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…Many of the concepts and topics that will be discussed  (hardware & 
software infrastructures, technologies) are relevant also for Other HEP (Belle-
2, …),  neutrino (DNE, …), astroparticle (SKA, CTA, GW, …) experiments 2
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Outline

• The relevance of computing in HEP
• From RAW data to physics results
• Software and computing infrastructure
• Future evolution
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Why computing is relevant in HEP
● Current HEP research needs to look into 

high energy and/or rare processes and/or 
very precise measurements

○ High Energy: Look up in the sky!
■ Astroparticle Physics, the universe produces for 

you cosmic rays (measured up) to some 1021 eV 
(109 TeV)

■ But they are rare!
○ Rare & Precision: Produce (a lot of) high energy 

events using colliders
■ Current best is “only” at 14 TeV (c.m.)
■ but we can produce billions per second

● The need for a lot of computing is an 
unfortunate consequence
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Why computing is relevant in HEP
● Most of the reasoning involves the 

relation between the cross section of a 
given process and the number of 
events generated

   N =  x Lint

● More (c.m.) energy in the collision of 
beams: the total cross section 
increases + the complexity of the 
collision results increases 

● more, and more crowded events
6https://arxiv.org/pdf/1005.3299.pdf



Why computing is relevant in HEP
● This part of the cross section plot is 

“mostly understood and not interesting”
● This part is “interesting”, as it has large 

cross-section and is sensitive to new 
physics through precision measurements 
of (rare) heavy quark flavour processes

● This part is “interesting”, but has cross 
sections up to billion times smaller

● Unfortunately quantum mechanics tells 
us the “choice of the process” is 
completely probabilistic: you cannot force 
nature to produce only what you care for

● In order to produce the latter two, you 
need to produce (a lot of) the former
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Total number of “trials” needed

● Take ATLAS / CMS as an example
● For a cross section of 105 fb, to produce 10.000.000 Higgs in 5 years (per 

experiment) one needs 

  Lint = 100 fb-1 integrated luminosity (107/(105 fb))  
● This translates into an instantaneous lumi(*)

LINST = 1041 cm-2 / (5 y *3*107s/y / 5(ineff) ) = O(1034) cm-2 s-1

● .. But at the same time, 100 fb-1 will result in some 1016

«uninsteresting» collisions
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The LHC!

(*) assuming an efficiency factor ~5 for shutdown periods, vacations, repairs, etc, and noting  
that 1 b = 10-24 cm2 → Lint  = 100 fb-1=1041 cm-2



Selecting the interesting collisions

● Not an easy task, they do not always look 
so different

● On top of this, the 25 ns bunched 
structure of LHC superimposes several 
proton collisions in a single bunch 
crossing (~30-50 Run-2, up to 80 Run-3, up 
to 200 in the future), and most of the 
signals come from the uninteresting one 
(and, they are not colored in the figure on 
the right!)

○ An online selection is not trivial; in 
order to have decent efficiency on the 
“interesting events” you cannot be 
too picky

○ In the flavour sector, even the 
interesting events are _a lot_ 9



Back-of-the-envelope estimate of storage needs
● Simplified model for “a detector” 

○ take a “picture” of a collision every 25 ns (40 MHz)
○ O(100) Million detector channels (“pixels”)
○ Assume 1 channel = 1 byte
○ the data rate would be 
  40e6 ev/s * 100e6 byte/ev =  4 PB/s

● A “storage problem” is automatic given the 
needs for looking into rare events with an high 
precision
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A data deluge! 

● In an ideal world, all the 40 MHz  25 ns snapshots would be saved and analyzed
● …but 4 PB/s in 5 years would be 120 ZB (ZettaBytes = 1021 bytes) 
● We cannot save 4 PB/s for any reasonable number of seconds, and the 

experiments need to last for years; hence a number of solutions / tricks / 
approximations needs to be found

○ Easy ones: Zero suppression: do not save the reading of channels which are not 
“significant” (lossy compression): 100 MB/ev → 1 MB/ev

○ Complex ones: try and interpret the events as they flow, and select “enough of the 
interesting ones” → the trigger

● In practice, a much lower rate is saved for $$ reasons 
○ years of studies have defined the “minimum” possible while still preserving the physics 

capabilities at least for the most important physics channels.
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In context

HEP produces huge 
datasets
● Comparable to 

industry 
applications 

● with different 
usage patterns

● By using public 
funding

RAW data rates are 
totally unprecedented
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Challenging

Data throughput from detector    
back-ends today:1-10TB/s

Typical LHC “live-time”: 7Ms/year

→Data volumes: 7-70EB/year
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The limiting factor of a HEP experiment

● Apart from some limits on the electronics (“I cannot 
dispatch more than X consecutive triggers”), the real 
limit on the numbers and type of events collected by 
HEP experiments is the Computing, and on its turn the 
amount of money one can dedicate to that.

● If you want, it is a reversed process: I know what I can 
spend on the computing → I know how many events I 
can collect → I know what type of physics I can do.

● This is why any R&D, new idea, new solution which 
allows to reduce the Computing costs, is very visible 
and increases the physics potential of the 
experiments

14

(S. Roiser)



Trigger 
DAQ

Data 
preparation

Analysis

From RAW data to physics results
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Online processing

Trigger strategy to select rare processes: 

• search for local signatures (calorimeter 
energy, presence of muons…)

• Reject background 

• Select rare events 

“Classic” multi-level trigger

• Chain of “yes or no” decisions

• Very fast first level with (programmable) 
hardware

• “slower” higher level(s) via software on 
specialised or off-the-shelf processors
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Online processing

Trigger strategy to select rare processes: 

• search for local signatures (calorimeter 
energy, presence of muons…)

• Reject background 

• Select rare events 

“Classic” multi-level trigger

• Chain of “yes or no” decisions

• Very fast first level with (programmable) 
hardware

• “slower” higher level(s) via software on 
specialised or off-the-shelf processors

(ATLAS)

19



Online processing

Trigger strategy to select high cross-
section, signal-dominated 
processes: 
• No “simple” local criteria 
• Classify decays 
• Access as much information about 

the collision as early as possible
• Read full detector
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Online processing

Trigger strategy to select high cross-
section, signal-dominated 
processes: 
• No “simple” local criteria 
• Classify decays 
• Access as much information about 

the collision as early as possible
• Read full detector

(LHCb)
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Schematic view of LHCb DAQ & trigger system
~19000 fibre links between the 
detector (100m underground) and 
the computing farm

170 servers to read the data and 
pre-filter (HLT1, running on GPUs)

More than 4000 CPU servers for 
the event filter second pass

Up to 40PB of disk storage in 
between

Reading from multiple channels, 
with synchronization needed!!!
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LHCb Data Acquisition
Uses Field Programmable Gate 
Arrays (FPGA) for logic 
(programmation with VHDL or 
Verilog)
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LHCb Online farm

More than 4000 servers in the racks

26

19000 fibres connect the experiment 
with the computer center

LHCb 
computing 
center at CERN



The Run3 ALICE computing

● The Time Frame (TF) concept
○ All collisions stored for main detectors 

→ no trigger
■ Collection of tracks in a given time 

window (“long exposure photographh”
○ Exposure time tunable (~2.88 ms)
○ 100x more collisions 
○ Raw TF stream input to GPU farm 

where tracking, reconstruction and 
compression are performed in sync 
with data taking

○ Storing compressed TFs
● Online (sync) and offline (async) 

reconstruction using exactly the 
same code

27



The ALICE Run3 data flow
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Trigger 
DAQ

Data 
preparation

Analysis

From RAW data to physics results
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Data preparation

• Interpretation of RAW detector signals into physics objects
• Calibration

• Convert raw data to physical quantities

• Alignment
• Find out precise detector positions

• Event reconstruction
• Reconstruct particle tracks and vertices (interaction points)
• Identify particle types and decays
• Impose physics constraints (energy and momentum conservation)

• Used to happen offline; trend to move online parts or even the entire 
chain
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Calibration

• Raw data are mostly ADC or TDC 
counts

• They have to be converted to 
physical quantities such as energy 
or position

• Very detector-dependent
• Every detector needs calibration
• Calibration constants need to be 

updated and stored in a database

(CMS ECAL)

31



Alignment

• Tracking detectors are very precise instruments
• Silicon strip detector: ~ 50 μm
• Pixel detector: ~ 10 μm
• Drift tube: ~ 100 μm

• Positions of detector elements need to be 
known to a similar or better precision

• Alignment with charged tracks from collisions, 
beam halo and cosmic rays

• Continuous process
• Alignment constants need to be updated and stored 

in a database
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Reconstruction

• Reconstruct charged particles
• Reconstruct neutral particles
• Identify type of particles
• Reconstruct vertices (interaction points)
• Reconstruct kinematics of the interaction
• Not trivial, very time-consuming …

• Find out which particles 
have been created where 
and with which momentum

There are many many types of 
sensors, and other types of 
detectors (e.g. the Time 
Projection Chamber in ALICE)

Very active field, with uses 
outside of High Energy Physics
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Reconstruction of charged particles

• Measure position in detector 
layers (“hits”)

• Curved trajectory due to the 
magnetic field

• Use position measurements 
to determine track 
parameters (location, 
direction, momentum) and 
their uncertainties

34
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Reconstruction of charged particles

Difficult task! 
• Assignment of hits to particles is unknown
• Huge background from low-momentum 

tracks
• Material interactions: Multiple Coulomb 

scattering, Energy loss (ionization, 
bremsstrahlung)

• Mathematically complex (Kalman Filter, 
matrix algebra, propagation in a not uniform 
magnetic field)

• Highly combinatorial: given a set of N signals, 
it scales as NM, with M>1 and algorithm-
depending
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Problem decomposition

• Pattern Recognition or Track Finding
• Assign detector hits to track candidates (collection of hits all believed to 

be created by the same particle)

• Parameter estimation or Track Fit
• Determine track parameters + their estimated uncertainties (covariance 

matrix)

• Test of the track hypothesis
• Is the track candidate the trace of a real particle?

37



Track finding

• Very detector-dependent 
• Many solutions available, no general recipe
• Global methods: include all measurements (clusters) in a 

formulation of the problem where solutions match to tracks 
• Local methods: iterative methods where a seed is found first and 

is there forwarded to other sensors 
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A local method: Search by triplet in the LHCb VeLo

Clusters from different sensors are 
grouped in tracks that crossed the 
detector

We can make hypotheses to simplify the 
problem: our tracks come from the 
beam interaction point, this means that 
they stay at constant phi angle

The tracks are straight in the LHCb Velo 
as there is no magnetic field there

Back view of the Velo
(The beam travels on the Z axis) 39

https://arxiv.org/pdf/2207.03936
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A local method: Search by triplet in the LHCb VeLo

40
https://arxiv.org/pdf/2207.03936

https://arxiv.org/pdf/2207.03936


Finding the primary collisions: Vertexing
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Combinatorial Kalman filter
● A “seed” (initial measurement and 

covariance) defines the initial state and its 
covariance 

● A propagation operator defines the predicted  
state on the following layer 

○ Noise (e.g. multiple scattering) taken into 
account

● State is updated with measurement 
information, and propagated to the next 
layer

● …and so on, until the last layer
● Back propagation “smooths” the track 

parameters by globally using all 
measurement points

● Wrong combinations of hit associations 
(fake tracks) are reduced by starting from a 
very pure track seeds (e.g. pixel triplets)

(Richard Cavanaugh) 42



A global method: the Hough transform

Map each point to a line in the space of parameters (a and b are the parameters defining the line), and 
look for accumulation points in the transformed space.
Can be Computationally expensive, but can be optimized and is useful in e.g. LHCb to forward Velo 
tracks downstream.

43

Forwarding tracks in LHCb



Neutral particles

• An incident neutral particle produces a 
shower in the calorimeter

• cluster of cells with energy deposit above 
threshold

• overlapping clusters must be separated
• The cell-to-cluster association is a 

pattern recognition problem
• Various clustering techniques are used 

to find showers
• The algorithms depend on various 

characteristics of the calorimeter
• Type (electromagnetic or hadronic)
• Technology (homogeneous or sampling)
• Cell geometry, granularity
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Particle Identification

• Dedicated detectors
• Calorimeters
• Cherenkov-based
• Transition radiation
• Time-of-flight 
• Ionization

• Information combined from 
several detectors

• Using log-likelihoods, machine 
learning, etc. 

• Performance is monitored on 
data control samples
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Data quality

• Only reliable, high-quality data 
are used 

• The amount of useful data is 
maximised in data quality 
checks at several stages e.g. 

• In real-time during data-taking
• after a quick 

calibration/alignment on a 
fraction of data

• With the best 
calibration/alignment on all data 
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Trigger 
DAQ

Data 
preparation

Analysis

From RAW data to physics results

47



Physics analysis

• Extract physics signals from background
• Measurement or discovery limits of 

masses, cross-section, branching 
fractions, and other physics observables

• Further selection of events, with a 
statistical interpretation

• high dimension likelihoods on million / 
billions of events, use of sophisticated 
multi-variate techniques 
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Simulation

• The core of our studies is comparing hypotheses 
with the collected data

• For simple systems, we can analytically compute 
the expected result (given a hypothesis) with the 
data

• For more complex systems, in which many stages 
and  processes are taking part to the outcome, 
this is simply not possible

• Generate artificial events resembling real data as 
closely as possible

• Needed for background studies, corrections, error 
estimation

• Crucial to guide the design of new detectors / facilities

F=ma ??
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Trigger 
DAQ

Data 
preparation

Analysis

Theoretical model

Simulation of decays of 
unstable particles

Simulation of interactions 
particle-detector

Simulation of detector 
electronics

Trigger
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Simulation steps

• Event generation
• Generate particles according to physics of the 

collision
• General-purpose and specialized generators

• Detector simulation
• Track particles through the detector, using detector 

geometry and magnetic field
• Simulate interaction of particles with matter
• Generate signals in sensitive volumes

• Digitization
• Simulate digitization process (ADC or TDC)
• Simulate trigger response

• Reconstruction
• Treat simulated events exactly as real events
• Keep (some) truth information: association of hits to 

tracks,association of tracks to vertices, true track 
parameters, true vertex parameters, …

• Store everything
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Detector simulation

• GEANT4: the widely used standard
• Object oriented, C++
• Extremely general and versatile

• Implements detailed models of particle 
interactions with matter in a wide energy 
range

• Needs detailed description of the 
apparatus (sensitive and insensitive 
parts)

• Geometry
• Partition the detector into a hierarchy of volumes
• Describe their shape and their position relative to 

a mother volume
• Use possible symmetries

• Material
• Chemical composition, density
• Physical properties: radiation length, interaction 

length, …

52



Simulation for detector understanding

• Use software simulations to 
model the detector as 
accurately and precisely as 
possible based on our best 
understanding of the physics 
involved

• Test accuracy of simulations 
using real data

• Correct simulations if necessary
• Once simulation gives an 

accurate detector model, it can 
be used to correct the data for 
detector response
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Where do we spend CPU work?

● Different experiments have different 
shares in the CPU utilization, but in 
general simulation (from partons to 
electronic signals) and reconstruction 
(from electronic signals to “physics 
objects” like jets, leptons, ….) are the 
most time consuming

● As a rule of thumb, # of simulated 
events > # of collected events
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Towards absolute numbers
● Event Generation: depends strongly on the generator 

choses (Madgraph vs Sherpa vs PowHeg vs …) and the 
precision requested (LO vs LNO vs NLO vs …)

● Simulation: by now, the vast majority (all?) the 
experiments use Geant4 as the simulation toolkit; 
still, its requested resources depend on stuff like: 
volume of the detector, number of volumes, intrinsic 
detector resolution, importance of low energy 
secondary interactions, capability to use 
parametrization

● Reconstruction: The most time consuming task is 
charged particle tracking using very high resolution  
detectors (e.g. thin silicon layers). It is a good example 
since it is mathematically complex and Highly 
combinatorial
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But before giving absolute numbers .. 
unit of measurement for CPU!

● The “number of CPU seconds” a task needs is not a proper unit of 
measurement for CPU, even more if we want to compare results from CPU 
generations distant in time

● Even industry standard benchmarks (SpectInt, SpecFP, …) are not suitable, 
since they probe CPU aspects not necessarily interesting to us

● HEP (via HepiX) created a synthetic benchmark based on a subset of SPEC® 
CPU2006, which was in use in 2009-2023: HepSpec06 (HS06)

● a new, improved synthetic benchmark based on a weighted average of 
workflow from HEP experiments was deployed in 2024 and used since then 

○ Rule of thumb: a CPU “core” today is ~10-20 HS23
○ Hence, a 128 core CPU is ~ 2000 HS06
○ Hence, a 2 CPU box is today ~ 4000 HS06 
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Absolute numbers 

● Today, with standard Run-2 LHC, typical numbers are
○ Event generation: 100-1000 HS23.s (which means ~ 10-100 sev/ev on a 

single CPU core)
○ Simulation (G4): 500-3000 HS23.s
○ Reconstruction: 150-300 HS23.s
○ Analysis: can be anything, usually quite fast (<1-100 HS23.s)

● With these numbers, we can try and project the Computing (CPU and 
storage) needs for a HEP experiment today, assuming that LHC 
collides beams ~ 7Ms/y and 4 experiments 
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Estimate for a single data taking year
Storage

Data:

7 PB RAW (x2 for a backup copy)

3.5 PB reconstructed data

MonteCarlo

14 PB RAW

7 PB reconstructed simulation

TOTAL ~30 PB/year

CPU

Data:

7e9 ev*300 sec*HS23/ev = 2e12 

sec*HS23 = 70000 HS23*year (→ 7000 

CPU cores)
MC

70000 HS23 reconstruction

7e9 ev*2500sec*HS23/ev = 1.7e13 = 500000 

HS23*year simulation

Analysis (MC + DT):
7e9ev*2*10 sec*HS23/sec *N = 1.4e11 

sec*HS23 *N = 4500*N HS23

Where N is the number of independent 

analyses, can be very high (~100)

TOTAL ~ 1.1M HS23

…corresponding to 3000 HDD/y 100000 computing cores per experiment!



In reality

● The estimate in the last page does not account for the fact 
that multiple years are used at the same time, mistakes are 
done, special data taking periods also take resources. And, 
on top of that, there are always (at least) 3 activities going on

○ Analyzing data from previous + current year
○ Taking data in the current year
○ Preparing future data taking periods and

 detector upgrades
● So, all in all, real resource number per experiment are 

underestimated by at least a factor 3x
59



How to handle this?
● By today’s metric, handling some 1 Million CPU cores and 2-3 

Exabytes of data does not seem an impossible task
● But, LHC was approved in the mid 90s, when 1 single HDD 

was 10 GB, and a CPU was probably 0.1 HS06
● You can understand what leap of faith in technology is 

needed to think that in 10 years (the expected start of LHC 
was < 2005)  you will be able to handle resources which, in 
1995, were of the same size of the entire world IT resource
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How to design a computing model for HEP in ~ 1995?

● Build a BIG data center
○ A large building with ~1000000 computing cores, and 200000 HDD; 

Probably it would work; Google apparently has facilities much larger than 
that; NSA for sure…

○ But: It would be a single point of failure; problem finding enough personnel 
in a single area, member states not willing to fund resources abroad, ...

● Use many small data centers
○ De-localized cost / expertise / redundancy; member states happy since 

they can build a local infrastructure, …
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Introducing the GRID

● Idea was not new in Computer 
Science; HEP had “simply” to make it 
real at a large scale

62

“When the network is as fast as the computer's 

  internal links, the machine disintegrates across 

  the net into a set of special purpose appliances” 

  (George Gilder) 



The idea in a nutshell

Split the problem into two levels:

● The physical level: 
○ Distribute resources worldwide in N (>100) centers
○ Technically a nightmare: distributed Authentication, Authorization, 

network paths, multiple access protocols to CPUs/Storage, …

● The logical level: 
○ Try and provide the users (the physicists!) with a logical single view, where 

”many CPUs” and “a lot of storage” is available in a “flat view”
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Build a wall 
(call it API 
layer, 
intelligent 
system, …)



The implementation

Leaving aside the historical development, we have now
● A global entity for LHC computing (and more, see later), the 

Worldwide LHC Computing GRID (WLCG) – sometimes 
called the “5th big LHC Collaboration”

● A set of low-level tools allowing the collaboration to work:
○ A trust model for mutual Authentication and 

Authorization
○ A set of recognized protocols for data access, data 

movement, metadata organization, support, 
accounting

● O(200) centers in the collaboration 
○ With “guaranteed” service levels and some 

obligations…
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Data management
• Dealing with exabytes of data and a 

complex distributed computing 
infrastructure. Data are stored 

• on disk for immediate access 
• on tape for archive 

• access takes longer but it is much 
cheaper, so we can store much more data

• Data management systems catalog 
data and track the location of data 
(site A, B, C … )

• Rucio and DIRAC are prominent 
examples of data management systems 

• Data management systems can also 
initiate transfers between sites
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Workflow management
• Multi-dimensional optimization 

problem : orchestrating work 
accessing data and producing 
derived data

• Submission infrastructure software 
(like HTCondor) and workflow 
management software (Like Panda, 
Dirac, WMAgent) automate

• Job creation
• Job execution
• Job monitoring and failure recovery
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Authentication & Authorisation

● Mutual trust and AAI is the most important building block:
○ As a LHC scientist, you can literally access resources in every corner of 

Earth 
○ It is the cornerstone on which the various access protocols will be based 

upon. We started with X509 certificates, we are transitioning to Indigo-IAM 
tokens

● If you have a distributed infrastructure which you want to use as a big 
single entity, the technical building block you need is “tons of 
network” (aka have a WAN as fast as LAN)
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The network
● The ideal “as if local” is possible when all the nodes see all the data at “as 

local” speed; which in LHC metrics mean ~ each core should be able to 
access every piece of data at O(5 MB/s)

● In 1995 this was a dream: network lines are expensive and rare (no Netflix 
yet!); we cannot assume to prepare the full mesh of networking for O(100) 
centers – which would mean n(n-1)/2 connections → O (104)

● MONARC project studied and proposed a hierarchy of computing centers: 
the “Tiered data model”; fewer paths are needed, and their importance is 
different

69
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A second copy of RAW data (Backup)

Re-reconstructions with better calibrations

Analysis Activity

They are dimensioned to help ~ 50 physicists in their 
analysis activities

Tier 1Tier 1 Tier 1 Tier 1
Tier 1

Tier 2 Tier 2 Tier 2 Tier 2
Tier 2

CERN

Master copy of RAW data

Fast calibrations

Prompt Reconstruction

Tier 0

Tier 2 Tier 2 Tier 2 Tier 2
Tier 3,4

Anything smaller, from University clusters to your laptop
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1st need: put the data 
in safety

1st copy stays @ CERN, 
but a 2nd copy must go 
distributed for disaster 
recovery

→ Guaranteed lines 
Tier-0 → Tier-1s

→ By today , multiple 
of 100 Gbps
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… and from 
Tier-1s to the 
other data 
centers …
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… and from 
Tier-1s to the 
other data 
centers …
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… and from 
Tier-1s to the 
other data 
centers …



Tiered model: the distributed system must be smarter!

● Optimize transfers, avoid too many “jumps”
● Moving data is expensive / time consuming → move the jobs 

to data, and not vice versa
● … which means at some point you need to have the “most 

important data” in the “best places” → need for smart data 
placement, data lifecycle, multiple copies, caches, …
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Software

HEP collaborations have quite unique needs for software:

● It is inevitably large → see later
● It must be runnable on every country participating the effort, and 

more → no copyrights, no embargoed code
● It must cover a large range of use cases → simulation, 

reconstruction, selection, analysis, …
● It is a long journey; experiments last O(10-30y), difficult to rewrite 

from scratch when taking data
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Software stack
Main languages used:
● C++ for the physics data processing framework and some analysis software
● Python for the analysis and scripting/configuration

But other languages too: C/C++ used for interfacing with electronics, VHDL for 
FPGA, Julia, etc…

More than 5 million lines of code per experiment, development started in the 
early 2000s. Covers the code to integrate with the DAQ, data analysis, event 
reconstruction,….

Using frameworks to process the events (Athena/Gaudi, CMSSW, ROOT)
Using many external tools and libraries when needed: e.g. BOOST for C++, BLAS, 
Eigen for linear algebra, Tensorflow, Catboost for ML…  
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How big?
● SLOC are a standard industry metric, and there are tools to translate them

into «man years» and in the end to $$ (assuming a US typical programmer)
● The result is enormous, but reflects the fact that both software stacks are 

15 years old or more
● It does NOT include externals, like Geant4, geometry engines, particle

generators, ROOT, etc

● As a reference: 
○ Linux Kernel is: 15M sloc, 4800 FTEy, 650M$ (3x CMS)
○ Geant4 is: 1.2M sloc, 330 FTEy,  45 M$ (1/4x CMS)
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.. But this is only the ”core code”

● We rely on many externals (Geant4 is an external, ROOT is an 
external, Pythia is an external) which inflate greatly the total size

● This (in unreadable fonts) is the list of externals for a typical CMS 
release

alpgen qd root_cxxdefaults sockets catch2 gcc-ccompiler gcc-cxxcompiler gcc-f77compiler mpfr cmsswdata codechecker csctrackfinderemulati cuda-stubs cuda-gcc-support cvs2git dablooms db6 dmtcp doxygen eigen fastjet-contrib fastjet-contrib-archi gcc-analyzer-ccompile gcc-analyzer-
cxxcompi gcc-atomic gcc-checker-plugin gcc-plugin gdb geant4-parfullcms geant4data py2-numpy openloops git glibc glimpse gmake gnuplot gosam gosamcontrib hdf5 igprof intel-license ittnoti fy lapack lcov libffi libxslt llvm md5 openblas ofast-flag openmpi professor py2-sympy py2-absl-py py2-
appdirs py2-argparse py2-asn1crypto py2-atomicwrites py2-attrs py2-autopep8 py2-avro py2-awkward py2-backcall py2-backports py2-backports-functooccj py2-backports_abc py2-beautifulsoup4 py2-bleach py2-bokeh py2-bottleneck py2-cachetools py2-certifi py2-cffi py2-chardet py2-click py2-
climate py2-colorama py2-contextlib2 py2-cryptography py2-cx-oracle py2-cycler py2-cython py2-dablooms py2-decorator py2-defusedxml py2-docopt py2-downhill py2-dxr py2-entrypoints py2-enum34 py2-flake8 py2-flawfinder py2-fs py2-funcsigs py2-functools32 py2-future py2-futures py2-gast 
py2-gitdb2 py2-gitpython py2-google-common py2-googlepackages py2-grpcio py2-h5py py2-h5py-cache py2-hep_ml py2-histbook py2-histogrammar py2-html5lib py2-hyperas py2-hyperopt py2-idna py2-ipaddress py2-ipykernel py2-ipython py2-ipython_genuti ls py2-ipywidgets py2-jedi py2-jinja2 py2-
jsonpickle py2-jsonschema py2-jupyter py2-jupyter_client py2-jupyter_console py2-jupyter_core py2-keras py2-keras-application py2-keras-preprocessi py2-kiwisolver py2-lint py2-lizard py2-llvmlite py2-lxml py2-lz4 py2-markdown py2-markupsafe py2-matplotlib py2-mccabe py2-mistune py2-mock 
py2-more-itertools py2-mpld3 py2-mpmath py2-nbconvert py2-nbdime py2-nbformat py2-networkx py2-neurolab py2-nose py2-nose-parameterize py2-notebook py2-numba py2-numexpr py2-oamap py2-onnx py2-ordereddict py2-packaging py2-pandas py2-pandocfilters py2-parsimonious py2-parso 
py2-pathlib2 py2-pbr py2-pexpect py2-pickleshare py2-pillow py2-pip py2-pkgconfig py2-plac py2-pluggy py2-ply py2-prettytable py2-prometheus_client py2-prompt_toolkit py2-protobuf py2-prwlock py2-psutil py2-ptyprocess py2-py py2-pyasn1 py2-pyasn1-modules py2-pybind11 py2-pybrain py2-
pycodestyle py2-pycparser py2-pycurl py2-pydot py2-pyflakes py2-pygithub py2-pygments py2-pymongo py2-pyopenssl py2-pyparsing py2-pysqlite py2-pytest py2-python-cjson py2-python-dateutil  py2-python-ldap py2-pytz py2-pyyaml py2-pyzmq py2-qtconsole py2-rep py2-repoze-lru py2-requests 
py2-root_numpy py2-root_pandas py2-rootpy py2-scandir py2-schema py2-scikit-learn py2-scipy py2-seaborn py2-send2trash py2-setuptools py2-simplegeneric py2-singledispatch py2-six py2-smmap2 py2-soupsieve py2-sqlalchemy py2-stevedore py2-subprocess32 py2-tables py2-tensorflow py2-
terminado py2-testpath py2-theanets py2-theano py2-thriftpy py2-tornado py2-tqdm py2-traitlets py2-typing py2-typing_extensions py2-uncertainties py2-uproot py2-uproot-methods py2-urllib3 py2-virtualenv py2-virtualenv-clone py2-wcwidth py2-webencodings py2-werkzeug py2-wheel py2-
widgetsnbextensio py2-xgboost py2-xrootdpyfs pydata pyminuit2 pyqt python-paths python_tools rootglew scons sloccount tcmalloc tcmalloc_minimal tensopy2-virtualenvwrapperrflow tinyxml2 xtl blackhat boost boost_header python bz2lib cascade_headers ccache-ccompiler ccache-cxxcompiler
ccache-f77compiler zlib gmp photos_headers pythia6_headers openssl clhep clhepheader cppunit cuda curl libxml2 dcap root_interface xz xerces-c vecgeom_interface hepmc_headers distcc-ccompiler distcc-cxxcompiler distcc-f77compiler dpm expat fastjet fftjet fftw3 freetype gbl gdbm gsl giflib
google-benchmark libjpeg-turbo hector heppdt madgraph5amcatnlo llvm-cxxcompiler jemalloc jimmy_headers ktjet libhepml libuuid llvm-ccompiler llvm-f77compiler meschach mxnet-predict numpy-c-api x11 oracle pacparser yoda protobuf python3 qd_f_main sqlite sigcpp tauola_headers tbb
tensorflow-framework tensorflow-runtime tensorflow-xla_compil0-pafccj3 toprex_headers utm valgrind vdt_headers xrootd xtensor boost_system boost_iostreams boost_serialization boost_program_options boost_python boost_regex boost_signals boost_test cascade yaml-cpp photos pythia6 pcre
cub cuda-api-wrappers cuda-cublas cuda-cufft cuda-curand cuda-cusolver cuda-cusparse cuda-npp cuda-nvgraph cuda-nvjpeg cuda-nvml cuda-nvrtc das_client vecgeom hepmc frontier_client google-benchmark-main libpng iwyu-cxxcompiler libti ff libungif llvm-analyzer-ccompil llvm-analyzer-
cxxcomp mcdb opengl openldap oracleocci pyclang qtbase sip starlight tauola tensorflow-c tensorflow-cc tkonlinesw toprex vdt boost_chrono boost_filesystem boost_mpi cgal lhapdf classlib davix rootcling geant4core photospp geant4static graphviz lwtnn millepede qt3support rivet tkonlineswdb
cgalimageio herwig rootmathcore rootrio pythia8 geant4vis thepeg pyquen qt rootrint rootrflx rootsmatrix rootx11 sherpa charybdis rootthread dire tauolapp geant4 geneva herwigpp jimmy qtdesigner rootgeom rootxmlio vincia rootcore evtgen roothistmatrix rootmath rootxml rootphysics rootgpad
rootfoam rootspectrum root rootminuit rootgraphics rootgui rootinteractive roothtml rootminuit2 dd4hep-core roofitcore mctester professor2 rooteg rootgeompainter rootrgl rootged rootguihtml rootmlp rootpy dd4hep dd4hep-geant4 roofit rooteve roottmva roostats rootpymva histfactory coral

● Note that gcc is there! CMS ships its own compiler, so dependency on the host Linux is
only at the level of glibc
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The HEP framework(s)

● Such a complexity of use cases and code, with multiple alternatives in each of 
them, needs a coherent Framework, which is at the core of the HEP software, 
and is the piece which basically stays stable-with-adiabatic-changes within the 
experiment lifetime. Changing a FW is not easy; it is not done during data taking. 

● Typical needs from a framework
○ Modularity: large utilization of plugins, algorithms, external libraries
○ Scheduling: must be efficiently able to schedule the execution of code (taking into 

account dependencies) on the available resources
○ Portability: not attached to a single compiler / OS / architecture
○ Evolution: the computing scenario is not static. From 2008 to now for many things 

happened; still most of the FW interface has been stable:
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From single process to multi process to multi threaded
From single core PCs to O(300) cores per PC 
From configs to Python as the uber language
From fully scheduled execution to unscheduled (needed for multi threading)
Analysis support from ROOT(cint)-ROOT(cling)-PyROOT-UpROOT

 

From GRID to Clouds to Virtualization to HPC to heterogeneous
computing (GPU, FPGA, QC even…)
From data locality to streaming storage federations
From SL4/gcc4 to CC7/gcc8
From 32 to 64 bit



Software Engineering
Requirements on software are strict:
● Reproducibility of the results (we need to re-run old versions of the 

software)
● Tracking the provenance of the data is crucial !

The software engineering process is critical to keep the software running, 
when ~100s of developers potentially modify the code
● Adequate unit and integration tests are necessary
● Use of version control software (Git)
● Continuous integration (Gitlab CI, Jenkins…)
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The future ….

● “it all works”, so why change?
● We have the proof that the computing systems for today’s collider 

experiment do work. The LHC collaborations have published 
thousands of papers each

● Computing is a large operational cost; but is ~ constant year over 
year and somehow possible to cover ….

● Are we done? No we are not …
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The expected future within ~a decade

• CMS and ATLAS undergoing 
the largest upgrades with 
Run4: 3000/fb total lumi

• Computing planning and 
modelling well advanced

• ALICE and LHCb have 
successfully upgraded for 
Run3 – gearing up to have 
upgrades approved for Run5

• Computing under (early) 
studies

• Future projects (FCC, ILC,  
etc) not considered

• Expect further steps in 
resource requirements  

ALICE-2, LHCb Upgrade-I

ATLAS and CMS PhaseI

ATLAS and CMS PhaseII

ATLAS and CMS PhaseII

ALICE-3, LHCb Upgrade-2

ALICE-3, LHCb Upgrade-2

ATLAS and CMS: nominal inst lumi from 2e34 to up to 
7.5e34; trigger rates in the O(10) kHz ballpark 

LHCb: from 2e33 up to 1.5e34
ALICE: 3x Pb-Pb rates, 90x pp

ALICE-2, LHCb Upgrade-I
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Projections for HL_LHC (ATLAS+CMS)

• In the end, main parameters are
• Trigger rate: from 1 to 7.5kHz
• Mean number of collisions per 

bunch crossing (pileup) <PU>: 
from 35 to 200

• More and more crowded events 
• increased bandwidth to storage (x42) 
• Impacts storage (~linearly) and CPU 

(superlinearly) 
• Live time of the Accelerator
• Monte Carlo production needs

• Expect naïve scaling of x50-x100
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ATLAS and CMS [latest public projections]

Multiple 
projections 

(lines): depend 
on (successful) 

R&D
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+20%/y
+10%/y



In the meantime, technology …

tape

1 TB disk ~ 5 TB tape ~ 10 
HS23 [1/2 CPU core]

“Panzer/Sciabà” 
plots

A “constant investment” on 
computing buys X% more 

resources every year. 
X=10% → x2.5 in 10 years

X=20% → x6 in 10 years89

https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf
https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf


Two questions …
● Assuming we cannot get more money per year for computing, 

where do we get the 12x-25x missing?
● Also, what is the environmental impact of HEP computing? Is 

it sustainable? 

● A non-exaustive list
○ Infrastructure changes (where / how to get CPU and Disk, at which 

price)
○ Technological changes (use different technologies)
○ Physics #1: change analysis model (do the same physics with less 

resources)
○ Physics #2: reduce the physics reach (for example 

increasing trigger thresholds)
■ Not even considered here … it is the “desperation move” if we 

fail with everything else
○ Use “modern weapons” (new/faster algorithms/tools)
○ Something unexpected...
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Environmental Sustainability

• Data centers and computing 
contribute 2-4% of global green house 
gas emissions, only expected to grow.

• Great variation of electricity emissions 
across countries and even regions.

• Can we be smarter about how we use 
existing facilities?

• expose and use information on specific 
carbon impact

• schedule workloads to run when 
electricity is cheaper/cleaner

• Consider carbon impact as an 
element of computing “performance” 
in benchmarking
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Datacenters
• Climate-controlled building with enough 

electrical and cooling power for all the 
hardware

• Large rooms with racks 
• CPU boxes, HDD/SDD storage boxes, networking 

equipment, tape libraries, GPU boxes 
• Cooling: Forced Air or Water 

• Newest developments: immersion cooling
• Power Usage Efficiency (PuE) 

• Wikipedia:” PUE is a ratio that describes how 
efficiently a computer data center uses energy; 
specifically, how much energy is used by the 
computing equipment (in contrast to cooling and 
other overhead that supports the equipment).”

• Average PuE: 1.4-1.7 (between 40% and 
70% is “wasted!”)

• Large datacenters tend to have better PuE
(O. Gutsche)92
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Towards high-efficiency data centers

• Perlmutter Supercomputer @ 
NERSC (Berkeley Lab, US)

• Direct water cooling, PuE: 1.05-1.08
• Green IT Cube: supercomputing 

center for GSI and FAIR 
(Darmstadt, D)

• water cooling in doors of computer 
cabinets, PuE: < 1.07

• LHCb online farm (CERN) 
• Free air cooling, PuE: < 1.1

• Energy efficient data centers are 
coming, but not everywhere and 
not fast enough!
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Efficient compute architectures

• GPUs are much more energy efficient
• Perlmutter @ NERSC: 5x on average, up 

to 9.8x in weather forecast
• GPUs are much more compute-

efficient
• Up to 300 CPU cores replaced by a 

single GPU in ALICE’s track 
reconstruction 

• Other architectures being considered 
• Mobile (low power) processors (ARM) 
• Code-in-hardware (“FPGA”, “ASIC”, …)
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Efficient compute architectures

• Large HPCs are and will be installing GPUs 
to boost their compute power and consume 
less electricity 

• Can we use them?
• Not easily - limited to mission critical algorithms
• GPU programming is different: Need to use 

special code constructs (Essentially, if-
statements have to be rethought)

• We need frameworks to embrace Heterogeneous 
Computing 

• We need a way not to write the code once per 
platform 

• Portability libraries (Kokkos, Alpaka, OneAPI,…) allow 
to write algorithms once and then compile/execute 
on GPUs of different vendors andCPUs

96



97

Infrastructure changes

● Today’s HEP computing
○ Owned centers, long lifetime (10+ y)

○ Well balanced in storage vs CPU

○ FAs pay for resources + infrastructure + personnel

Is it the most economic/sustainable computing 

available today?

● YES, if you care about your data safety (and your 

capability to access it)

● NO, if you can use stateless resources (CPUs!)
○ They come and go fast 

○ You can hire them (from a commercial provider, ...)

○ You can use “someone else” resources

97

“CPU for free can be found, 
Disk for free cannot!”



Real operation mode today 

• Netflix, Spotify, … → commercial 
commodity networks  available at a 
lower price / larger bandwidth than 
expected 

• No need to have strict hierarchical 
network paths, → full mesh: every 
site can transfer  from any other
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How to use the new network capabilities?

• Direct Remote data access (a.k.a Streaming!)

• You remember the problem with Data Driven: jobs go where data is
• If a site has spare CPUs, but no data → not used
• If a site has data, but no spare CPUs → jobs kept waiting

• If we remove the constraint of Data locality, match-making becomes 
very easy + efficient

• Direct Remote Data Access: think of Youtube/Netflix!
• You do not download the file, you access it over the network
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The data lake model

● Keep the real value from the experiments 

safe

○ (RAW) data and a solid baseline of 

CPU  in owned and stable sites 

○ Allow for multiple CPU resources to 
join, even temporarily

■ Eventually choosing the 

cheapest at any moment

○ Solid networking: use caches / 

streaming to access data
● Reduce requirements for Computing 

resources

○ Commercial Clouds

○ Other sciences’ resources

■ SKA, CTA, Dune, Genomics, ... 
○ HPC systems

ProtoDune 2-3 
GB/s (like CMS); 
Real Dune 80x

SKA up to 2 
PB/day

A single 
genome ~ 
100 GB. a 1M 
survey = 100 
PB

CTA projects 
to 10 PB/y 

Lake 
Node 1

Lake 
Node 2

Lake 
Node 3

> 1 Tb/s

CPU 
center

CPU 
center

CPU 
center

CPU 
center

HPC 
center

HPC 
center

Lake 
Node 4
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Commercial clouds

• Massive data centers with $B investment 
provide access to vast amounts of 
resources

• HEP resources are sizable but tiny 
compared to industry

• Industry selling compute in small slices for 
profit

• Allows for both large scale (if you can pay 
for it) and fine granularity

• Some hyperscalers (Google) offer 
subscription models that allow to boost 
into unused capacity

• In general, higher prices to buy elasticity
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Supercomputing (HPC)

• High Performance Computing (HPC) is 
designed for single large applications 
using significant resources

• Scientific use cases: climate models, lattice 
QCD

• specialized hardware with very fast 
interconnects 

• Recently they are opening up to HEP 
workflows (HEP = high throughput 
computing (HTC))

• Even we don’t really need fast interconnects

[credits]

1 Petaflop = 1015 floating point operations per second
1 Exaflop = 1018 floating point operations per second

1 Exaflop

1 Petaflop
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Supercomputing (HPC)

Many non-trivial problems to solve 
• Data access (access, bandwidth, ...)
• Accelerator Technology (GPU, FPGA, TPU, …)
• Submission of tasks (MPI vs Batch systems 

vs proprietary systems)
• Node configuration (low RAM/Disk, …)
• Not-too-open environment (OS, …)
• Processing time is allocated through 

approval processes based on science use 
case

• Resources are not necessarily available 
24/7/365

[credits]

1 Petaflop = 1015 floating point operations per second
1 Exaflop = 1018 floating point operations per second

1 Exaflop

1 Petaflop
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Physics #1: change analysis model

Most HEP physics analysis use a sequential model 
«event loop» on a single CPU:
● Load relevant values for a specific event into local variables
● Evaluate several expressions
● Store derived values
● Repeat (explicit outer loop)
● Make it faster by making it embarassly parallel using a lot of CPUs

(for example, using the GRID)

Big data tools are known to be better at this
Columnar analysis:
● Load relevant values for many events into contiguous arrays
● Evaluate several array programming expressions
● Implicit inner loops
● Store derived values
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Physics #1: change analysis model
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From vertically-integrated solution to ecosystem



• Selective persistency: write out only the “interesting” part of the event. 

• Turbo stream: 
• Miminum output: only HLT2 signal candidates 
• Optionally: (parts of) pp vertex (e.g. ”cone” around candidate for spectroscopy searches) 

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. 
Advantage: Event size O(10) smaller than RAW
• FULL stream: all reconstructed objects in the event 

• Optionally adding selected RAW banks 
• TurCal stream: HLT2 candidates and RAW banks

• Used for offline calibration and performance measurement 107

Physics #1: reduce storage footprint
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Physics #1: reduce storage footprint

• CMS has developed more and 
more reduced data formats

• “nanoAOD” is the prevalent 
analysis format in CMS

• Event size reduced by a factor 
3000x since the start of Run-1

• Note: only very high-level 
quantities are saved; not all 
analyses can use it

• e.g. flavour physics analyses
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Use “modern weapons”

● These can be from the technology point of view (Big Data Tools)…
● … or novel ways to write algorithms. 
● AI in general and Machine Learning / Deep Learning techniques 

obviously stand up
● The space / time here is way too short to go into any detail, but by 

now ML techniques are used everywhere in HEP processing
○ Trigger level (even on FPGA)
○ Simulation (GAN tools are very promising)
○ Reconstruction (… everywhere, from S/N separation to clustering in 

calorimeters and trackers)
○ Analysis (selection, interpretation, …)
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The AI/ML zoo

● Fully Connected Neural Networks (FCNNs / MLPs)
○ Used in early applications (e.g. event classification, regression )
○ Still widely used for tasks with structured tabular input (e.g. particle 4-vectors)
○ Examples: S/B discrimination, parameter estimation, ..

● Convolutional Neural Networks (CNNs)
○ Suitable for image-like data: calorimeter hits, tracking detector layouts, jet images
○ Benefit from local connectivity and translational invariance
○ Examples: jet tagging, energy deposition maps, neutrino detectors

● Graph Neural Networks (GNNs)
○ Represent events as graphs (e.g., hits, tracks, or particle interactions as nodes/edges)
○ State-of-the-art for tracking, jet reconstruction, and physics object identification
○ Examples: Track finding, calorimeter clustering, particle flow

● Autoencoders (VAEs) (and Variational-AE)
○ Used for anomaly detection and dimensionality reduction
○ Examples: Searching for rare or unknown physics events.

DISCLAIMER: the list is not intended to be complete, and the 
classification is not rigorous but just for illustrative purposes
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The AI/ML zoo

● Generative Adversarial Networks (GANs)
○ Fast surrogate models for simulation (e.g., calorimeter shower generation).
○ Examples: Simulation acceleration, anomaly detection

● Transformers
○ Originally from Natural Language Processing (NLP), now extended to handle 

structured or variable-length (long!) inputs.
○ Strong performance in classification and generative modelling, even in physics.
○ Examples: Event classification, generative modelling, scientific document parsing.

● Diffusion models
○ Model data generation as reversing a diffusion process (progressive noise addition)
○ Examples: fast calorimeter and tracking simulation, anomaly detection, structured 

generation

DISCLAIMER: the list is not intended to be complete, and the 
classification is not rigorous but just for illustrative purposes
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ML usage patterns #1
● At trigger level, modern tools (hls4ml, BM, LeFlow, …) allow 

to write on FPGA the result from the training on “largish” 
machine learning networks, taking into account pruning to 
match the limited resources

● Applications under study
○ Bkg and trigger rate reduction
○ Signal specific trigger paths
○ Anomaly detection in data taking
○ Unsupervised new physics mining

● Existing implementations, e.g. LHCb HLT selections in Run3
● Next-generation trigger systems → real-time reconstruction 

→ real time analysis
● Challenge is the trade-off between algorithmic complexity 

and the performances achievable under severe time 
constraints in inference
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https://fastmachinelearning.org/hls4ml/#:~:text=hls4ml%20is%20a%20Python%20package,configured%20for%20your%20use%2Dcase!
https://cds.cern.ch/record/2708682/files/PoS(ISGC2019)020.pdf
https://github.com/danielholanda/LeFlow


ML usage patterns #2
● The production of simulated events is extremely intense from the computation standpoint 

○ up to the point it might impact the physics reach of the experiments 
● ML can help to reduce such load

○ Calorimeter shower surrogate simulator
○ Analysis-level simulator
○ Pile-up overlay generator
○ Monte Carlo integration
○ ML-enabled fast-simulation

● As an example, GANs have shown the potential to mimic more complex iterative algorithms 
(like those in Geant4) with a huge gain in timing
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Longitudinal shower shape in a 
calorimeter from 100 GeV e- from 
here. Timing is 1 minute vs 0.04 
msec 



ML Usage patterns #2

Online/offline reconstruction might be partially replaced by  ML surrogate models 
(approximate→faster) or new algorithms (offering unprecedented performance) 
might partially replace existing algorithms. 

● Charged particle tracking (GraphNN, vertexing, …)
● Calorimeter reconstruction (local, clustering, …)
● Particle flow (GraphNN, …)
● Particle identification (boosted
● jets, isolation, …)
● Pileup mitigation
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ML Usage patterns #2

A couple of examples on how ML is used at 
reconstruction level
● Improvement in classification (S vs B, and in 

general category A vs B, C, …) using a large 
number of (even poorly) discriminating variables

● Clustering algorithms which exhibit 
combinatorial explosion with classical 
algorithms (jet clustering, tracking)

○ CNNs (input-as-images), Graph Networks
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Typical classical algorithm: 
60% efficiency for 50x rejection

DeepCSV and other AI based
algorithms: 60% efficiency
for 300x rejection

b-tag
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combinatorial explosion with classical 
algorithms (jet clustering, tracking)

○ CNNs (input-as-images), Graph Networks
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ML usage patterns #3, #4



ML usage patterns #3, #4
ML in Computing Operations
Application of ML to non-event 
(meta-)data might help to increase 
efficiency and reduce the need of 
personpower in Ops, e.g. automating 
specific tasks, developing 
intelligent/adaptive systems, 
ultimately acting on the full chain - 
from data collection to data analysis - 
and make it more agile
• Detector control
• Data quality monitoring
• Operational intelligence
• Predictive maintenance
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ML usage patterns #5

“ChATLAS”: A prototype LLM-based AI-assistant in a 
• Data gathering part is interesting

• Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ 
agendas incl. attached slides and minutes (>440k), Mattermost, Jira tickets, experiment’ 
papers and internal notes (>66k)

• Either HTML or scraped into markdown
• Many open challenges:

• highly heterogeneous data
• ensure that collaboration DBs are accessible and exportable; websites should live on a 

git repo; pubs should be saved as latex, and compiled separately; discussion forums 
should have anonymisation options… Estimates indicate that this would have saved ~1 
yr of data wrangling

• Hallucinations are a real problem
• Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned AI 

assistant
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ML usage patterns #5
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A possible AI / ML path
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A Large ”fundamental physics” foundation model? 
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(D. Bonacorsi)



Conclusions

● In this (long) walk I tried to show you how the complexity of 
Computing and Software systems for High Energy Physics has 
dramatically increased in the last ~30 years, becoming an integral 
part of the planning for new experiments, … and their cost!

● In parallel, new skills and competencies have become more and 
more important. We now need more and more “physicists with CS 
skills”

● It is an interesting time to be in the Computing and Software for HEP
○ A complex task, no trivial solutions → we need new ideas
○ At the forefront of technology
○ Please join!
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