the sfermions, for instance

—m W
mz = M, — Mjycos28

All these relations receive loop corrections, which in turns imply that they depend on
the whole set of soft SUSY-breaking parameters and on EWSB. After a discovery, they
provide an experimental test to verify the structure of the theory.
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Constrained models




SUSY breaking scenarios

Important point: the soft SUSY-breaking mechanism influences the phenomenology at
the low scale

“Hidden sector” — “Visible sector”
SUSY breaking MSSM MSSM

Examples of SUSY breaking mechanisms are

“gravity-mediated” - CMSSM/mSUGRA, where the mediating interaction is the
gravitational one

- “gauge-mediated” = GMSB, for which mediating interactions are EW or QCD
interactions

“anomaly-mediated” = AMSB, in the case of which the breaking happens on a
different brane in a higher-dimensional theory

Note that all these constrained models are variants of the MSSM
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Gravity mediated SUSY breaking

A quantum theory of supergravity would include a graviton (spin-2) and a gravitino
(spin-3/2). However, a quantum theory of spin-2 and spin-3/2 fields is not
renormalizable. That implies that

This QFT could not be extended at arbitrarily higher energies — interpreterable
only as a EFT

Best candidate for the UV theory: string theory

Since this is an effective theory, it means that it contains higher-dimensional
operators suppressed by powers of My,

SUSY breaking in the hidden sector

supergravity Lagrangian contains non-renormalizable terms that communicate

between the hidden and the visible sectors that are suppressed by ~ Min
pl
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Gravity mediated SUSY breaking

Dimensional analysis

- SUSY breaking in the hidden sector is caused by a vev (F) (with [(F)] = mass?)

- Inthe limit (F) — 0, we want that mg.¢ — 0; the same for Mp; — oo (no
gravitational interaction)

From this we deduce that

(9
Msoft = /Vlil
p

Since we would like to have mg.g < 1TeV (to avoid the hierarchy problem) —
(F) ~ 10" GeV is the scale of SUSY breaking in the hidden sector.
Gravitino phenomenology:

In general, we have Mgravitino = M3y =~ %

From which we have ms/, =~ Mg

- Gravitino not important for collider phenomenology
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Supergravity Lagrangian

The non-renormalizable terms in the supergravity Langrangian are

1 * ol *
e Kl

1 1
Lyg =— —Fx ffg)\a)\a + h.c. —
Mpy ; 2 Mpl

1 T rig 1 7
- /VT/:[FX (6)/ Y pidion + S+ U¢f¢j> + h.c

where

- Fx is the auxiliary field of the chiral supermultiplet X in the hidden sector
- ¢;, A\ are the scalar and gaugino fields of the MSSM

If /(F) ~109-10" GeV — soft SUSY-breaking terms of the MSSM with myg, ~ 10%-10°
GeV

- Assuming a “minimal” form for the supergravity Lagrangian — soft
SUSY-breaking terms should obey “universality” and “proportionality”
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The soft SUSY-breaking Lagrangian

With these assumptions, at low energy we obtain exactly the same soft SUSY-breaking

Lagrangian that we have discussed before
1 o e .
Loot == 5 (BB + MW + M35 ) + h.c.
— mipy, HIHIHY — m} HiHg — (B HuHg + h.c.)
— (8RTuQH, — B8TgQHy — BTeTHg ) + h.c.

— QtmAQ — [Tm?l — trm?0 — dgm?d — 8gm2&

with the matching condition at the GUT scale given by

My =My =Mz =my ),

2 2 2
L e =My

Il
237\)
Il
QSN
Il
3

2 2 2
My, = My, =Mmg=m
Tu=Tg=Te=Tp

Moreover, we have two other free parameters B, and p (the latter from the

superpotential)
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Running at the low scale

Using the RGE of the MSSM, we can run these parameters at the low scale, at which we
will determine the physical spectrum of the theory.

My=300 GeV, M, ,,=100 GeV, A,=0

400

300 i LiLididd

200

100

Sparticle Mass (GeV)
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i, B, and EWSB

We have five parameters left (forgetting about possible complex phases)
Mo, My, A0, B, it

However, we observe that from electroweak symmetry breaking we have

MZ
|,u,|2 + msz =By tan 3 — 72 cos 23

M2
ul? + rmz_,u = By cotff — 72 cos2f3

we can exchange |u| and By, for tan 8 and the sign of p.

We find therefore that this scenario is characterized by the following parameters
Mo, My, ,Ag, tan 3, sign(p)

This is usually called the CMSSM (constrained MSSM) or 'mSUGRA’ (minimal
supergravity)
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Example of a CMSSM point

800
m [GeV]
700 |
600 | —_—
_g —t
gy dg ——
ﬁnl d I_’Z
500 by
400 |y A0 — H* : s
’ X: X2 —t
X3 ——
300 L
200| ="
vi e bey
i -
B i T
100 £ X
0
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Non universal Higgs mass models

It is possible to relax some of the assumptions that we have incorporated in the
CMSSM NUHM1 - Non-universal Higgs Mass model 1

- We relax the assumption on the unification of the soft susy breaking mass
parameters of the sfermions and the Higgs

mp # M (= M3, = M3,) Q)

Effectively that means that we have either My or v as free parameters at the EW
scale, besides the other CMSSM parameters (one parameter more).

NUHM2 - Non-universal Higgs Mass model 2

- We furthermore relax the assumptions of the soft SUSY-breaking mass terms of
the Higgs fields Hy and Hy

m £ 1, # ®

Effectively that means that we have My and p as free parameters at the EW
scale, besides the other CMSSM parameters (two parameters more).
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Minimal gauge mediate SUSY breaking: mGMSB

New chiral supermultiplets, the “messengers”, couple to SUSY breaking in the
hidden sector

- They also couple indirectly to the MSSM fields via gauge interactions

— mediation of SUSY breaking via EW and QCD gauge interactions

< SUSY breaking is approximately flavor diagonal SUSY breaking is already in the
messenger spectrum

— soft SUSY-breaking mass terms arise from loop diagrams with messenger particles,
with vertexes of gauge-interactation strenght

o (F
Mg ~ —
soft 47 Mimpss

» Mmess = /(F)

Requiring mgon < 1TeV = /(F) ~ 10%-10° GeV

The SUSY breaking scale is much lower than in SUGRA
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Generation of the mass terms in mGMSB

Gravitino

The gravitino mass is M, suppressed, so that we have

The gravitino is always the LSP in mGMSB
Gaugino mass terms

They are generated at one-loop order, my ~ %
Scalar mass terms

They are generated at one-loop order, m% ~ (%)2

The fact that generation of the soft SUSY-breaking terms proceeds via the gauge
interactions induces a hierarchy between the strongly and weakly interacting particles
due ~ 0[3/0&2/0{1
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The mGMSB scenario

The input parameters are
Mmcss k) NH]CSS: /\7 tan /67 Sign(/’l’)

where

Mmess 1S the messenger mass scale
Nmess 1S the number of messenger multiplets
A = SB> s the universal soft SUSY-breaking mass scale induced in the

mess

low-energy sector
Phenomenological features

LSP is always the gravitino
+ the next-to-lightest SUSY particle (NLSP) is either the %9 or #

- They can be long-lived = can decay outside the detector, or metastable
charged track
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Minimal anomaly mediated SUSY breaking: mAMSB

Two branes connected via “the bulk”.
(F) enters via RGEs (anomaly)

IPSNIG]G

fo T (16m2)2
2
M3y
(1672)2

Mo 02 M
" 1er2 7 1672

The input parameters for the mAMSB scenario are

gy +mj

gy +mj

m3/2 , Mo 7tan ﬁ 7Sign(l’l‘)
where

M3 = ,f,% is the overall scale of SUSY particle masses

- mg phenomenological parameter (universal scalar mass term) to avoid the
slepton masses becoming negative
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Testing SUSY at the collider




Probing SUSY

As for any BSM model, there are two ways to probe the existence of supersymmetry

Direct searches

One probe the existence of a new
state by testing its production at a
high energy experiment (i.e. at

Indirect searches

One measure very precisely an
observable that features only SM
states as the external leg, and
compare the prediction in the SM vs
the one in the BSM model we are

collider) ) .
v interested in.
I v
w* <
. +
q X1 ! I
-0 eeee-
Wi X1
+
z <Z v
- I~ e
q 0 5
Xl It 7,
13/1~ﬂ\ N /%n. /%Jr
Both approach are important, and they should provide a consistent picture.
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Colored sparticle production

Colored sparticles are heavily produced at the LHC = the strongest limits from the
searches are on these states = we need precise predictions for these cross sections.

g TTTToY q
q
LRy 8
‘ B 18700000 q
g q
(g TTTTT g
T g
9 8
q g ﬁ
CLRELEI q q
q gq 8 f f
g

ifq

<
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Electroweak sparticle production

Cross sections for these sparticles are smaller at the LHC = weaker limits from the
s%arches.

=
’
=

V20 2C o0 >N o

=
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Cross sections: strongly interacting states

. PP, V'S =13 TeV, NNLOgpprox+NNLL
10

— §§ — @a
— 60 — ", bb"
102_

100 4

102

cross section [pb]

1074 A

107

250 500 750 1000 1250 1500 1750 2000

particle mass [GeV] [LHC SUSY WG]

Note: cross sections for the simplified topologies used by the experiments
(e.g. gluino cross-sections is with squarks decoupled)
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Cross sections

pp, VS =13 TeV, NLO+NLL

— XX (higgsino)  — i,
100 4 —— XiX{ (wino)  —— gl
— X{ X3 (wino) — IiRle
g
=]
c 1072 4
2
o
[
n
@
e
o
10*4 4
10-°

100 200 300 400 500 600 700 800 900 1000

particle mass [GeV] [LHC SUSY WG]

Note: cross sections for the simplified topologies used by the experiments
(eg ’[LTL: TRTR etCA)
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Impact of QCD corrections

||IIIlI[Illllllllllllllllllllll T I L I L

10 -
10 “ —
0 E
I E VS =14 TeV
- — NLO 7

A X28 ---- LO ]
10 =
_2: m [GeVJ:
lO llIIllIlllIlllIllIllllIlllllllllllllllllll

100 150 200 250 300 350 400 450 500

[Prospino collaboration]

K-factors important for a proper interpretation of the data
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Long decay chains

Depending on the spectrum, the production of a SUSY state at the LHC can result in
long decay chain/complicated final state.
Another possibility is that the NLSP is long-lived — long charged tracks

Note that the production of uncolored particles via cascade decays often dominates
over the direct production of the same states — it needs to be taken into account
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Example of cascade decays

- Different patterns according to the SUSY breaking mechanism

- Many different final states

+ MET

+ M
310/nb for b-jets 35/pb|

= squark—q+LSP, gluino—+q*squark+LSP

<>
Signature Motivating Model(s) Comments
« Large Extra Dim (ExoGraviton) « Not primary discovery
= strong qG production, G propagate in extra Dim channel for SUGRA, GMSB,
« Planck Scale is MD in 4+ dim AMSB... but helps in
| Jet + O Lepton + MET = Normal Gravity >> R characterization
- SUSY « Possible leading discovery
= qg—ISR + 2 Neutralino or squark + Neutralino for neutralino NLLSP with
oy nearly degenerate gluino
2,3,4 [b]-Jet + O Lepto: "ﬁuarklglulno production = Possible leading squarl/

gluino discovery channel
= Must manage QCD bkg

310/nb for b-jets ]%I
2,3,4 [b]Jet + | Lepton ,ﬂqulrklgluno production with cascades which include electroweak
23
ET

(or partner) decays
« high tan B leads to more T's

= Lepton requirement
suppresses
= T's partially covered by e/

2 lepton + MET

z0r0e]

« Same sign: gluino cascade can have either sign lepton... squark/gluino
prod can produce same sign.

« Opposite sign: squark/gluino decay dediated by Z (or partner)

« Same flavor: 2 leptons from same sparticle cascade must be same
flavor

« Reduced SM backgrounds
for same sign

« Opposite Sign-Flavor
Subtraction

3 lepton + MET

« SUSY events ending in Chargino/neutralino pair decays
« Weak Chargino/Neutralino production
« Exotic sources

« Low SM bkgs

2 photon + MET
3.1/pb

= GMSB models with gravitino LSP and neutralino or stau NLSP
« UED- each KK partons cascade to LKP which decays to graviton +y

« No SUSY limit (not
sensitive at the time)

[Farbin "11]
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Gluino searches

Gluinos are probably the most constrained SUSY states (however, its mass is not so
relevant for the Higgs sector)
pp - 3. § - qake

Moriond 2021

s=13 TeV, 36.1 - 139 ft’ March 2022
< J\r“s“e‘gt‘i“‘as?‘y“f”w‘”_” < 2000 T T T T T Ty
w -~ G 0 lep. [2010.14293] LAS Preliminary () L 137 fb* (13 Tev) 7
(0] 3500 » 657, = 3 brjets [CONF-2018-041] y 0] 18005CMS ( ) —
: - 7] = 3 b-jets + = 2 lep. SS [CONF-2018-041, 1706.03731] : Ir_“ie C _ggg ggg; (;"‘Ep)(:rﬁs's? -=-Expected
3 j— GAWZ 0 lep. + 1 lep. [2010.14293, 2101.01629] E £ 16001 1 006 03460 M) T —Observed
[ G~ qaz"%] 2 lep. OS SF [CERN-EP-2022-014] 1 C 1
F 77" = 712 jets + 1 lep. += 2 lep. S | 1400~ -
2500F [2008.06032, 1708.08232, 1909.08457] J L ]
[ G qa(iiw)y viaTv 2 lep. OS SF [1805.11381, CERN-EP-2022-014] .-~ ] 1200~ |
C = 11[1808.06358] ] 1000 £ ]
2000 = 1 [1802.03158] = = E
[ Colours indicate different models ] 800 |
[ Observed limits at 95% CL ] E B
b 600F- E
3 400 E
[ ] 2001~ 4
500 4 F | 1
n ] Dol b b b b Iy I I T
T 800 1000 1200 1400 1600 1800 2000 2200 2400

1000 1200 1400 1600 1800 2000 2200 2400

m(@) [GeV] mg [GeV]
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Gluino searches

Gluinos are probably the most constrained SUSY states (however, its mass is not so
relevant for the Higgs sector)

V5=13 TeV, 36.1 - 139 ft’ March 2022 PP ~ 3. G — bBX  worona 2021

= T ooy ATLAS i S 2000CT T T
[3) - 17, O lep. (2010.14293) LAS Preliminary q; £ -1 Bl
(O] 3500 » 657, = 3 brjets [CONF-2018-041] y 0] 18005CMS 1371b (13 TeV) —
oy - {7 = 3bijets + = 2 lep. SS [CONF-2018-041, 1706.03731] : = E - 1705.04650 (My,). 36 b ---Expected ]
3e j— GAWZ 0 lep. + 1 lep. [2010.14293, 2101.01629] E FE‘§< 1600~ :ggg g;zgg g::g E:j‘:z)) —Observed ]

[ G~ qaz"%] 2 lep. OS SF [CERN-EP-2022-014] 1 C ]

F 77 = 7-12jets + 1lep. += 2 lep. SS ] 1400~ -

2500 [2008.06032, 1708.08232, 1909.08457) 1 £ ]

[ 6 qiv)i’ viaTv 2 lep. OS SF [1805.11381, CERN-EP-2022-014] .-~ ] 12001~ |

r = 1 (1808.06358] 1 £ ]

2000 > 1y [1802.03158] — 1000; E

[ Colours indicate different models ] C i

I Observed limits at 95% CL ] 800F ]

] 600 -

= 400 E

r ] 200 -

SOOj E E ]

| ol b Lo L b Lo bn oy i 10
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Gluino searches

Gluinos are probably the most constrained SUSY states (however, its mass is not so
relevant for the Higgs sector)

Vs5=13 TeV, 36.1 - 139 fb' March 2022 pp - gg, g - tt k}i Moriond 2021
= Trafon e AT AR Breir 1] S 2000
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35300019 qaw’“ 0lep. + 1 lep. [2010.14293, 2101.01629] B e 1600 210301260, 07‘::; Es‘gz;) —Observed
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F =7-12jets + 1 lep. += 2 lep. SS ] [~ —2001.10086, 22-lep (same-sign -
2500; (2008.06032, 1708.08232, 1909.08457] .| [~ 1710.11188, O-lep (stop), 36 'b‘v e 1
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[_ Colours indicate different models ] O |
[ Observed limits at 95% CL ] 800F ]
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Gluino searches

Gluinos are probably the most constrained SUSY states (however, its mass is not so
relevant for the Higgs sector)

Vs=13 TeV, 36.1 - 139 &’ March 2022 — _
= I A O A R S AL WA pp - 99.9- qal y%)ﬂqq(W:IZ)%Mmiondzozl
® [ - a7’ 0 lep. [2010.14293] TlLASPrellmlnary— ;1800—“‘ L L e B |
(0] 3500?5 » 657, = 3 brjets [CONF-2018-041] () C CMS 137 fbt (13 TeV) ]
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F =7-12jets +11ep. += 2lep. SS q 14001 __ - 2001.10086, >2-lep (same-sign) ]
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Stop searches

As we have seen, stop searches are important because the stop mass scale correlate

directly with the Higgs mass prediction in the MSSM

March 2021

Open questio

Vs=813TeV,20.3-139 fb *
e

E Limits at 95% CL

ATLAS Preliminary

T, production

/)

200 400 600 800 1000 1200

m(t,) [GeV]

ns in particle physics

Daa 1518, = 13Tev, 1391

otz arss)
= e e
eiozcisss)

Data 1516, 6= 137ev, 35110
- o o
70904182, 17111570,
170000247, 1731.3501)
=R
nsosorsol
D 12,6 =67ev. 203
L D Tl
soscssts]

pp Tt T-tR  worondzoz

= L L L o
3 [ CMS Preliminary 137 fb* (13 Tev) |
== 1000~ _sUs-20-002, 0-, 1- and 2-lep combination Expected
o< [ 171100752, 0-, 1- and 2-lep (stop), 36 fb ™ - Expected 4
I [ =2103.01290, 0-lep (stop) —Observed
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Squark searches

Searches for the first two generations. Note the assumptions on the degeneracy of the

masses.

-13 TeV 20. 3 139 fb‘ March 2022

3000 alils ;
> F ATLAS Prellmlnary 1
g F g Q/" 0 lep. + mono-jet (2010.14293, 2102.10874] B
"—2500-_ g > QWSZ; 0 lep. + 1 lep. [2010.14293, 2101.01629] ]
3’35 b d—qz"% 2lep.OS SF [CERN-EP-2022-014] B
£ [ =2y [1802.03158] ]
2000_ 7y = 7-11jets += 2 lep. SS 8TeV, —
[ G - aUivwiz) vials = 2 lep. [1507.05525) ]
. =1t |
[ Colours indicate different models 1
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1000F .
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Electroweakino searches

Simplified models depend on the final state and on the interdiate state in the

decay chain

pp - %% August 2021

I~ T T T T
S T I I I I I ]
16001 - ol 3
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Electroweakino searches

Simplified models depend on the final state and on the interdiate state in the

decay chain

March 2022 ATLAS Preliminary V5=13 TeV, 36.1-139 15" Alllimits at 95% CL
T e T
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— Observed limits
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Slepton searches

600 March 2022
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Compressed spectra

Compressed spectra are region of parameter space where the mass difference
between the LSP and the NLSP is small.

They can lead also to long lived particles (more later).

June 2021
= 40 — ———— Line 202
) 20 % ATLAS Preliminary
O r V5=13TeV, 136 - 139 b
N B
— . PP — X3X7, X3x9, X1y, X1 X3 (Higgsino)
S~ L ~. |
1 10 E AN Al limits at 95% CL 1
- F N — Observed limits B
H C ) - - Expected limits ]
i 5k S ’ -
E | ]
1 E- 30 + Soft 2(, arXiv:2106.01676, 1911.12606, m(x9) = m(x3) + 2Am(Yi, {9
r Disappearing track, arXiv:2201.02472, m(y3) = m(x9) 1
05 L LEP2 Y; excluded -
F '+ Theoretical prediction for pure Higgsino g
O 2 1 L L L L 1 L L L L 1 L L L L L
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Long lived particle signatures

Recent ATLAS search that use the pixel detector to look for LLP (there are
techniques as well)

s 10T T
8 10°E ATLAS f5=13TeV, 13910 J S 3000y
S 19 SR-Inclusive_High py*>120GeV, ln[<18 3 (‘9’ 28000~ ATLAS PP - §3§ (R-hadron) E
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Entries / 100 GeV

Data / Pred.

Long lived particle signatures

Recent ATLAS search that use the pixel detector to look for LLP (there are
techniques as well)
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Long lived particle signatures

Recent ATLAS search that use the pixel detector to look for LLP (there are
techniques as well)
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Long lived particle signatures

Recent ATLAS search that use the pixel detector to look for LLP (there are
techniques as well)
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Solution by MCCullogh et al.

Mygydy> pr and dE/dx distributions

® Q=1
Q=2

cm:]
=

ionisation

dE/dx [MeV g™
[\S)

04 0.6 0.8 1.0

)

).

mg [TeV]

Inconsistency resolved by assuming is instead coming from a Q = 2 LLP which
is the decay product of a heavier resonance

[McCullogh et al. '22]
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R-parity violation
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[ATLAS "20]

- Assume the existence of a R-parity violating coupling
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R-parity violation
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Results for various lepton flavor combinations
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R-parity violation
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- Results for various lepton flavor combinations
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Overview of simplied model limits
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The role of the simplified models

- Simplified models do not represent the real reach of the experiment in
excluding a given model (in our case the MSSM)

- They are a way to represent the progress of an experimental in probing a
specific experimental signature

To really see the progress in the exclusion of the model, i.e. of the MSSM, one needs to
have either

- A complete analysis of the “full-model” points by the experimental
collaborations — thiis is usually done for very specific models and only at the
end of the runs, since it is heavy resource hungry

Perform the “reinterpretation” (recasting) of the experimental analysis to “map
it" to a given model - this is what usually theorists do to study their own
preferred model/physics (we will see this in detail in the last lecture)
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pMSSM: B-like LSP pMSSM: B-like LSP
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- Comprehensive Run-1 study from ATLAS on pMSSM [1508.06608]
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Simplified models vs pMSSM
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Simplified models vs pMSSM
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Note that the simplified model limits excludes more than what it is in the
complete model
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Simplified models vs pMSSM
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Note that the simplified model limits excludes more than what it is in the
complete model
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CMS pMSSM study
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- Similar study by CMS for Run-1[1606.03577]
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Estabilishing S

In the case we had a BSM signal at the LHC we would need, before claiming the
discovery of the MSSM, to prove

- that the quantum numbers of the would-be superpartners are the same as the
corresponding SM state

- that the spin of the would-be superpartner differs by half-unit of spin
- coupling structure

- mass relation between the states

= to carry out these measurements the precision of the LHC is not enough, especially
if the sparticles are heavish and not so heavily produced at the LHC
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SUSY at the ILC

In the case of the ILC (or any other high-energy linear ete~ collider) we have:

much cleaner experimental environment

- threshold scan for the production of the sparticles
= we can determine with precision properties
limitation: kinematich reach

- very good prospects for uncolored states
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Production processes

Two main final state signatures

Production with a heavier particle

et

¢ %
Production in association with a photon

et %

>
)
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ILC reach

Two main final state signatures
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Testing the MSSM via EWPOs

- Theidea is to look at (pseudo)-observables involving SM states measured very
precisely and to compare the predictions for this quantities in the SM vs a given
BSM models

Deviations are due to the different radiative corrections in the two cases (impact of
quantum fluctuations)

- Very high accuracy required — many loop calculations

Iw, sin? Ougs, My, (g — Dy -

We have seen the importance of My (and in a minor form sin? O) for the SM EW fit

- We have discussed My, in the previous lecture
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An example: the W mass and sin’ 6,5 in the MSSM

- Example with two EWPOs: My, mass and sin? O

- In the MSSM, by using just these two observables, we can probe many possible

combinations of MSSM parameters
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[Heinemeyer et al. "18]
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An example: the W mass and sin’ 6,5 in the MSSM

Example with two EWPOs: My, mass and sin® fq¢¢

In the MSSM, by using just these two observables, we can probe many possible

combinations of MSSM parameters -
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An example: the W mass and sin’ 6,5 in the MSSM
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An example: the W mass and sin’ 6,5 in the MSSM

Example with two EWPOs: My, mass and sin® fq¢¢

In the MSSM, by using just these two observables, we can probe many possible
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Symmetries, groups and their algebra

symmetry — a group of transformation that leaves the Lagrangian invariant

- The generators of the symmetry group satisfies certain relations that are called
their algebra

Examples

- Angular rotations: & — delf’La
theory is invariant under rotation
generators: Lq, algebra [Lq, Lp] = iegpcL©
quantum numbers: (max. spin)?, spin [[({+1),m = +[... — ]
Poincaré symmetry
space-time symmetries : Lorentz transformations A*¥ (rotations + boosts) and
translations PP
generators: Tq, algebra [Ta, Tp] = ifgpcT°
quantum numbers: mass, spin
Internal symmetry groups (e.g. SU(3) x SU(2) x U(1)) (gauge) symmetry; used to
describe the fundamental interactions (QCD, EW forces)
generators: Tq, algebra [Ta, Tp] = ifgpcT°
quantum numbers: color, weak isospin, hypercharge (for the SM)



The Lorentz group

Representation of the Lorentz group are labelled by two 'spins’, (j1,j2) where
j1,J> = 0, %,1 .... Basic repersentations M4 ? act on

(E. O) - left-handed 2-component Weyl spinor, 14

(0, 5) - right-handed 2-component Weyl spinor, e

The two component Weyl spinors 1, (LH) and 9% (RH) transform under Lorentz
transformation as

’

w; = Maﬁ¢5 1[’@ =(M")q 61/_15'
w/a _ (M*W);qpﬁ 15/“* _ ((M*)71)A aqzﬁ

where M = &% @=1®) with ¢ and & being respectively the three rotation angles, and
the boost parameters Summing up, we have

spinors with undotted indices (first two components of a Dirac spinor), transform
under the (3, 0) representation of the Lorentz group
spinors with dotted indices (last two componenents of a Dirac spinor), transform
under the (0, 5) representation of the Lorentz group



Spacetime and internal symmetries

The SM is described by

internal symmetries (the gauge groups of the interactions): Tq

- space-time symmetries (the Poincaré group): A*Y, PP
Note that the internal symmetries are trivial extensions of the Poincaré group
(A, T =0 [P, T =0

< symmetry is the direct product (Poincaré group) ® (internal symmetry group)
Particle states are characterized by the maximal set of community observables:

[m,s;p,ss; Q1 05,Y,...)
spacetime internal

quantum numbers



The Coleman-Mandula theorem

Coleman-Mandula theorem [coleman, Mandula '67]
Any Lie-group containing both the Poincaré group P and an internal symmetry group G
must be the direct product P ® G

That is, exactly as we have in the SM, one has separately spacetime and quantum
numbers

|m75;pvs3; Q,I,I3,Y,...>
—_—
spacetime internal

quantum numbers
Extensions where a new group G with generators Q® such that
[A#. Q™ #0, [PP,Q°]#0

are not allowed This implies that no irreducible multiplets can contain particles with
different mass or different spin

< a new symmetry has to predict new particles with the same mass and spin of the
SM states

— this is exluded experimentally



How to extend the symmetry groups of the SM

Coleman-Mandula theorem [coleman, Mandula '67]
Any Lie-group containing both the Poincaré group P and an internal symmetry group G
must be the direct product P ® G

That is, exactly as we have in the SM, one has separately spacetime and quantum
numbers

|m75;pvs3; Q7I7I3’Y"">
—_—
spacetime internal

quantum numbers
Extensions where a new group G with generators Q® such that
[A#. Q™ #0, [PP,Q°]#0

are not allowed This implies that no irreducible multiplets can contain particles with
different mass or different spin

< a new symmetry has to predict new particles with the same mass and spin of the
SM states

— this is exluded experimentally



The Haag-topuszanski-Sohnius theorem

First SUSY developments: [Gol'fand, Likhtman '71], [Volkoy, Akulov, '72], [Wess, Zumino 73]

< [Haag, topuszanski, Sohnius '75] generalized the Coleman-Mandula theorem, showing that
another symmetry (mixing spacetime and internal symmetries) was on the other hand
possible: supersymmetry

The caveat in the Coleman-Mandula theorem is that it assumes that the generators of
the Lie group satisfies commutator relations. However, it is possible to evade the
theorem if the generator are fermion spin-1/2 and satisfies instead anti-commutation
relations.

[.]—={- -}
In this case, particle with different spins in one multiplet are possible.
Q|boson) = |fermion) , Q|fermion) = |boson)

Q changes the spin by 1 unit



N = 1supersymmetry

In the simplest case one has only one fermion genetor Q,, (and its conjugate Oﬁ).
The generator (SUSY) algebra is

[Qa, Pul = [0,Pu] =0
[Qu, M) = i (o), PQps
{Qa,Q5} = {@O} =0
{Qa,05} =20t,Ps

4\4.\

Note that Energy = H = Py = [Qa, Po] = 0 = the energy is a conserved charge
Superysymmetry is the only possible extension of the Poincaré group in D = 4



The harmonic oscillator

The harmonic oscillator (we take h = c = w = ... = 1) Space-momentum
commutation relation: [g,p] = I.
The construction and destruction operators are

_
V2

_

i i
a +ip) ,af =
(a+ip) 7

(g —ip)

They satisfy the commutation relation [a,af] = 1.
We define the number operator Ny, := afa. Its eigenstates |n) > are such that

Np|ny = ata|n) = v/nat|n —1) = n|n)

The hamiltonian of the harmonic oscillator can be written in terms of the nunber
operator

_ ) = 1 _ 1
HB*Z(p +Q)7NB+2 = HB|”>*(”+2>|H>



The fermionic harmonic oscillator

Next we consider a two state system analogous to |§2,Sz> for spin %

- We define the two states: |[+) == [1,+1) and |-) :== |1, —1)
* The spin operators S, Sy, S; satisfy the closed Lie algebra [S;, Sy] = iejjSk-
- We define the following operators

St =Sx xSy, dt:=5,,d=5_

The matrix representations of the states are

0=

while for the operators we have

1 1 (0 1 1 1{0 -1 1 1(1 o
Sy =ty = - S, = —gy =~ [ S, = Lo, —
XT3 <1 o) TV TS </ o> G S (0 —1>

Note that (d*)? = d> = 0 and [dT,d] = 2S;, i.e. the commutator [d*,d] leaves the
algebra of d and d*.



The fermionic harmonic oscillator

On the other hand, if we look at the anticommutators we have
{d*,d} =1,{d,d} ={d",d"} =0
< under anti-commutation the algebra is closed.

Then analogously to the bosonic case, we define a number operator N := d*d.
The Hamiltonian is then given by Hf = S; = N — 1. We also find that

dfj=)=...=|+),d"[+)=...=0
d=) = ... =0,d[4) = ... = |-)
Ne[+) = ... = |} Hel4) = 51+)  (fermion)

Nf|=) =dtd|— >=0 (vacuum)



Coupling the two system together

The two-system hamiltonian is given by
H:=Hg+Hr =Ng +Ng =ata+d"d
with eingestates
In,+)=1Im&l+), In,=)=1[n&[-)
and we have
Hin,+) = (a*a+d*d)(In) ® [+)) = (n+1)In, +)HIn, =) = (n +0)[n, —)
The lowest energy state of the spectrum is |0, —), with E = 0, not degenerate.
All the other states are two-fold degenerates
E=0:10,-)
E=1:11,-),]0,+) (multiplet)
E=2:12,—),",+)
[.]
E=n:in,=),[(n=1),+)



The “SUSY” operator Q

Is there any operator that acts within one multiplet (i.e. that trasnforms one into the
other state, leaving the energy unchanged)? That is
Qn,+)y = n+1,-)y, Q" n+1,-) = |n,+)

> Q=cxatdand Qt = ¢’ -

x ad*, where c is the normalization factor ¢ = ¢* = -
2
We have that

- Q, Q" leave the energy unchanged = [H,Q] = [H,Q"] =0

- Qvac) =...=0,Q"|vac) =...=0
- [N,,Ql=...=—Q,[N;,Qt = ... = +QF
- [Ng,Ql=...=+Q,[Ng, QT =... = —-QF
{Q,.0*}=...=3H,{0Q,Q} =20’ ~ d* =0,
}

{Q*r, 0T} =2(Q")? ~(dF)? =0
Moreover, the energy expectation value of the Hamiltonian is

(n,£|H|n,£) ~ (n,£]{Q,Q"}n,£)
= ((n,£]Q) (Q"|n, %) + (n,£]Q") (Qln, £))
=(...)+ (...)" = positive definite



SUSY algebra

We have therefore demonstrated that Q and QT satisfies the following relations
iy ]
{Q,Q7} = EH

{Q,0} ={a*,0"}=0
[H,Q=[H,Qf]=0

We observe the general structure of commutators and anti-commutators
{F,F} =8B, [B,B]=8B, [Bfl=F

= Super-Lie/graded Lie algebra



Can SUSY be an exact symmetry?

Let's consider a state |f) with mass m
- Applying the SUSY generator we find a bosonic state |b) = Qa|f)

Remember that P?|fy = m?|f). We have for the bosonic state
P’[b) = P’Qalf) = QaP*If) = Qam’|f) = m*Qalf) = m’|b

That is, the mass of |b) is the same as the fermionic state |f).

In other words, all the states in a given supermultiplet have the same mass.
— This is clearly experimentally excluded.
< SUSY must be broken.



Positivity of the Hamiltonian

We recall that the anti-commutation generation of the SUSY generators are
{Qu ) éﬁ} = ZUZﬂPH

We have

{Qa, Q)5 = 20" .50% Py = 4Py

2+,

We take now v =0

1 =\ —pa 1

H=Po= {0005} 55 = : ({ar,Qf} +{0:,af})
where Q4 = (Qa)'. However we have also that
{a,Qy = qaf +afq

is clearly hermitian — eigenvalues > 0. That shows that

For any state |o) we have (a|H|a) > 0
- There are no negative eigenvalues, the spectrum of H is bounded from below and
>0



Positivity of the Hamiltonian

We denote our vacuum state as |0)

If the vacuum state is symmetric, i.e. Q|0) = 0, Qf|0) = 0 for all Q

- = vacuum state has zero energy, (0|H|0) = Evac =0

However, if we have spontaneous symmetry breaking, the vacuum is not invariant
anymore

if (global) SUSY is spontaneously broken, i.e. Qn|0) # 0
- = then (0|H|0) = Eyac >0

- = Non-vanishing vacuum energy



Multiplet spin structure

We recall that we have that
{0485} =0

from which we see that Oi = 0 (and analogously Q% = 0). Now, let's consider a
massless SUSY multiplet. We start with the state of lowest helicity Ao

With an application of Q4 — we have one additional state with helicity A\g 4+ %

However, from what we have shown above, further applications of Qg will yield 0!
No further states.

In other words, we have shown that a given supermultiplet contains at most one
fermionic and one bosonic state (for N' = 1 SUSY).

if we have N SUSY generators, then 2V~ bosonic and 2V~ fermionic states)

In any case, always the same number of bosonic and fermionic states.



Most relevant supermultiplets

- chiral supermultiplet

The chiral supermultiplet contains a Weyl fermion (spin-1/2) + a complex scalar
(spin-0)

- vector supermultiplet

The vector supermultiplet contains a massless vector (spin-1) + a Weyl fermion
(spin-1/2)

- graviton supermultiplet

The graviton supermultiplet contains a massless spin-2 (graviton) + a spin-3/2 particle
(gravitino)



Superfields and superspace

Recall that

- Translation: generator P,,, parameter x*

- SUSY: generators Q,, Qq, parameters 6,0

< 0 and 0 are Grassmann variables, i.e. anticommuting c-numbers.
A superspace is an extension of the 4-dim. space-time by the coordinates 6 and <.

Point in superspace X=(x*,0%,0%)
Superfield & (x#,0%,0%)



Grassmann variables

- Grassmann variables without spinor indexes

{6,0=0 60=0

- Grassmann variables with spinor indexes
00 = 0%00 = c,30°6°
=00#0

However, if we would Taylor-expand a superfunction ¢(0) in terms of the Grassmann
variables, the term 026707 (o, 8,~ = 1,2) would be zero.
— Taylor expansion ends after the second order, i.e. ¢(6) = a + 0 + f00.

Properties under integration

Similarly it follows that [ do = 0 and [ dod = 1. It follows that

/d29¢>(0) = /dze(a+w9+ﬁ90) =f with d’0= —%eaﬁdeﬂdeﬂ



SUSY transformations

Group element of finite SUSY transformation:
S(y,€,€) = expi (€Q+£Q — y*P)

in analogy to group elements for Lie groups. Note that ¢, € are independent of y# -
global SUSY transformation

- Superfield transformation
We waant to compute S(y, £, &)¢(x, 0, 0). We have
S, & 8)d(x,0,0) = ¢ (xH + y* — gD + 0o+ EE + 0,% + 0)

Representations of generators are obtained from the infinitesima transformation of
the superfield

Pu = iau , Qo= —i0a + (Uue_)uap 5 éo} = Iaa - (eau)dau

with 8, = % , 84 = =2 From this, we have that the SUSY covariant derivatives are

Do = —ide — (0"0)ady, Da = ids + (05")a0,



General superfield in component form

Rememembering that we can have at most 0 and 89 (99 = 60 = 0), the structure of
the most general superfield has to be:

D(x,0,0) = ¢(X) + 0(x) + 0%(x) + 00F(X) + 0GH(x) + 0o+ 0A,,(X)
+ (00)0N(x) + (09)0£(x) + (00)(80)D(x)

Components:

- ¢,F,H,D - scalar fields
- Ay - vector field
- 1), %, A, & — Weyl-spinor fields

= too many components in 4-dimension for irreducible representations of SUSY with
spin < 1 (chiral or vector multiplets)
= representation is reducible



Irreducible superfields

Irreducible superfields are obtained by imposing conditions on the most general
superfields, namely that it has to be invariant under SUSY transformation

- Dg® = 0: left-handed chiral superfield (LH, SF)
+ Da® = 0: right-handed chiral superfield (RHy SF)
- & = o' : vector superfield

The chiral superfields represent left- or right-handede components of a Weyl fermion
plus its scalar partner simplified LH, SF in components:

B(x, 0) = $(X) + V261(x) — (00)F(x) 3)

¢, F: scalar fields, i: Weyl spinor field



Simplified left-handed chiral superfield

bL(x, 0) = B(x) + V201(x) — (06)F(x)
mass dimensions: [¢] =1, [}] = 2, [[] = 2.
Recall that: 00 = e*#0,05, 0“0,

= —0:0, + 661,
The infinitesimal SUSY transformation are: % = 0% + €%, x* = x* + 2i0aH0

Sy = (ea% + E% + 2feaﬂgau> oL

Now we replace ¢, with its expression in terms of components

S = 2i00HED, ¢ + V2P V22i00H€D,0% 0 + 2¢* 00 F + O(0%)
where we have used

o 8 o
€ %QBGB,YGV = ...=2e%0,



Simplified left-handed chiral superfield

Using
: ; L ;
0%(c#)5580% = ... = —599(0“)‘”ﬁ€ﬁ
we can rewrite ¢, as
8L = 200720 + V2 Yo + V2i(00)(0H)® 48 Dutba + 2¢*0aF + O(6°)
The SUSY transformation of a LH, SF yields a LH, SF

Sy = 8¢ + V20%8be + (00)5F

From which
6% : 6 = V2erp boson — fermion
o' — V2eoF + i\/i(o“)ma,g‘j‘é)d) fermion — boson
0% : 6F = —iv20 ((U“’)aggﬁiﬂa) total derivative

Analogous for RH, SF



Vector superfield

The components of a vector superfields are

V(x,0,8) = c(x) + i0x(x) — iB3(X) + 0BV, (x)

£ LO0)(M) + ING)) — 2 (M(6) — INGO)
+i(00)0 (;\(X) —+ i-BM)((X)U“> —i(60)0 ()\(X) — éa“@,ﬂl)}(X))
+500)) (06) - 59" 2.c(9))

The number of components can be reduced via a SUSY gauge transformation, the
choice of the Wess-Zumino gauge.

() = c(x) = M(x) = N(x) = 0 (4)
With this choice, the vector supermultiplet becomes
V(x,0,0) = ... +i(00)(0)X(X) — i(00)ON(x) + = (06)(06’) ) +...

6D = —£0"IuN(X) — OuA(X)o”E D — total derivative



Supersymmetric Lagrangian

Aim: to build an actiona that is invariant under SUSY transformations
6/d4x£(x) =0

Satisfied if £L — £ + total derivative.

F and D terms (the terms with the highst powers of # and @) of a chiral and vector
supermultiplet transform into a total derivative under SUSY transformations =

F-terms (LHySF, RHySF) and D-terms (vector SF) to construct an invariant action

S= /d4 (/ dZGLF+/d26d29_£D>

If ® is a LHySF, then also " is a LH,SF (since D" = 0 if Dy ® = 0).
= products of chiral superfields are chiral superfields, products of vector superfields
are vector superfields.



Supersymmetric Lagrangian

F-term Lagrangian
1 1
LF = /dZQZ (O,q),' + —m,j(D,vd)/- + 7>‘lﬂ?¢l¢/‘¢k) + h.c.
ijR 2 3

Terms of higher order in ®; lead to a non-renormalizable Lagrangian < F-term
Lagrangian contains mass terms, scalar-fermion interactions but no kinetic terms

D-term Lagrangian

Lp= / 2028y (5)

< D-term Lagrangian contains kinetic terms for the vector fields



The Wess-Zumino Lagrangian

Construction of the Lagrangian from chiral superfields ®;: ®;, d;®; , d;®;®;,. Note that
the combination <l>/Td>,- is a vector superfield ((<l>f<t>,»)T = d>/.Td>,-)4

* , 7 7
[cb;rq)i]eeéé = FIF+ (0.9")(0"¢) + 5 (Yot Ourp — Ourpat ) + dpu(. . )
The auxiliar field F can be eliminated via the equations of motions:
abelian F = m¢* + g(¢*)?
non — abelian D° = ... > g ¢j(TG)G¢,-)
a
From which we have

]
Lp=FF+ - D°(DO)T + ...
D +ZG (D7) +



The Wess-Zumino Lagrangian

Combinining everything together

, i o o
Lp = % (it O — (Bmurh)otapi) — > Mii(idy + di)

. 1 1
+ (Quphit) (@) — > laj + Emu@‘ + gAijk¢j¢k|2

1

— Njr@itbjor — AEW%JJ,‘JJ;?

This the Lagrangian for ¢; complex scalar fields, and Weyl spinor fields, with the same
mass m;;. Note that the relation between the couplings imposed by SUSY.



The superpotential

L can be rewritten as a kinetic part plus a contribution from the so-called
superpotential v:

1 1
v(¢i) = ajd; + Emlj¢f¢j + 5/\/'jh¢i¢/¢k
We can write the £ as
= i(ww“@mﬂ/ — (Out)o™ b)) + (ud} ) (0¥ phiy)

1 v 1 Qv
- Z ~So VY T S e
8¢, 2 d¢i0phi; 20¢; 8phlj

gy

The superpotential v determines all interactions and mass terms. The Wess-Zumino
model corresponds to the case a; = 0.
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