
Computing in HEP
Concezio Bozzi

INFN Sezione di Ferrara
Monopoli, October 3rd 2025

1

Computing in HEP
Concezio Bozzi

INFN Sezione di Ferrara
Monopoli, October 3rd 2025

…Many of the concepts and topics that will be discussed (hardware &
software infrastructures, technologies) are relevant also for Other HEP (Belle-
2, …), neutrino (DNE, …), astroparticle (SKA, CTA, GW, …) experiments 2

(A. Quandt) 3

Outline

• The relevance of computing in HEP
• From RAW data to physics results
• Software and computing infrastructure
• Future evolution

4

Why computing is relevant in HEP
● Current HEP research needs to look into

high energy and/or rare processes and/or
very precise measurements

○ High Energy: Look up in the sky!
■ Astroparticle Physics, the universe produces for

you cosmic rays (measured up) to some 1021 eV
(109 TeV)

■ But they are rare!
○ Rare & Precision: Produce (a lot of) high energy

events using colliders
■ Current best is “only” at 14 TeV (c.m.)
■ but we can produce billions per second

● The need for a lot of computing is an
unfortunate consequence

5

Why computing is relevant in HEP
● Most of the reasoning involves the

relation between the cross section of a
given process and the number of
events generated

 N =  x Lint

● More (c.m.) energy in the collision of
beams: the total cross section
increases + the complexity of the
collision results increases

● more, and more crowded events
6https://arxiv.org/pdf/1005.3299.pdf

Why computing is relevant in HEP
● This part of the cross section plot is

“mostly understood and not interesting”
● This part is “interesting”, as it has large

cross-section and is sensitive to new
physics through precision measurements
of (rare) heavy quark flavour processes

● This part is “interesting”, but has cross
sections up to billion times smaller

● Unfortunately quantum mechanics tells
us the “choice of the process” is
completely probabilistic: you cannot force
nature to produce only what you care for

● In order to produce the latter two, you
need to produce (a lot of) the former

7

Total number of “trials” needed

● Take ATLAS / CMS as an example
● For a cross section of 105 fb, to produce 10.000.000 Higgs in 5 years (per

experiment) one needs

 Lint = 100 fb-1 integrated luminosity (107/(105 fb))
● This translates into an instantaneous lumi(*)

LINST = 1041 cm-2 / (5 y *3*107s/y / 5(ineff)) = O(1034) cm-2 s-1

● .. But at the same time, 100 fb-1 will result in some 1016

«uninsteresting» collisions

8

The LHC!

(*) assuming an efficiency factor ~5 for shutdown periods, vacations, repairs, etc, and noting
that 1 b = 10-24 cm2 → Lint = 100 fb-1=1041 cm-2

Selecting the interesting collisions

● Not an easy task, they do not always look
so different

● On top of this, the 25 ns bunched
structure of LHC superimposes several
proton collisions in a single bunch
crossing (~30-50 Run-2, up to 80 Run-3, up
to 200 in the future), and most of the
signals come from the uninteresting one
(and, they are not colored in the figure on
the right!)

○ An online selection is not trivial; in
order to have decent efficiency on the
“interesting events” you cannot be
too picky

○ In the flavour sector, even the
interesting events are _a lot_ 9

Back-of-the-envelope estimate of storage needs
● Simplified model for “a detector”

○ take a “picture” of a collision every 25 ns (40 MHz)
○ O(100) Million detector channels (“pixels”)
○ Assume 1 channel = 1 byte
○ the data rate would be
 40e6 ev/s * 100e6 byte/ev = 4 PB/s

● A “storage problem” is automatic given the
needs for looking into rare events with an high
precision

10

A data deluge!

● In an ideal world, all the 40 MHz 25 ns snapshots would be saved and analyzed
● …but 4 PB/s in 5 years would be 120 ZB (ZettaBytes = 1021 bytes)
● We cannot save 4 PB/s for any reasonable number of seconds, and the

experiments need to last for years; hence a number of solutions / tricks /
approximations needs to be found

○ Easy ones: Zero suppression: do not save the reading of channels which are not
“significant” (lossy compression): 100 MB/ev → 1 MB/ev

○ Complex ones: try and interpret the events as they flow, and select “enough of the
interesting ones” → the trigger

● In practice, a much lower rate is saved for $$ reasons
○ years of studies have defined the “minimum” possible while still preserving the physics

capabilities at least for the most important physics channels.

11

In context

HEP produces huge
datasets
● Comparable to

industry
applications

● with different
usage patterns

● By using public
funding

RAW data rates are
totally unprecedented

12

Challenging

Data throughput from detector
back-ends today:1-10TB/s

Typical LHC “live-time”: 7Ms/year

→Data volumes: 7-70EB/year

Ktev

Kloe

LHCb

HERA-B

BaBarCDF / D0

CDF II/ D0 II

H1 / ZEUS
UA1

NA49

LEP

DUNE

DUNE SuperNova

NA62

ATLAS / CMS

ALICE

ALICE Run 3

LHCb Run 3

LHCb Run 4
LHCb Run 5

CMS HL-LHC

ATLAS HL-LHC

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1980 1990 2000 2010 2020 2030 2040
B

an
d

w
id

th
 (

M
B

/s
)

Year

Credits: Alex Cerri, Siena U.

13

The limiting factor of a HEP experiment

● Apart from some limits on the electronics (“I cannot
dispatch more than X consecutive triggers”), the real
limit on the numbers and type of events collected by
HEP experiments is the Computing, and on its turn the
amount of money one can dedicate to that.

● If you want, it is a reversed process: I know what I can
spend on the computing → I know how many events I
can collect → I know what type of physics I can do.

● This is why any R&D, new idea, new solution which
allows to reduce the Computing costs, is very visible
and increases the physics potential of the
experiments

14

(S. Roiser)

Trigger
DAQ

Data
preparation

Analysis

From RAW data to physics results

15

Online processing

Trigger strategy to select rare processes:

• search for local signatures (calorimeter
energy, presence of muons…)

• Reject background

• Select rare events

“Classic” multi-level trigger

• Chain of “yes or no” decisions

• Very fast first level with (programmable)
hardware

• “slower” higher level(s) via software on
specialised or off-the-shelf processors

17

Online processing

Trigger strategy to select rare processes:

• search for local signatures (calorimeter
energy, presence of muons…)

• Reject background

• Select rare events

“Classic” multi-level trigger

• Chain of “yes or no” decisions

• Very fast first level with (programmable)
hardware

• “slower” higher level(s) via software on
specialised or off-the-shelf processors

18

Online processing

Trigger strategy to select rare processes:

• search for local signatures (calorimeter
energy, presence of muons…)

• Reject background

• Select rare events

“Classic” multi-level trigger

• Chain of “yes or no” decisions

• Very fast first level with (programmable)
hardware

• “slower” higher level(s) via software on
specialised or off-the-shelf processors

(ATLAS)

19

Online processing

Trigger strategy to select high cross-
section, signal-dominated
processes:
• No “simple” local criteria
• Classify decays
• Access as much information about

the collision as early as possible
• Read full detector

20

Online processing

Trigger strategy to select high cross-
section, signal-dominated
processes:
• No “simple” local criteria
• Classify decays
• Access as much information about

the collision as early as possible
• Read full detector

21

Online processing

Trigger strategy to select high cross-
section, signal-dominated
processes:
• No “simple” local criteria
• Classify decays
• Access as much information about

the collision as early as possible
• Read full detector

(LHCb)

22

Schematic view of LHCb DAQ & trigger system
~19000 fibre links between the
detector (100m underground) and
the computing farm

170 servers to read the data and
pre-filter (HLT1, running on GPUs)

More than 4000 CPU servers for
the event filter second pass

Up to 40PB of disk storage in
between

Reading from multiple channels,
with synchronization needed!!!

24

LHCb Data Acquisition
Uses Field Programmable Gate
Arrays (FPGA) for logic
(programmation with VHDL or
Verilog)

25

LHCb Online farm

More than 4000 servers in the racks

26

19000 fibres connect the experiment
with the computer center

LHCb
computing
center at CERN

The Run3 ALICE computing

● The Time Frame (TF) concept
○ All collisions stored for main detectors

→ no trigger
■ Collection of tracks in a given time

window (“long exposure photographh”
○ Exposure time tunable (~2.88 ms)
○ 100x more collisions
○ Raw TF stream input to GPU farm

where tracking, reconstruction and
compression are performed in sync
with data taking

○ Storing compressed TFs
● Online (sync) and offline (async)

reconstruction using exactly the
same code

27

The ALICE Run3 data flow

28

Trigger
DAQ

Data
preparation

Analysis

From RAW data to physics results

29

Data preparation

• Interpretation of RAW detector signals into physics objects
• Calibration

• Convert raw data to physical quantities

• Alignment
• Find out precise detector positions

• Event reconstruction
• Reconstruct particle tracks and vertices (interaction points)
• Identify particle types and decays
• Impose physics constraints (energy and momentum conservation)

• Used to happen offline; trend to move online parts or even the entire
chain

30

Calibration

• Raw data are mostly ADC or TDC
counts

• They have to be converted to
physical quantities such as energy
or position

• Very detector-dependent
• Every detector needs calibration
• Calibration constants need to be

updated and stored in a database

(CMS ECAL)

31

Alignment

• Tracking detectors are very precise instruments
• Silicon strip detector: ~ 50 μm
• Pixel detector: ~ 10 μm
• Drift tube: ~ 100 μm

• Positions of detector elements need to be
known to a similar or better precision

• Alignment with charged tracks from collisions,
beam halo and cosmic rays

• Continuous process
• Alignment constants need to be updated and stored

in a database

32

Reconstruction

• Reconstruct charged particles
• Reconstruct neutral particles
• Identify type of particles
• Reconstruct vertices (interaction points)
• Reconstruct kinematics of the interaction
• Not trivial, very time-consuming …

• Find out which particles
have been created where
and with which momentum

There are many many types of
sensors, and other types of
detectors (e.g. the Time
Projection Chamber in ALICE)

Very active field, with uses
outside of High Energy Physics

33

Reconstruction of charged particles

• Measure position in detector
layers (“hits”)

• Curved trajectory due to the
magnetic field

• Use position measurements
to determine track
parameters (location,
direction, momentum) and
their uncertainties

34

Reconstruction of charged particles

• Measure position in detector
layers (“hits”)

• Curved trajectory due to the
magnetic field

• Use position measurements
to determine track
parameters (location,
direction, momentum) and
their uncertainties

35

Reconstruction of charged particles

Difficult task!
• Assignment of hits to particles is unknown
• Huge background from low-momentum

tracks
• Material interactions: Multiple Coulomb

scattering, Energy loss (ionization,
bremsstrahlung)

• Mathematically complex (Kalman Filter,
matrix algebra, propagation in a not uniform
magnetic field)

• Highly combinatorial: given a set of N signals,
it scales as NM, with M>1 and algorithm-
depending

36

Problem decomposition

• Pattern Recognition or Track Finding
• Assign detector hits to track candidates (collection of hits all believed to

be created by the same particle)

• Parameter estimation or Track Fit
• Determine track parameters + their estimated uncertainties (covariance

matrix)

• Test of the track hypothesis
• Is the track candidate the trace of a real particle?

37

Track finding

• Very detector-dependent
• Many solutions available, no general recipe
• Global methods: include all measurements (clusters) in a

formulation of the problem where solutions match to tracks
• Local methods: iterative methods where a seed is found first and

is there forwarded to other sensors

38

A local method: Search by triplet in the LHCb VeLo

Clusters from different sensors are
grouped in tracks that crossed the
detector

We can make hypotheses to simplify the
problem: our tracks come from the
beam interaction point, this means that
they stay at constant phi angle

The tracks are straight in the LHCb Velo
as there is no magnetic field there

Back view of the Velo
(The beam travels on the Z axis) 39

https://arxiv.org/pdf/2207.03936

https://arxiv.org/pdf/2207.03936

A local method: Search by triplet in the LHCb VeLo

40
https://arxiv.org/pdf/2207.03936

https://arxiv.org/pdf/2207.03936

Finding the primary collisions: Vertexing

41

Combinatorial Kalman filter
● A “seed” (initial measurement and

covariance) defines the initial state and its
covariance

● A propagation operator defines the predicted
state on the following layer

○ Noise (e.g. multiple scattering) taken into
account

● State is updated with measurement
information, and propagated to the next
layer

● …and so on, until the last layer
● Back propagation “smooths” the track

parameters by globally using all
measurement points

● Wrong combinations of hit associations
(fake tracks) are reduced by starting from a
very pure track seeds (e.g. pixel triplets)

(Richard Cavanaugh) 42

A global method: the Hough transform

Map each point to a line in the space of parameters (a and b are the parameters defining the line), and
look for accumulation points in the transformed space.
Can be Computationally expensive, but can be optimized and is useful in e.g. LHCb to forward Velo
tracks downstream.

43

Forwarding tracks in LHCb

Neutral particles

• An incident neutral particle produces a
shower in the calorimeter

• cluster of cells with energy deposit above
threshold

• overlapping clusters must be separated
• The cell-to-cluster association is a

pattern recognition problem
• Various clustering techniques are used

to find showers
• The algorithms depend on various

characteristics of the calorimeter
• Type (electromagnetic or hadronic)
• Technology (homogeneous or sampling)
• Cell geometry, granularity

44

Particle Identification

• Dedicated detectors
• Calorimeters
• Cherenkov-based
• Transition radiation
• Time-of-flight
• Ionization

• Information combined from
several detectors

• Using log-likelihoods, machine
learning, etc.

• Performance is monitored on
data control samples

45

Data quality

• Only reliable, high-quality data
are used

• The amount of useful data is
maximised in data quality
checks at several stages e.g.

• In real-time during data-taking
• after a quick

calibration/alignment on a
fraction of data

• With the best
calibration/alignment on all data

46

Trigger
DAQ

Data
preparation

Analysis

From RAW data to physics results

47

Physics analysis

• Extract physics signals from background
• Measurement or discovery limits of

masses, cross-section, branching
fractions, and other physics observables

• Further selection of events, with a
statistical interpretation

• high dimension likelihoods on million /
billions of events, use of sophisticated
multi-variate techniques

48

Simulation

• The core of our studies is comparing hypotheses
with the collected data

• For simple systems, we can analytically compute
the expected result (given a hypothesis) with the
data

• For more complex systems, in which many stages
and processes are taking part to the outcome,
this is simply not possible

• Generate artificial events resembling real data as
closely as possible

• Needed for background studies, corrections, error
estimation

• Crucial to guide the design of new detectors / facilities

F=ma ??

49

Trigger
DAQ

Data
preparation

Analysis

Theoretical model

Simulation of decays of
unstable particles

Simulation of interactions
particle-detector

Simulation of detector
electronics

Trigger

50

Simulation steps

• Event generation
• Generate particles according to physics of the

collision
• General-purpose and specialized generators

• Detector simulation
• Track particles through the detector, using detector

geometry and magnetic field
• Simulate interaction of particles with matter
• Generate signals in sensitive volumes

• Digitization
• Simulate digitization process (ADC or TDC)
• Simulate trigger response

• Reconstruction
• Treat simulated events exactly as real events
• Keep (some) truth information: association of hits to

tracks,association of tracks to vertices, true track
parameters, true vertex parameters, …

• Store everything

51

Detector simulation

• GEANT4: the widely used standard
• Object oriented, C++
• Extremely general and versatile

• Implements detailed models of particle
interactions with matter in a wide energy
range

• Needs detailed description of the
apparatus (sensitive and insensitive
parts)

• Geometry
• Partition the detector into a hierarchy of volumes
• Describe their shape and their position relative to

a mother volume
• Use possible symmetries

• Material
• Chemical composition, density
• Physical properties: radiation length, interaction

length, …

52

Simulation for detector understanding

• Use software simulations to
model the detector as
accurately and precisely as
possible based on our best
understanding of the physics
involved

• Test accuracy of simulations
using real data

• Correct simulations if necessary
• Once simulation gives an

accurate detector model, it can
be used to correct the data for
detector response

53

Where do we spend CPU work?

● Different experiments have different
shares in the CPU utilization, but in
general simulation (from partons to
electronic signals) and reconstruction
(from electronic signals to “physics
objects” like jets, leptons, ….) are the
most time consuming

● As a rule of thumb, # of simulated
events > # of collected events

54

Towards absolute numbers
● Event Generation: depends strongly on the generator

choses (Madgraph vs Sherpa vs PowHeg vs …) and the
precision requested (LO vs LNO vs NLO vs …)

● Simulation: by now, the vast majority (all?) the
experiments use Geant4 as the simulation toolkit;
still, its requested resources depend on stuff like:
volume of the detector, number of volumes, intrinsic
detector resolution, importance of low energy
secondary interactions, capability to use
parametrization

● Reconstruction: The most time consuming task is
charged particle tracking using very high resolution
detectors (e.g. thin silicon layers). It is a good example
since it is mathematically complex and Highly
combinatorial

55

But before giving absolute numbers ..
unit of measurement for CPU!

● The “number of CPU seconds” a task needs is not a proper unit of
measurement for CPU, even more if we want to compare results from CPU
generations distant in time

● Even industry standard benchmarks (SpectInt, SpecFP, …) are not suitable,
since they probe CPU aspects not necessarily interesting to us

● HEP (via HepiX) created a synthetic benchmark based on a subset of SPEC®
CPU2006, which was in use in 2009-2023: HepSpec06 (HS06)

● a new, improved synthetic benchmark based on a weighted average of
workflow from HEP experiments was deployed in 2024 and used since then

○ Rule of thumb: a CPU “core” today is ~10-20 HS23
○ Hence, a 128 core CPU is ~ 2000 HS06
○ Hence, a 2 CPU box is today ~ 4000 HS06

56

Absolute numbers

● Today, with standard Run-2 LHC, typical numbers are
○ Event generation: 100-1000 HS23.s (which means ~ 10-100 sev/ev on a

single CPU core)
○ Simulation (G4): 500-3000 HS23.s
○ Reconstruction: 150-300 HS23.s
○ Analysis: can be anything, usually quite fast (<1-100 HS23.s)

● With these numbers, we can try and project the Computing (CPU and
storage) needs for a HEP experiment today, assuming that LHC
collides beams ~ 7Ms/y and 4 experiments

57

58

Estimate for a single data taking year
Storage

Data:

7 PB RAW (x2 for a backup copy)

3.5 PB reconstructed data

MonteCarlo

14 PB RAW

7 PB reconstructed simulation

TOTAL ~30 PB/year

CPU

Data:

7e9 ev*300 sec*HS23/ev = 2e12

sec*HS23 = 70000 HS23*year (→ 7000

CPU cores)
MC

70000 HS23 reconstruction

7e9 ev*2500sec*HS23/ev = 1.7e13 = 500000

HS23*year simulation

Analysis (MC + DT):
7e9ev*2*10 sec*HS23/sec *N = 1.4e11

sec*HS23 *N = 4500*N HS23

Where N is the number of independent

analyses, can be very high (~100)

TOTAL ~ 1.1M HS23

…corresponding to 3000 HDD/y 100000 computing cores per experiment!

In reality

● The estimate in the last page does not account for the fact
that multiple years are used at the same time, mistakes are
done, special data taking periods also take resources. And,
on top of that, there are always (at least) 3 activities going on

○ Analyzing data from previous + current year
○ Taking data in the current year
○ Preparing future data taking periods and

 detector upgrades
● So, all in all, real resource number per experiment are

underestimated by at least a factor 3x
59

How to handle this?
● By today’s metric, handling some 1 Million CPU cores and 2-3

Exabytes of data does not seem an impossible task
● But, LHC was approved in the mid 90s, when 1 single HDD

was 10 GB, and a CPU was probably 0.1 HS06
● You can understand what leap of faith in technology is

needed to think that in 10 years (the expected start of LHC
was < 2005) you will be able to handle resources which, in
1995, were of the same size of the entire world IT resource

60

How to design a computing model for HEP in ~ 1995?

● Build a BIG data center
○ A large building with ~1000000 computing cores, and 200000 HDD;

Probably it would work; Google apparently has facilities much larger than
that; NSA for sure…

○ But: It would be a single point of failure; problem finding enough personnel
in a single area, member states not willing to fund resources abroad, ...

● Use many small data centers
○ De-localized cost / expertise / redundancy; member states happy since

they can build a local infrastructure, …

61

Introducing the GRID

● Idea was not new in Computer
Science; HEP had “simply” to make it
real at a large scale

62

“When the network is as fast as the computer's

 internal links, the machine disintegrates across

 the net into a set of special purpose appliances”

 (George Gilder)

The idea in a nutshell

Split the problem into two levels:

● The physical level:
○ Distribute resources worldwide in N (>100) centers
○ Technically a nightmare: distributed Authentication, Authorization,

network paths, multiple access protocols to CPUs/Storage, …

● The logical level:
○ Try and provide the users (the physicists!) with a logical single view, where

”many CPUs” and “a lot of storage” is available in a “flat view”

63

64

Build a wall
(call it API
layer,
intelligent
system, …)

The implementation

Leaving aside the historical development, we have now
● A global entity for LHC computing (and more, see later), the

Worldwide LHC Computing GRID (WLCG) – sometimes
called the “5th big LHC Collaboration”

● A set of low-level tools allowing the collaboration to work:
○ A trust model for mutual Authentication and

Authorization
○ A set of recognized protocols for data access, data

movement, metadata organization, support,
accounting

● O(200) centers in the collaboration
○ With “guaranteed” service levels and some

obligations…

65

Data management
• Dealing with exabytes of data and a

complex distributed computing
infrastructure. Data are stored

• on disk for immediate access
• on tape for archive

• access takes longer but it is much
cheaper, so we can store much more data

• Data management systems catalog
data and track the location of data
(site A, B, C …)

• Rucio and DIRAC are prominent
examples of data management systems

• Data management systems can also
initiate transfers between sites

66

Workflow management
• Multi-dimensional optimization

problem : orchestrating work
accessing data and producing
derived data

• Submission infrastructure software
(like HTCondor) and workflow
management software (Like Panda,
Dirac, WMAgent) automate

• Job creation
• Job execution
• Job monitoring and failure recovery

67

Authentication & Authorisation

● Mutual trust and AAI is the most important building block:
○ As a LHC scientist, you can literally access resources in every corner of

Earth
○ It is the cornerstone on which the various access protocols will be based

upon. We started with X509 certificates, we are transitioning to Indigo-IAM
tokens

● If you have a distributed infrastructure which you want to use as a big
single entity, the technical building block you need is “tons of
network” (aka have a WAN as fast as LAN)

68

The network
● The ideal “as if local” is possible when all the nodes see all the data at “as

local” speed; which in LHC metrics mean ~ each core should be able to
access every piece of data at O(5 MB/s)

● In 1995 this was a dream: network lines are expensive and rare (no Netflix
yet!); we cannot assume to prepare the full mesh of networking for O(100)
centers – which would mean n(n-1)/2 connections → O (104)

● MONARC project studied and proposed a hierarchy of computing centers:
the “Tiered data model”; fewer paths are needed, and their importance is
different

69

tie
rs

70

70

A second copy of RAW data (Backup)

Re-reconstructions with better calibrations

Analysis Activity

They are dimensioned to help ~ 50 physicists in their
analysis activities

Tier 1Tier 1 Tier 1 Tier 1
Tier 1

Tier 2 Tier 2 Tier 2 Tier 2
Tier 2

CERN

Master copy of RAW data

Fast calibrations

Prompt Reconstruction

Tier 0

Tier 2 Tier 2 Tier 2 Tier 2
Tier 3,4

Anything smaller, from University clusters to your laptop

71

1st need: put the data
in safety

1st copy stays @ CERN,
but a 2nd copy must go
distributed for disaster
recovery

→ Guaranteed lines
Tier-0 → Tier-1s

→ By today , multiple
of 100 Gbps

72

… and from
Tier-1s to the
other data
centers …

73

… and from
Tier-1s to the
other data
centers …

74

… and from
Tier-1s to the
other data
centers …

Tiered model: the distributed system must be smarter!

● Optimize transfers, avoid too many “jumps”
● Moving data is expensive / time consuming → move the jobs

to data, and not vice versa
● … which means at some point you need to have the “most

important data” in the “best places” → need for smart data
placement, data lifecycle, multiple copies, caches, …

75

Software

HEP collaborations have quite unique needs for software:

● It is inevitably large → see later
● It must be runnable on every country participating the effort, and

more → no copyrights, no embargoed code
● It must cover a large range of use cases → simulation,

reconstruction, selection, analysis, …
● It is a long journey; experiments last O(10-30y), difficult to rewrite

from scratch when taking data

76

Software stack
Main languages used:
● C++ for the physics data processing framework and some analysis software
● Python for the analysis and scripting/configuration

But other languages too: C/C++ used for interfacing with electronics, VHDL for
FPGA, Julia, etc…

More than 5 million lines of code per experiment, development started in the
early 2000s. Covers the code to integrate with the DAQ, data analysis, event
reconstruction,….

Using frameworks to process the events (Athena/Gaudi, CMSSW, ROOT)
Using many external tools and libraries when needed: e.g. BOOST for C++, BLAS,
Eigen for linear algebra, Tensorflow, Catboost for ML…

77

How big?
● SLOC are a standard industry metric, and there are tools to translate them

into «man years» and in the end to $$ (assuming a US typical programmer)
● The result is enormous, but reflects the fact that both software stacks are

15 years old or more
● It does NOT include externals, like Geant4, geometry engines, particle

generators, ROOT, etc

● As a reference:
○ Linux Kernel is: 15M sloc, 4800 FTEy, 650M$ (3x CMS)
○ Geant4 is: 1.2M sloc, 330 FTEy, 45 M$ (1/4x CMS)

78

https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

.. But this is only the ”core code”

● We rely on many externals (Geant4 is an external, ROOT is an
external, Pythia is an external) which inflate greatly the total size

● This (in unreadable fonts) is the list of externals for a typical CMS
release

alpgen qd root_cxxdefaults sockets catch2 gcc-ccompiler gcc-cxxcompiler gcc-f77compiler mpfr cmsswdata codechecker csctrackfinderemulati cuda-stubs cuda-gcc-support cvs2git dablooms db6 dmtcp doxygen eigen fastjet-contrib fastjet-contrib-archi gcc-analyzer-ccompile gcc-analyzer-
cxxcompi gcc-atomic gcc-checker-plugin gcc-plugin gdb geant4-parfullcms geant4data py2-numpy openloops git glibc glimpse gmake gnuplot gosam gosamcontrib hdf5 igprof intel-license ittnoti fy lapack lcov libffi libxslt llvm md5 openblas ofast-flag openmpi professor py2-sympy py2-absl-py py2-
appdirs py2-argparse py2-asn1crypto py2-atomicwrites py2-attrs py2-autopep8 py2-avro py2-awkward py2-backcall py2-backports py2-backports-functooccj py2-backports_abc py2-beautifulsoup4 py2-bleach py2-bokeh py2-bottleneck py2-cachetools py2-certifi py2-cffi py2-chardet py2-click py2-
climate py2-colorama py2-contextlib2 py2-cryptography py2-cx-oracle py2-cycler py2-cython py2-dablooms py2-decorator py2-defusedxml py2-docopt py2-downhill py2-dxr py2-entrypoints py2-enum34 py2-flake8 py2-flawfinder py2-fs py2-funcsigs py2-functools32 py2-future py2-futures py2-gast
py2-gitdb2 py2-gitpython py2-google-common py2-googlepackages py2-grpcio py2-h5py py2-h5py-cache py2-hep_ml py2-histbook py2-histogrammar py2-html5lib py2-hyperas py2-hyperopt py2-idna py2-ipaddress py2-ipykernel py2-ipython py2-ipython_genuti ls py2-ipywidgets py2-jedi py2-jinja2 py2-
jsonpickle py2-jsonschema py2-jupyter py2-jupyter_client py2-jupyter_console py2-jupyter_core py2-keras py2-keras-application py2-keras-preprocessi py2-kiwisolver py2-lint py2-lizard py2-llvmlite py2-lxml py2-lz4 py2-markdown py2-markupsafe py2-matplotlib py2-mccabe py2-mistune py2-mock
py2-more-itertools py2-mpld3 py2-mpmath py2-nbconvert py2-nbdime py2-nbformat py2-networkx py2-neurolab py2-nose py2-nose-parameterize py2-notebook py2-numba py2-numexpr py2-oamap py2-onnx py2-ordereddict py2-packaging py2-pandas py2-pandocfilters py2-parsimonious py2-parso
py2-pathlib2 py2-pbr py2-pexpect py2-pickleshare py2-pillow py2-pip py2-pkgconfig py2-plac py2-pluggy py2-ply py2-prettytable py2-prometheus_client py2-prompt_toolkit py2-protobuf py2-prwlock py2-psutil py2-ptyprocess py2-py py2-pyasn1 py2-pyasn1-modules py2-pybind11 py2-pybrain py2-
pycodestyle py2-pycparser py2-pycurl py2-pydot py2-pyflakes py2-pygithub py2-pygments py2-pymongo py2-pyopenssl py2-pyparsing py2-pysqlite py2-pytest py2-python-cjson py2-python-dateutil py2-python-ldap py2-pytz py2-pyyaml py2-pyzmq py2-qtconsole py2-rep py2-repoze-lru py2-requests
py2-root_numpy py2-root_pandas py2-rootpy py2-scandir py2-schema py2-scikit-learn py2-scipy py2-seaborn py2-send2trash py2-setuptools py2-simplegeneric py2-singledispatch py2-six py2-smmap2 py2-soupsieve py2-sqlalchemy py2-stevedore py2-subprocess32 py2-tables py2-tensorflow py2-
terminado py2-testpath py2-theanets py2-theano py2-thriftpy py2-tornado py2-tqdm py2-traitlets py2-typing py2-typing_extensions py2-uncertainties py2-uproot py2-uproot-methods py2-urllib3 py2-virtualenv py2-virtualenv-clone py2-wcwidth py2-webencodings py2-werkzeug py2-wheel py2-
widgetsnbextensio py2-xgboost py2-xrootdpyfs pydata pyminuit2 pyqt python-paths python_tools rootglew scons sloccount tcmalloc tcmalloc_minimal tensopy2-virtualenvwrapperrflow tinyxml2 xtl blackhat boost boost_header python bz2lib cascade_headers ccache-ccompiler ccache-cxxcompiler
ccache-f77compiler zlib gmp photos_headers pythia6_headers openssl clhep clhepheader cppunit cuda curl libxml2 dcap root_interface xz xerces-c vecgeom_interface hepmc_headers distcc-ccompiler distcc-cxxcompiler distcc-f77compiler dpm expat fastjet fftjet fftw3 freetype gbl gdbm gsl giflib
google-benchmark libjpeg-turbo hector heppdt madgraph5amcatnlo llvm-cxxcompiler jemalloc jimmy_headers ktjet libhepml libuuid llvm-ccompiler llvm-f77compiler meschach mxnet-predict numpy-c-api x11 oracle pacparser yoda protobuf python3 qd_f_main sqlite sigcpp tauola_headers tbb
tensorflow-framework tensorflow-runtime tensorflow-xla_compil0-pafccj3 toprex_headers utm valgrind vdt_headers xrootd xtensor boost_system boost_iostreams boost_serialization boost_program_options boost_python boost_regex boost_signals boost_test cascade yaml-cpp photos pythia6 pcre
cub cuda-api-wrappers cuda-cublas cuda-cufft cuda-curand cuda-cusolver cuda-cusparse cuda-npp cuda-nvgraph cuda-nvjpeg cuda-nvml cuda-nvrtc das_client vecgeom hepmc frontier_client google-benchmark-main libpng iwyu-cxxcompiler libti ff libungif llvm-analyzer-ccompil llvm-analyzer-
cxxcomp mcdb opengl openldap oracleocci pyclang qtbase sip starlight tauola tensorflow-c tensorflow-cc tkonlinesw toprex vdt boost_chrono boost_filesystem boost_mpi cgal lhapdf classlib davix rootcling geant4core photospp geant4static graphviz lwtnn millepede qt3support rivet tkonlineswdb
cgalimageio herwig rootmathcore rootrio pythia8 geant4vis thepeg pyquen qt rootrint rootrflx rootsmatrix rootx11 sherpa charybdis rootthread dire tauolapp geant4 geneva herwigpp jimmy qtdesigner rootgeom rootxmlio vincia rootcore evtgen roothistmatrix rootmath rootxml rootphysics rootgpad
rootfoam rootspectrum root rootminuit rootgraphics rootgui rootinteractive roothtml rootminuit2 dd4hep-core roofitcore mctester professor2 rooteg rootgeompainter rootrgl rootged rootguihtml rootmlp rootpy dd4hep dd4hep-geant4 roofit rooteve roottmva roostats rootpymva histfactory coral

● Note that gcc is there! CMS ships its own compiler, so dependency on the host Linux is
only at the level of glibc

79

The HEP framework(s)

● Such a complexity of use cases and code, with multiple alternatives in each of
them, needs a coherent Framework, which is at the core of the HEP software,
and is the piece which basically stays stable-with-adiabatic-changes within the
experiment lifetime. Changing a FW is not easy; it is not done during data taking.

● Typical needs from a framework
○ Modularity: large utilization of plugins, algorithms, external libraries
○ Scheduling: must be efficiently able to schedule the execution of code (taking into

account dependencies) on the available resources
○ Portability: not attached to a single compiler / OS / architecture
○ Evolution: the computing scenario is not static. From 2008 to now for many things

happened; still most of the FW interface has been stable:

80

From single process to multi process to multi threaded
From single core PCs to O(300) cores per PC
From configs to Python as the uber language
From fully scheduled execution to unscheduled (needed for multi threading)
Analysis support from ROOT(cint)-ROOT(cling)-PyROOT-UpROOT

From GRID to Clouds to Virtualization to HPC to heterogeneous
computing (GPU, FPGA, QC even…)
From data locality to streaming storage federations
From SL4/gcc4 to CC7/gcc8
From 32 to 64 bit

Software Engineering
Requirements on software are strict:
● Reproducibility of the results (we need to re-run old versions of the

software)
● Tracking the provenance of the data is crucial !

The software engineering process is critical to keep the software running,
when ~100s of developers potentially modify the code
● Adequate unit and integration tests are necessary
● Use of version control software (Git)
● Continuous integration (Gitlab CI, Jenkins…)

81

Software Engineering
Requirements on software are strict:
● Reproducibility of the results (we need to re-run old versions of the

software)
● Tracking the provenance of the data is crucial !

The software engineering process is critical to keep the software running,
when ~100s of developers potentially modify the code
● Adequate unit and integration tests are necessary
● Use of version control software (Git)
● Continuous integration (Gitlab CI, Jenkins…)

82

The future ….

● “it all works”, so why change?
● We have the proof that the computing systems for today’s collider

experiment do work. The LHC collaborations have published
thousands of papers each

● Computing is a large operational cost; but is ~ constant year over
year and somehow possible to cover ….

● Are we done? No we are not …

83

The expected future within ~a decade

• CMS and ATLAS undergoing
the largest upgrades with
Run4: 3000/fb total lumi

• Computing planning and
modelling well advanced

• ALICE and LHCb have
successfully upgraded for
Run3 – gearing up to have
upgrades approved for Run5

• Computing under (early)
studies

• Future projects (FCC, ILC,
etc) not considered

• Expect further steps in
resource requirements

ALICE-2, LHCb Upgrade-I

ATLAS and CMS PhaseI

ATLAS and CMS PhaseII

ATLAS and CMS PhaseII

ALICE-3, LHCb Upgrade-2

ALICE-3, LHCb Upgrade-2

ATLAS and CMS: nominal inst lumi from 2e34 to up to
7.5e34; trigger rates in the O(10) kHz ballpark

LHCb: from 2e33 up to 1.5e34
ALICE: 3x Pb-Pb rates, 90x pp

ALICE-2, LHCb Upgrade-I

84

Projections for HL_LHC (ATLAS+CMS)

• In the end, main parameters are
• Trigger rate: from 1 to 7.5kHz
• Mean number of collisions per

bunch crossing (pileup) <PU>:
from 35 to 200

• More and more crowded events
• increased bandwidth to storage (x42)
• Impacts storage (~linearly) and CPU

(superlinearly)
• Live time of the Accelerator
• Monte Carlo production needs

• Expect naïve scaling of x50-x100

85

ATLAS and CMS [latest public projections]

Multiple
projections

(lines): depend
on (successful)

R&D

86

+20%/y
+10%/y

In the meantime, technology …

tape

1 TB disk ~ 5 TB tape ~ 10
HS23 [1/2 CPU core]

“Panzer/Sciabà”
plots

A “constant investment” on
computing buys X% more

resources every year.
X=10% → x2.5 in 10 years

X=20% → x6 in 10 years89

https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf
https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf

Two questions …
● Assuming we cannot get more money per year for computing,

where do we get the 12x-25x missing?
● Also, what is the environmental impact of HEP computing? Is

it sustainable?

● A non-exaustive list
○ Infrastructure changes (where / how to get CPU and Disk, at which

price)
○ Technological changes (use different technologies)
○ Physics #1: change analysis model (do the same physics with less

resources)
○ Physics #2: reduce the physics reach (for example

increasing trigger thresholds)
■ Not even considered here … it is the “desperation move” if we

fail with everything else
○ Use “modern weapons” (new/faster algorithms/tools)
○ Something unexpected...

90

Environmental Sustainability

• Data centers and computing
contribute 2-4% of global green house
gas emissions, only expected to grow.

• Great variation of electricity emissions
across countries and even regions.

• Can we be smarter about how we use
existing facilities?

• expose and use information on specific
carbon impact

• schedule workloads to run when
electricity is cheaper/cleaner

• Consider carbon impact as an
element of computing “performance”
in benchmarking

91

Datacenters
• Climate-controlled building with enough

electrical and cooling power for all the
hardware

• Large rooms with racks
• CPU boxes, HDD/SDD storage boxes, networking

equipment, tape libraries, GPU boxes
• Cooling: Forced Air or Water

• Newest developments: immersion cooling
• Power Usage Efficiency (PuE)

• Wikipedia:” PUE is a ratio that describes how
efficiently a computer data center uses energy;
specifically, how much energy is used by the
computing equipment (in contrast to cooling and
other overhead that supports the equipment).”

• Average PuE: 1.4-1.7 (between 40% and
70% is “wasted!”)

• Large datacenters tend to have better PuE
(O. Gutsche)92

https://en.wikipedia.org/wiki/Power_usage_eﬀectiveness
https://en.wikipedia.org/wiki/Power_usage_eﬀectiveness

Towards high-efficiency data centers

• Perlmutter Supercomputer @
NERSC (Berkeley Lab, US)

• Direct water cooling, PuE: 1.05-1.08
• Green IT Cube: supercomputing

center for GSI and FAIR
(Darmstadt, D)

• water cooling in doors of computer
cabinets, PuE: < 1.07

• LHCb online farm (CERN)
• Free air cooling, PuE: < 1.1

• Energy efficient data centers are
coming, but not everywhere and
not fast enough!

93

Efficient compute architectures

• GPUs are much more energy efficient
• Perlmutter @ NERSC: 5x on average, up

to 9.8x in weather forecast
• GPUs are much more compute-

efficient
• Up to 300 CPU cores replaced by a

single GPU in ALICE’s track
reconstruction

• Other architectures being considered
• Mobile (low power) processors (ARM)
• Code-in-hardware (“FPGA”, “ASIC”, …)

94

Efficient compute architectures

• GPUs are much more energy efficient
• Perlmutter @ NERSC: 5x on average, up

to 9.8x in weather forecast
• GPUs are much more compute-

efficient
• Up to 300 CPU cores replaced by a

single GPU in ALICE’s track
reconstruction

• Other architectures being considered
• Mobile (low power) processors (ARM)
• Code-in-hardware (“FPGA”, “ASIC”, …)

95

Efficient compute architectures

• Large HPCs are and will be installing GPUs
to boost their compute power and consume
less electricity

• Can we use them?
• Not easily - limited to mission critical algorithms
• GPU programming is different: Need to use

special code constructs (Essentially, if-
statements have to be rethought)

• We need frameworks to embrace Heterogeneous
Computing

• We need a way not to write the code once per
platform

• Portability libraries (Kokkos, Alpaka, OneAPI,…) allow
to write algorithms once and then compile/execute
on GPUs of different vendors andCPUs

96

97

Infrastructure changes

● Today’s HEP computing
○ Owned centers, long lifetime (10+ y)

○ Well balanced in storage vs CPU

○ FAs pay for resources + infrastructure + personnel

Is it the most economic/sustainable computing

available today?

● YES, if you care about your data safety (and your

capability to access it)

● NO, if you can use stateless resources (CPUs!)
○ They come and go fast

○ You can hire them (from a commercial provider, ...)

○ You can use “someone else” resources

97

“CPU for free can be found,
Disk for free cannot!”

Real operation mode today

• Netflix, Spotify, … → commercial
commodity networks available at a
lower price / larger bandwidth than
expected

• No need to have strict hierarchical
network paths, → full mesh: every
site can transfer from any other

98

T1

T2 T2

T2

T0

T1

T2 T2

T2

T1

T2 T2

T2

T0

T1

T2 T2

T2

How to use the new network capabilities?

• Direct Remote data access (a.k.a Streaming!)

• You remember the problem with Data Driven: jobs go where data is
• If a site has spare CPUs, but no data → not used
• If a site has data, but no spare CPUs → jobs kept waiting

• If we remove the constraint of Data locality, match-making becomes
very easy + efficient

• Direct Remote Data Access: think of Youtube/Netflix!
• You do not download the file, you access it over the network

99

100

The data lake model

● Keep the real value from the experiments

safe

○ (RAW) data and a solid baseline of

CPU in owned and stable sites

○ Allow for multiple CPU resources to
join, even temporarily

■ Eventually choosing the

cheapest at any moment

○ Solid networking: use caches /

streaming to access data
● Reduce requirements for Computing

resources

○ Commercial Clouds

○ Other sciences’ resources

■ SKA, CTA, Dune, Genomics, ...
○ HPC systems

ProtoDune 2-3
GB/s (like CMS);
Real Dune 80x

SKA up to 2
PB/day

A single
genome ~
100 GB. a 1M
survey = 100
PB

CTA projects
to 10 PB/y

Lake
Node 1

Lake
Node 2

Lake
Node 3

> 1 Tb/s

CPU
center

CPU
center

CPU
center

CPU
center

HPC
center

HPC
center

Lake
Node 4

100

Commercial clouds

• Massive data centers with $B investment
provide access to vast amounts of
resources

• HEP resources are sizable but tiny
compared to industry

• Industry selling compute in small slices for
profit

• Allows for both large scale (if you can pay
for it) and fine granularity

• Some hyperscalers (Google) offer
subscription models that allow to boost
into unused capacity

• In general, higher prices to buy elasticity

101

Supercomputing (HPC)

• High Performance Computing (HPC) is
designed for single large applications
using significant resources

• Scientific use cases: climate models, lattice
QCD

• specialized hardware with very fast
interconnects

• Recently they are opening up to HEP
workflows (HEP = high throughput
computing (HTC))

• Even we don’t really need fast interconnects

[credits]

1 Petaflop = 1015 floating point operations per second
1 Exaflop = 1018 floating point operations per second

1 Exaflop

1 Petaflop

102

https://leonardo-supercomputer.cineca.eu/

Supercomputing (HPC)

Many non-trivial problems to solve
• Data access (access, bandwidth, ...)
• Accelerator Technology (GPU, FPGA, TPU, …)
• Submission of tasks (MPI vs Batch systems

vs proprietary systems)
• Node configuration (low RAM/Disk, …)
• Not-too-open environment (OS, …)
• Processing time is allocated through

approval processes based on science use
case

• Resources are not necessarily available
24/7/365

[credits]

1 Petaflop = 1015 floating point operations per second
1 Exaflop = 1018 floating point operations per second

1 Exaflop

1 Petaflop

103

https://leonardo-supercomputer.cineca.eu/

Physics #1: change analysis model

Most HEP physics analysis use a sequential model
«event loop» on a single CPU:
● Load relevant values for a specific event into local variables
● Evaluate several expressions
● Store derived values
● Repeat (explicit outer loop)
● Make it faster by making it embarassly parallel using a lot of CPUs

(for example, using the GRID)

Big data tools are known to be better at this
Columnar analysis:
● Load relevant values for many events into contiguous arrays
● Evaluate several array programming expressions
● Implicit inner loops
● Store derived values

105

Physics #1: change analysis model

106

From vertically-integrated solution to ecosystem

• Selective persistency: write out only the “interesting” part of the event.

• Turbo stream:
• Miminum output: only HLT2 signal candidates
• Optionally: (parts of) pp vertex (e.g. ”cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW
• FULL stream: all reconstructed objects in the event

• Optionally adding selected RAW banks
• TurCal stream: HLT2 candidates and RAW banks

• Used for offline calibration and performance measurement 107

Physics #1: reduce storage footprint

• Selective persistency: write out only the “interesting” part of the event.

• Turbo stream:
• Miminum output: only HLT2 signal candidates
• Optionally: (parts of) pp vertex (e.g. ”cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW
• FULL stream: all reconstructed objects in the event

• Optionally adding selected RAW banks
• TurCal stream: HLT2 candidates and RAW banks

• Used for offline calibration and performance measurement 108

Physics #1: reduce storage footprint

• Selective persistency: write out only the “interesting” part of the event.

• Turbo stream:
• Miminum output: only HLT2 signal candidates
• Optionally: (parts of) pp vertex (e.g. ”cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW
• FULL stream: all reconstructed objects in the event

• Optionally adding selected RAW banks
• TurCal stream: HLT2 candidates and RAW banks

• Used for offline calibration and performance measurement 109

Physics #1: reduce storage footprint

Physics #1: reduce storage footprint

• CMS has developed more and
more reduced data formats

• “nanoAOD” is the prevalent
analysis format in CMS

• Event size reduced by a factor
3000x since the start of Run-1

• Note: only very high-level
quantities are saved; not all
analyses can use it

• e.g. flavour physics analyses

110

Use “modern weapons”

● These can be from the technology point of view (Big Data Tools)…
● … or novel ways to write algorithms.
● AI in general and Machine Learning / Deep Learning techniques

obviously stand up
● The space / time here is way too short to go into any detail, but by

now ML techniques are used everywhere in HEP processing
○ Trigger level (even on FPGA)
○ Simulation (GAN tools are very promising)
○ Reconstruction (… everywhere, from S/N separation to clustering in

calorimeters and trackers)
○ Analysis (selection, interpretation, …)

111

The AI/ML zoo

● Fully Connected Neural Networks (FCNNs / MLPs)
○ Used in early applications (e.g. event classification, regression)
○ Still widely used for tasks with structured tabular input (e.g. particle 4-vectors)
○ Examples: S/B discrimination, parameter estimation, ..

● Convolutional Neural Networks (CNNs)
○ Suitable for image-like data: calorimeter hits, tracking detector layouts, jet images
○ Benefit from local connectivity and translational invariance
○ Examples: jet tagging, energy deposition maps, neutrino detectors

● Graph Neural Networks (GNNs)
○ Represent events as graphs (e.g., hits, tracks, or particle interactions as nodes/edges)
○ State-of-the-art for tracking, jet reconstruction, and physics object identification
○ Examples: Track finding, calorimeter clustering, particle flow

● Autoencoders (VAEs) (and Variational-AE)
○ Used for anomaly detection and dimensionality reduction
○ Examples: Searching for rare or unknown physics events.

DISCLAIMER: the list is not intended to be complete, and the
classification is not rigorous but just for illustrative purposes

112

The AI/ML zoo

● Generative Adversarial Networks (GANs)
○ Fast surrogate models for simulation (e.g., calorimeter shower generation).
○ Examples: Simulation acceleration, anomaly detection

● Transformers
○ Originally from Natural Language Processing (NLP), now extended to handle

structured or variable-length (long!) inputs.
○ Strong performance in classification and generative modelling, even in physics.
○ Examples: Event classification, generative modelling, scientific document parsing.

● Diffusion models
○ Model data generation as reversing a diffusion process (progressive noise addition)
○ Examples: fast calorimeter and tracking simulation, anomaly detection, structured

generation

DISCLAIMER: the list is not intended to be complete, and the
classification is not rigorous but just for illustrative purposes

113

ML usage patterns #1
● At trigger level, modern tools (hls4ml, BM, LeFlow, …) allow

to write on FPGA the result from the training on “largish”
machine learning networks, taking into account pruning to
match the limited resources

● Applications under study
○ Bkg and trigger rate reduction
○ Signal specific trigger paths
○ Anomaly detection in data taking
○ Unsupervised new physics mining

● Existing implementations, e.g. LHCb HLT selections in Run3
● Next-generation trigger systems → real-time reconstruction

→ real time analysis
● Challenge is the trade-off between algorithmic complexity

and the performances achievable under severe time
constraints in inference

114

https://fastmachinelearning.org/hls4ml/#:~:text=hls4ml%20is%20a%20Python%20package,configured%20for%20your%20use%2Dcase!
https://cds.cern.ch/record/2708682/files/PoS(ISGC2019)020.pdf
https://github.com/danielholanda/LeFlow

ML usage patterns #2
● The production of simulated events is extremely intense from the computation standpoint

○ up to the point it might impact the physics reach of the experiments
● ML can help to reduce such load

○ Calorimeter shower surrogate simulator
○ Analysis-level simulator
○ Pile-up overlay generator
○ Monte Carlo integration
○ ML-enabled fast-simulation

● As an example, GANs have shown the potential to mimic more complex iterative algorithms
(like those in Geant4) with a huge gain in timing

115

Longitudinal shower shape in a
calorimeter from 100 GeV e- from
here. Timing is 1 minute vs 0.04
msec

ML Usage patterns #2

Online/offline reconstruction might be partially replaced by ML surrogate models
(approximate→faster) or new algorithms (offering unprecedented performance)
might partially replace existing algorithms.

● Charged particle tracking (GraphNN, vertexing, …)
● Calorimeter reconstruction (local, clustering, …)
● Particle flow (GraphNN, …)
● Particle identification (boosted
● jets, isolation, …)
● Pileup mitigation

116

ML Usage patterns #2

A couple of examples on how ML is used at
reconstruction level
● Improvement in classification (S vs B, and in

general category A vs B, C, …) using a large
number of (even poorly) discriminating variables

● Clustering algorithms which exhibit
combinatorial explosion with classical
algorithms (jet clustering, tracking)

○ CNNs (input-as-images), Graph Networks

117

Typical classical algorithm:
60% efficiency for 50x rejection

DeepCSV and other AI based
algorithms: 60% efficiency
for 300x rejection

b-tag

ML Usage patterns #2

A couple of examples on how ML is used at
reconstruction level
● Improvement in classification (S vs B, and in

general category A vs B, C, …) using a large
number of (even poorly) discriminating variables

● Clustering algorithms which exhibit
combinatorial explosion with classical
algorithms (jet clustering, tracking)

○ CNNs (input-as-images), Graph Networks

118

ML usage patterns #3, #4

ML usage patterns #3, #4
ML in Computing Operations
Application of ML to non-event
(meta-)data might help to increase
efficiency and reduce the need of
personpower in Ops, e.g. automating
specific tasks, developing
intelligent/adaptive systems,
ultimately acting on the full chain -
from data collection to data analysis -
and make it more agile
• Detector control
• Data quality monitoring
• Operational intelligence
• Predictive maintenance

120

ML usage patterns #5

“ChATLAS”: A prototype LLM-based AI-assistant in a
• Data gathering part is interesting

• Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’
agendas incl. attached slides and minutes (>440k), Mattermost, Jira tickets, experiment’
papers and internal notes (>66k)

• Either HTML or scraped into markdown
• Many open challenges:

• highly heterogeneous data
• ensure that collaboration DBs are accessible and exportable; websites should live on a

git repo; pubs should be saved as latex, and compiled separately; discussion forums
should have anonymisation options… Estimates indicate that this would have saved ~1
yr of data wrangling

• Hallucinations are a real problem
• Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned AI

assistant

121

ML usage patterns #5

122

A possible AI / ML path

123

A Large ”fundamental physics” foundation model?

124

(D. Bonacorsi)

Conclusions

● In this (long) walk I tried to show you how the complexity of
Computing and Software systems for High Energy Physics has
dramatically increased in the last ~30 years, becoming an integral
part of the planning for new experiments, … and their cost!

● In parallel, new skills and competencies have become more and
more important. We now need more and more “physicists with CS
skills”

● It is an interesting time to be in the Computing and Software for HEP
○ A complex task, no trivial solutions → we need new ideas
○ At the forefront of technology
○ Please join!

125

Acknowledgments

Thanks to
● Tommaso Boccali for his lecture at the 2021 CERN+FNAL HCP

summer school and updates
● Paul Laycock for his lectures to the 2024 CERN summer students
● Arnulf Quandt for his lectures at the 2025 CERN school of computing
● Daniele Bonacorsi for his talk at the 2025 INFN-CCR workshop
● Ben Couturier for his seminar at Krakow university
● Oliver Gutsche for his lecture at the 2024 CERN+FNAL HCP summer

school

126

	Slide 1: Computing in HEP
	Slide 2: Computing in HEP
	Slide 3
	Slide 4: Outline
	Slide 5: Why computing is relevant in HEP
	Slide 6: Why computing is relevant in HEP
	Slide 7: Why computing is relevant in HEP
	Slide 8: Total number of “trials” needed
	Slide 9: Selecting the interesting collisions
	Slide 10: Back-of-the-envelope estimate of storage needs
	Slide 11: A data deluge!
	Slide 12: In context
	Slide 13: Challenging
	Slide 14: The limiting factor of a HEP experiment
	Slide 15: From RAW data to physics results
	Slide 17: Online processing
	Slide 18: Online processing
	Slide 19: Online processing
	Slide 20: Online processing
	Slide 21: Online processing
	Slide 22: Online processing
	Slide 24: Schematic view of LHCb DAQ & trigger system
	Slide 25: LHCb Data Acquisition
	Slide 26: LHCb Online farm
	Slide 27: The Run3 ALICE computing
	Slide 28: The ALICE Run3 data flow
	Slide 29: From RAW data to physics results
	Slide 30: Data preparation
	Slide 31: Calibration
	Slide 32: Alignment
	Slide 33: Reconstruction
	Slide 34: Reconstruction of charged particles
	Slide 35: Reconstruction of charged particles
	Slide 36: Reconstruction of charged particles
	Slide 37: Problem decomposition
	Slide 38: Track finding
	Slide 39: A local method: Search by triplet in the LHCb VeLo
	Slide 40: A local method: Search by triplet in the LHCb VeLo
	Slide 41: Finding the primary collisions: Vertexing
	Slide 42: Combinatorial Kalman filter
	Slide 43: A global method: the Hough transform
	Slide 44: Neutral particles
	Slide 45: Particle Identification
	Slide 46: Data quality
	Slide 47: From RAW data to physics results
	Slide 48: Physics analysis
	Slide 49: Simulation
	Slide 50
	Slide 51: Simulation steps
	Slide 52: Detector simulation
	Slide 53: Simulation for detector understanding
	Slide 54: Where do we spend CPU work?
	Slide 55: Towards absolute numbers
	Slide 56: But before giving absolute numbers .. unit of measurement for CPU!
	Slide 57: Absolute numbers
	Slide 58: Estimate for a single data taking year
	Slide 59: In reality
	Slide 60: How to handle this?
	Slide 61: How to design a computing model for HEP in ~ 1995?
	Slide 62: Introducing the GRID
	Slide 63: The idea in a nutshell
	Slide 64
	Slide 65: The implementation
	Slide 66: Data management
	Slide 67: Workflow management
	Slide 68: Authentication & Authorisation
	Slide 69: The network
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Tiered model: the distributed system must be smarter!
	Slide 76: Software
	Slide 77: Software stack
	Slide 78: How big?
	Slide 79: .. But this is only the ”core code”
	Slide 80: The HEP framework(s)
	Slide 81: Software Engineering
	Slide 82: Software Engineering
	Slide 83: The future ….
	Slide 84: The expected future within ~a decade
	Slide 85: Projections for HL_LHC (ATLAS+CMS)
	Slide 86: ATLAS and CMS [latest public projections]
	Slide 89: In the meantime, technology …
	Slide 90: Two questions …
	Slide 91: Environmental Sustainability
	Slide 92: Datacenters
	Slide 93: Towards high-efficiency data centers
	Slide 94: Efficient compute architectures
	Slide 95: Efficient compute architectures
	Slide 96: Efficient compute architectures
	Slide 97
	Slide 98: Real operation mode today
	Slide 99: How to use the new network capabilities?
	Slide 100
	Slide 101: Commercial clouds
	Slide 102: Supercomputing (HPC)
	Slide 103: Supercomputing (HPC)
	Slide 105: Physics #1: change analysis model
	Slide 106: Physics #1: change analysis model
	Slide 107: Physics #1: reduce storage footprint
	Slide 108: Physics #1: reduce storage footprint
	Slide 109: Physics #1: reduce storage footprint
	Slide 110: Physics #1: reduce storage footprint
	Slide 111: Use “modern weapons”
	Slide 112: The AI/ML zoo
	Slide 113: The AI/ML zoo
	Slide 114: ML usage patterns #1
	Slide 115: ML usage patterns #2
	Slide 116: ML Usage patterns #2
	Slide 117: ML Usage patterns #2
	Slide 118: ML Usage patterns #2
	Slide 119: ML usage patterns #3, #4
	Slide 120: ML usage patterns #3, #4
	Slide 121: ML usage patterns #5
	Slide 122: ML usage patterns #5
	Slide 123: A possible AI / ML path
	Slide 124: A Large ”fundamental physics” foundation model?
	Slide 125: Conclusions
	Slide 126: Acknowledgments

