Open questions in particle physics

Emanuele A. Bagnaschi (INFN LNF)

30 September 2025 XXXV International School "Francesco Romano" **Monopoli** Italy

Lecture structure

- 1. Evidence for dark matter
- 2. Dark matter candidates
- 3. Indirect detection
- 4. Direct detection
- 5. Producing Dark Matter in a collider
- 6. Outlook

Evidence for dark matter

A very famous plot

[data from ESA Planck]

What constitutes the universe?

- · Content of the universe estimated from cosmological observations
- Ordinary matter account only for \simeq 5% of the Universe
- · Open question: what constitutes the remaining part?

Signs in the sky: galaxy rotation

Rotational curves of spiral galaxies

- · Plot the orbital velocity of the stars versus their radial distance
- The curve does not follow what is expected from the gravitational potential created by the visible matter [Rubin 70s]

Signs in the sky: galaxy clusters

Galaxy cluster dynamics

- Virial theorem prediction: $E_{\rm kin} = -\frac{1}{2}E_{\rm pot}$
- [Zwicky 1930] finds discrepancy: $E_{\rm kin} \simeq 170 \times -\frac{1}{2} E_{\rm pot}$

Signs in the sky: the cosmic microwave background

[ESA Planck]

Temperature fluctuations

- Temperature differences in the CMB as a function of the angular scale in the sky
- The green curve is the best fit of the Λ_{CDM} model (extraction of cosmological parameters)

Signs in the sky: the cosmic microwave background

[ESA Planck]

Temperature fluctuations

- Temperature differences in the CMB as a function of the angular scale in the sky
- The green curve is the best fit of the $\Lambda_{\rm CDM}$ model (extraction of cosmological parameters)

Signs in the sky: gravitational lensing

[NASA/Chandra X-ray observatori/STScI/D. Clowe et al.]

Gravitational lensing

- Two colliding galaxy clusters \rightarrow study of the mass distribution
- In pink X-ray data, in blue the mass distribution inferred from gravitational lensing effect

Dark matter candidates

Weighting Dark Matter

Other possibilities: non-particle Dark Matter

- There are also non "fundamental" explanations such as primordial black holes
- Also the possibility of modifying the description of the gravitation interaction on large scale has been studied
- This possibility however encounters difficulties in describing some of the indirect signs of DM

Producing dark matter

How do we generate the observed DM content?

- · We observe a certain relic density of Dark Matter in the universe
- We assume that it consists possibly of a new particle (or more than one) that interacts in some way with the Standard Model particles
- · How can we arrive to have such a relic density?

Dark Matter freeze out

Thermal equilibrium, and then freezeout

- · In the early universe the DM is in thermal equilibrium with the SM particles $(\tilde{\chi}\chi \longleftrightarrow \tilde{f}f)$
- The number density of the DM particle is given by $n_{\chi, eq} = \int \frac{d^3p}{(2\pi)^3} e^{-E_{\chi}/T}$
- As the temperature drops, the interactions freeze out and we're left with a leftover density of DM particles

Dark Matter freeze out

Thermal equilibrium, and then freezeout

· The dynamics is described by the Boltzmann equation

$$\frac{dn_\chi}{dt} + 3n_\chi \frac{\dot{a}}{a} = -\left(n_\chi^2 \langle \sigma\left(\chi\chi \to \overline{\rm ff}\right) v_{\rm rel} \rangle - n_f^2 \langle \sigma\left(\overline{\rm ff} \to \chi\chi\right) v_{\rm rel} \rangle\right)$$

· We then impose the principle of detailed balance

$$n_f^2 \langle \sigma \left({\rm ff} \to \chi \chi \right) v_{\rm rel} \rangle = n_{\chi, \rm eq}^2 \langle \sigma \left({\rm ff} \to \chi \chi \right) v_{\rm rel} \rangle$$

· We are then left with

$$\frac{dn_\chi}{dt} + 3n_\chi \frac{\dot{a}}{a} = -\langle \sigma \left(\chi \chi \to \overline{\rm ff} \right) v_{\rm rel} \rangle \left(n_\chi^2 - n_{\chi,\rm eq}^2 \right)$$

Dark Matter freeze out

Annihilation today?

 With such a cross-section it should be possible to observe DM annihilating today in region of high density

The phases of freezeout

- Equilibrium, efficient annihilation of DM into SM particles and vice-versa
- The scattering of SM particles into DM states is less efficient
- 3. No more equilibrium, freeze-out

The WIMP miracle

- 1. We obtain the observed relic density for $\langle \sigma \left(\chi \chi \to \overline{f} f \right) v_{\rm rel} \rangle \simeq 2.2 \times 10^{-26} {\rm cm}^3/{\rm sec}$
- 2. SM-like couplings
- 3. Mass around $\mathcal{O}(100)$ GeV

Other mechanisms

The FIMPS and the freeze-in

- Assume that the particle couples very weakly with the SM states
- The relic density then slow increases up to the currently observed value
- Very small couplings means very difficult/impossible to observe at colliders

Axions

- Field oscillations around the minimum ightarrow condenste ightarrow Dark Matter
- · Low mass axions are good DM candidates $(\mathcal{O}(1-10)\mu eV)$
- Not very well probed at the LHC (LHC most sensitive to ALPs of a few GeVs)

Dark matter halo of the Milky Way

Dark matter in the halo

- · The sun orbits the center of the Milky Way inside the Dark Matter halo
- · Can we detect these particles?

Indirect detection

Can we observe DM annihilation today?

Annihilation today?

- Can we observe the annihilation of DM in space?
- Assuming a WIMP, decay into the SM particles results in mainly a flux of gamma rays, positrons and neutrinos

[Baltz et al. '03]

Where to search for these signals?

Detecting annihilation

- Pros: possibility of probing the distribution of the DM density in the Universe
- 2. Cons: affected by irreducible astrophysical backgrounds and fake signals
- 3. Cons: low statistics

Limits from MAGIC and the Fermi-LAT satellite

$$\frac{d\Phi}{dE}(\Delta\Omega) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle J(\Delta\Omega)}{2m_{\chi}^2} \frac{dN}{dE}$$

Cosmic rays

Cosmic rays detection

- Detecting particles such as positron or proton/anitproton is a more complex endeavour
- · These particles travel across the galaxy and are affected by it
- Non-trivial to estimate backgrounds from astrophysical systems (e.g pulsars)

Positron excess

A possible sign of Dark Matter ... or not

- · Several experiments detect an excess in the positron flux
- Most precise measurements from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station
- Open question whether this is a Dark Matter signal or an astrophysical background

Neutrinos from the Sun

Detecting annihilation in the Sun

- Another possibility is that the DM is captured by the sun and it annihilates in its center
- \cdot We can detect these processes by looking at neutrinos coming from the sun

Neutrino detection

Icecube

- Neutrino telescope located at the South Pole
- · Look at the interactions of high-energy neutrinos in the ice
- Observations interpreted in terms of limits to the cross-section of the dark matter with ordinary matter

Direct detection

Principles of WIMP direct detection

Dual-phase liquid Xenon detector design

- · Different design for these experiments possible
- Most sensitive ones for searches in the WIMP range are based on concept of the dual-phase Time Projection Chamber design

Dark matter experiments

PC experiments

- The largest experimenrts are the ones of the XENON1T, LUX and PandaX II collaborations
- Successor experiments are in the process of being design and built (e.g. comissioning of XENONnT is currently ongoing)

 \mathbb{Z}

Results

[Direct detection of DM - APPEC committee report, 2104.07634]

The DAMA excess

[F. Froborg, A.R.Duffy, J.Phys.G 47 (2020) 9, 094002]

A controversial result

- DAMA sees an annual modulation in the scattering rates detected by their experiment
- In conflict with the results of other experiments, but different technology
 - Other experiments are now trying to reproduce the result (COSINE, ANAIS), for the moment no signal detected

XENON1T low mass excess

- · Excess in electron-recoil signals
- · Could be explained by light particles such as solar axions
- · Could be also background from tritium
- Will be clarified quickly by the XENONnT experiment

The haloscope concept

- Based on the reverse Primakov effect [Sikivie PRL 51, 1415; PRD 32, 2988]
- In a static magnetic field oscillations of the axion field induce oscillations in the electric field with a frequency corresponding to the axion mass
- Detect the axion in the milky way halo

Limits on ALPs

[C. A. J. O'Hare AxionLimits webpage]

Producing Dark Matter in a

collider

The Large Hadron Collider

Searching for DM at the LHC

Explicit SM extensions

- One can consider a well-defined extension of the Standard Model
- The couplings between the Dark Matter and the Standard Model state are well defined and will produce a specific pattern of final state particles

Model-independent approaches

- Look at signatures where one produced two dark matter particles in association with a single SM signature (one jet, one photon etc.)
- Generically earch for mediators in decay channels to SM particles (dijet, dilepton final states)

Searching for DM at the LHC

Explicit SM extensions

- One can consider a well-defined extension of the Standard Model
- The couplings between the Dark Matter and the Standard Model state are well defined and will produce a specific pattern of final state particles

Model-independent approaches

- Look at signatures where one produced two dark matter particles in association with a single SM signature (one jet, one photon etc.)
- Generically earch for mediators in decay channels to SM particles (dijet, dilepton final states)

Minimal Supersymmetric Standard Model extension

The Standard Model of particle physics

Supersymmetric particles

The MSSM

- · One of the most widely studied extension of the Standard Model
- It features a state called the neutralino which is the archetype WIMP Dark Matter (if it is the lightest state of the model)
- Widely investigated at the LHC and at direct detection experiments no detection so far
- · We do not have a clear prediction for the masses of the new states

Searching for the neutralino

Electroweak production

- Neutralinos can be produced via a Z (or W) boson in association with another neutralino (chargino)
- Smaller cross-sections with respect to the production via decay of colored states but could be cleaner

From the decays of colored/Higgs states

- Being the lightest MSSM state, other the decay chains of the other SUSY states always end with one neutralino
- In specific scenarios can be also produced as the decay of the Higgs bosons of the MSSM

From the experiment to the theory

- Experimental collaborations presnts the results of their analysis in terms of limits of SUSY simplified models
 - Useful to understand the progress of the analyses
- · Can be used for recasting by theorists for phenomenological studies

The neutralino as Dark Matter

Patterns of the MSSN

- To be compatible with the observed relic density in the universe, specific mass-relationships between the particles states are required
- Clear prediction of the spectra, but due to the current exp. constraints only very specific regions with "degenerate" spectra or the so-called "funnel" regions are possible

Spin-independent scattering cross-section

Correlating collider and non-collider constraints

- · Complementarity of collider searches vs direct-detection searches.
- Relieving $(g-2)_{\mu}$ allows for light higgs funnel/Z funnel/t-channel-stau regions to appear at the 2σ and 3σ level.

Spin-dependent scattering cross-section

Correlating collider and non-collider constraints

- PICO-60 results touch the 3σ contours.
- We cross-checked for a selection of points that IC constraints are relevant only for a minority of points in our sample.

Dark Matter Simplified Models

Simplified descriptions

- · Capture the "essence" of dark matter physics in a simplified model
- In their simples incarnations, we add one state that is our Dark Matter particle and another state that is the mediator between the Standard Model and the DM
- We can then search for both the production of the DM and of the mediator at the LHC

LHC Results

[ATLAS ATL-PHYS-PUB-2021-045]

Collider probe

- · Different searches effective for different mass combinations
- · Strong sensitivity to the values of the couplings

LHC - direct detection interplay

Collider vs direct detection

[ATLAS ATL-PHYS-PUB-2021-045]

- Complementarity between LHC and direct detection experiments
- LHC covers more efficiently the mass range, direct detection experiments gets to lower cross-sections

Outlook

Future direct detection experiments

Future indirect detection experiments

- The Cherenkov Telescope Array (CTA) will be the next large experiments for indirect DM detection
- Two arrays of Cherenkov telescopes, one (north site) in La Palma, in Spain, and one (south site) in Paranal, Chile.

Future colliders

Supersymmetry reach

- · Future colliders will continue in their search for supersymmetry
- · Linear colliders more efficient in the compressed region
- Hadron collider reach larger masses due to their higher center of mass energy

Future colliders - DMSMs

[Physics Briefing book of the ESPP update 2020, 1910.11775] FCC-hh (Diiet) HL-LHC (Dijet) FCC-hh LE-FCC HL-LHC Monophoton M_{Mediator} [TeV]

- Dark Matter Simplified Models are a good benchmark to understand the capability of the machines
- However no prediction for the mass

Dijet

Monojet

ann=1, an=1/4

Axial-Vector

Qnм×qc=1/4

Muon collider

[Bottaro et al., EPJC 82 (2022) 1, 31]

Muon collider reach

- · The muon collider is a more experimental concept
- · However it would be able to probe more efficiently various DM candidates

Summary

Summary

- Understanding the nature of Dark Matter remains one of the most important open task of particle physics
- To properly address this challenge we need a coordinated approach across domains, raning from astro-particle to collider/lab experiments
- Many possibilities are still open and they will be explored by the current and future generations of experiments