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...Many of the concepts and topics that will be discussed (hardware &

software infrastructures, technologies) are relevant also for Other HEP (Belle-
2,...), neutrino (DVNE, ...), astroparticle (SKA, CTA, GW, ...) experiments
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Outline

* The relevance of computing in HEP

* From RAW data to physics results

* Software and computing infrastructure
* Future evolution



Why computing is relevant in HEP

e Current HEP research needs to look into
high energy and/or rare processes and/or

very precise measurements
o High Energy: Look up in the sky!

m Astroparticle Physics, the universe produces for
you cosmic rays (measured up) to some 102?' eV
(10° TeV)

s Butthey arerare!

o Rare & Precision: Produce (a lot of) high energy
events using colliders
= Currentbestis“only”at 14 TeV (c.m.)
s butwe can produce billions per second

e The needfora lot of computingis an
unfortunate consequence
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Fermilab SSC
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e More, and more crowded events

CERN v' LHi:l
| | | | I
Why computing is relevant in HEP e
« Most of the reasoning involves the ™l il
relation between the cross section of a L
given process and the number of S 1ubl-
events generated T T
N =0 X Lint g_ T G
w 1nb
e More (c.m.) energy in the collision of |
beams: the total cross section ; ol
increases + the complexity of the ° L
collision results increases T L

10° 10° 10"
Vs [GeV] https://arxiv.org/pdf/1005.3299.pdf
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Why computing is relevant in HEP
This part of the cross section plotis /

“mostly understood and not interesting”
This partis “interesting”, asithaslarge ——— |
cross-section and is sensitive to new e
physics through precision measurements
of (rare) heavy quark flavour processes
This partis “interesting”, but has cross
sections up to billion times smaller
Unfortunately guantum mechanics tells
us the “choice of the process” is 1 pb
completely probabilistic: you cannot force

nature to produce only what you care for

In order to produce the latter two, you

need to produce (a lot of) the former 0.001 0.01 0f1 Tev1-0 10 10

{proton - proton
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Total number of “trials” needed

Take ATLAS / CMS as an example
For a cross section of 10° fb, to produce 10.000.000 Higgs in 5 years (per
experiment) one needs

L. .. =100 fb'integrated luminosity (107/(10° fb))
This translates into an instantaneous lumi(*)

Linst =10% em2/ (5y *3*107s/y / 565y ) = O(10%%) cm2 s~
The LHC!

.. But at the same time, 100 fb-! will result in some 107
«uninsteresting» collisions

(*) assuming an efficiency factor ~5 for shutdown periods, vacations, repairs, etc, and noting
that1b=1024cm? > L, = 100 fb-'=104" cm~2



Selecting the interesting collisions

e Notan easy task, they do not always look 1ntepactlons per ¢ 0SSir g"
so different ,fh'uge Challe, e =

e Ontop ofthis, the 25 ns bunched \ ‘ "
structure of LHC superimposes several
proton collisions in a single bunch
crossing (~30-50 Run-2, up to 80 Run-3, up
to 200 in the future), and most of the
signhals come from the uninteresting one
(and, they are not colored in the figure on
the right!)

o Anonline selection is not trivial; in
order to have decent efficiency on the
“interesting events” you cannot be
too picky

o Inthe flavour sector, even the
interesting events are _a lot_ 5




Back-of-the-envelope estimate of storage needs

o Simplified model for “a detector”
o take a “picture” of a collision every 25 ns (40 MH?z)
o O(100) Million detector channels (“pixels”)
o Assume 1 channel =1 byte

- the data rate would be
40e6 ev/s * 100e6 byte/ev= 4 PB/s

e A“storage problem”is automatic given the
needs for looking into rare events with an high
precision

10



A data deluge!

e Inanidealworld, all the 40 MHz 25 ns snapshots would be saved and analyzed

e ...but4PB/sin 5yearswould be 120 ZB (ZettaBytes = 104" bytes)

e We cannot save 4 PB/s for any reasonable number of seconds, and the
experiments need to last for years; hence a number of solutions / tricks /

approximations needs to be found
o Easyones: Zero suppression: do not save the reading of channels which are not
“significant” (lossy compression): 100 MB/ev - 1 MB/ev
o Complex ones: try and interpret the events as they flow, and select “enough of the
interesting ones” = the trigger

e In practice, a much lower rate is saved for $$ reasons

o years of studies have defined the “minimum” possible while still preserving the physics
capabilities at least for the most important physics channels.

11



In context

HEP produces huge

datasets

e Comparable to
industry
applications

e with different
usage patterns

e Byusing public
funding

RAW data rates are
totally unprecedented

10M

Big Data sizes in 2021

71k B e-mails sent from
2020-10 to 2021-09 (75 KB)

60k B spam
e-mails(5 KB)

5.4k PBly

300 PB/y

720k hours/day
of video uploaded (1 GB)

100 T objects stored
in S3 up to 2021 (5 MB)

140 M hours/day
of streaming (1 GB)

shared in 2021

240k photos/min.

£

500 EB
(total)

2M
51.1k PBYy (e
60 GB/s WLCG
transfers in 2018
phm( 1.9k PBYy
65k photos/min.
nYouTuIle shared in 2021 LHC real
733 PBY (2 MB) data in 201
~
263 PBly 252 PBYy 7
\
98.83 M new users 68 PBYy 62 PB/y 30+ B web pages

+ 1.17 M paid subs in 2020
(1.5 GB and 500 GB, respectively)

in 2021 (2.15 MB)

source

CFRN
HL-LHC real

data expected in 2026

8

800 PBly

240/PBly
160 PBly

LHC Monte Carlo
data in 2018

e

1200 PBly

HL-LHC Monte Carloj
data expected in 2026

© Luca Clissa (2022)
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Challenging

Data throughput from detector
back-ends today:1-10TB/s

Typical LHC “live-time”: 7Ms/year

—>Data volumes: 7-70EB/year
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The limiting factor of a HEP experiment

(S. Roiser)

CPU, Disk, Tape And All That

Apart from some limits on the electronics (“/ cannot
dispatch more than X consecutive triggers”), the real
limit on the numbers and type of events collected by
HEP experiments is the Computing, and on its turn the
amount of money one can dedicate to that.

If you want, it is a reversed process: | know what | can
spend on the computing 2 | know how many events |
can collect =2 | know what type of physics | can do.
This is why any R&D, new idea, new solution which

Fit Physicists

allows to reduce the Computing costs, is very visible Ideas
and increases the physics potential of the Into Compuiting Resoutrces
eXpel’imentS (o) RLY? Harry Houdini
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From RAW data to physics results

Data
preparation

Detector characteristics N A .
a2 U Analysis
Weight: 14’500t

15



Online processing

Trigger strategy to select rare processes:

* search for local signatures (calorimeter
energy, presence of muons...)

* Reject background

e Selectrare events

o (proifn - proton)

1mb

Tub

1nb

Fermilab SSC
CERN LHC

B jot Ojet
E"">0.25 Tev

ow—sfv)—__

~

= H
my= 100
G‘,"

GeV \\
~—

m.=1TeV  —
z

&) Higgs .
[ m,, =500 GeV ——~__
\

0.001 0.01 01 1.0 10 10
Vs TeV
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Online processing

Trigger strategy to select rare processes:

* search for local signatures (calorimeter
energy, presence of muons...)

* Reject background

e Selectrare events

sy jolyon.co.uk

—A\
Consrafolafions,

18



Online processing

(ATLAS)
Trigger strategy to select rare processes:
. . Event rates Trigger DAQ ata rates
* search for local signatures (calorimeter  on o aion ) ) o]
energy, presence of muons...) AR @IS -
. the LHC E draware ol evet 1 mccepe | o) ) (R
* Reject background v -
100 kHz RolB ‘ - A
* Selectrare events Lj_ it
[FI'K /Readout System ]
11 g} 1o . y ~ 30k Eioarnere é
Classic” multi-level trigger q <
e Chain of “yes or no” decisions mtoreting o
protor_i-proton
* Very fast first level with (programmable) ~ ~leer = 22 DO D . __ }
et e
hardware The LHC Permanent Storage

* “slower” higher level(s) via software on

specialised or off-the-shelf processors
19



Online processing

Trigger strategy to select high cross-

1mb

Fermilab SSC
CERN LHC

section, signal-dominated
processes:

* No “simple” local criteria
* Classify decays

e Access as much information about
the collision as early as possible

Read full detector

¢ (proton - proton)

Tub

1nb

: Ojet

E"'>0.25 TeV

ow-—»fv) =

M= 100 GeV ~——___
(oF% )
m_,= 1 TeV
&) Higgs
m,, = 500 GeV ——

0.001 0.01 01 1.0 10 10

Vs TeV
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Online processing

Trigger strategy to select high cross-
section, sighal-dominated
processes:

* No “simple” local criteria

Classify decays

Access as much information about
the collision as early as possible

Read full detector

 Hiki ngArtist.com

L=2x10* em™2s~! (ATLAS/CMS) /s =14 TeV
L=2x10% em %! (LHCb)

H tt ZW bb cc
*— ® . *—— *~—e
102 10° 102 104 106 108

production rate [Hz] .



Online processing

Trigger strategy to select high cross-
section, sighal-dominated
processes:

* No “simple” local criteria

* Classify decays

Access as much information about
the collision as early as possible

Read full detector

(LHCDb)

pp collisions

40 Thit/s ¢

~

.

"
0(250) ( event building )

x86 servers

| Cam)

J

J

1-2 Thit/s ¢

-
0O(1000) x86 servers

buffer on disk
calibration and alignment

Y

( HLT2

)

.

~

/

80 Gbit/s ¢

[ storage
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Schematic view of LHCb DAQ & trigger system

o ﬂﬂ

- T e )

1 Tb/s

Event Builder
Network
(InfiniBand 200G)

Buffer storage
Network
(Ethernet 10G/100G)

B - s B B i B i - B B - e S —

Event filter second pass (up to 4000 servers)

~19000 fibre links between the
detector (100m underground) and
the computing farm

170 servers to read the data and
pre-filter (HLT1, running on GPUSs)

More than 4000 CPU servers for
the event filter second pass

Up to 40PB of disk storage in
between

Reading from multiple channels,
with synchronization needed!!!

24



LHCb Data Acquisition
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—

NETWORK

o
:
>
(00}
=
Z
w
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w

100 Gbss

EVENT FILTER FARM

=

Event rate: 30 MHz non-empty

bunch crossing

» Event size: ~ 100 kB
» Input bandwidth: 40 Thit/s

New PCle40 readout boards
» 24 optical inputs, PCle interface

» Event builder network using

commercial technology

= HDR InfiniBand(© with remote
direct memory access

Uses Field Programmable Gate
Arrays (FPGA) for logic
(programmation with VHDL or
Verilog)
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LHCb Online farm

L | T

More than 4000 serversin the racks

19000 fibres connect the experiment
with the computer center

LHCb
computing
center at CERN

26



The Run3 ALICE computing

e TheTime Frame (TF) concept
o Allcollisions stored for main detectors

- no trigger

m Collection of tracks in a given time
window (“long exposure photographh”

o Exposure time tunable (~2.88 ms)

o 100x more collisions

o Raw TF stream input to GPU farm
where tracking, reconstruction and
compression are performed in sync
with data taking
Storing compressed TFs

. Onllne (sync) and offline (async)
reconstruction using exactly the
same code

“Exposure time” (TF length) is set to 32 LHC orbits = 2.88 ms

Overlapping events in TPC @ 50 kHz Pb-Pb.
Tracks of different collisions shown in different colors.

Courtesy D. Rohr




The ALICE Run3 data flow

federico.ronchetti@cern.ch - Workshop on Advances, Innovations, and Prospects in High-Energy Nuclear Physics

Layout of the ALICE computing at the LHC P2

— - N S
- b B .

O%/EPN
(Event Processing Nodes)
O%/FLP 7 : S —— 2800 GPU & 700 CPU

(First Level Processors) (gl 7‘~'. =y ~900 GB/s
~200 2-socket Dell R740 -

GPU computing

' = T e
up to 3 CRU per FLP y FLP .qu-tle frames, 2.88 ms 5 L”‘_ ’ ’4"’” ! MWM&;& ~ Majority of
] , I/}////Ilﬂﬁﬂh . proc;Ps;i?g in the
Zero suppression 2 > arm
in FPGA 20688 7
Fibers

~190 GB/s
CTF: Compressed time frames

120 PB

disk storage, 360GB/s
(~25% redundancy)

~3.5TB/s |

Calibration data

——

INFINIBAND NETWORK

CiP

Central Trigger Processor
Distribution of timing info, heartbeat trigger

READOUT
NODE

READOUT

READOUT
NODE 2 8

NODE



From RAW data to physics results

Data
preparation

Detector characteristics N A .
a2 U Analysis
Weight: 14’500t
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Data preparation

* Interpretation of RAW detector sighals into physics objects

e Calibration
 Convertraw data to physical quantities

* Alighment
* Find out precise detector positions

* Event reconstruction
* Reconstruct particle tracks and vertices (interaction points)
* |dentify particle types and decays
* Impose physics constraints (energy and momentum conservation)

* Used to happen offline; trend to move online parts or even the entire
chain

30



Calibration

 Raw data are mostly ADC or TDC
counts

* They have to be converted to
physical quantities such as energy
or position

* Very detector-dependent
* Every detector needs calibration

* Calibration constants need to be
updated and stored in a database

CMS Preliminary i
T T T T /Al

(CMS ECAL)

T T T T 3 T
Inf<14 e 18<|n|<21 e 24<|n| <27
° 15<n[<18 ® 21<nj<24 ® 27<|n| e
wn 1 = 3 o=, T
R TR T s el e i SIS B
@t—:m 08 \'\ Wiy - \\/ '\‘\%’ A».\M/ \ \'(f"‘ W
- va ; \a q A P 1
v g 06 \\ \ ¢ \V"'\’/ \MV 1 M f\\ \W \
% ] L \ .| \"V 1 9 1 &
E -4 " NH & % \W E
0.2 \‘\\,— g E
e N o O
O I
25 3.0 F Runi Run2 Run3
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i 'y
i .
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S P P <,,\\5°\ o)\'\’ \'\rc,\\\\/ o,\"/ \,19,& \"9‘
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Q N librati ‘@ r
E sl S10000f
@ | Tl 8000
60| B
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40; 4000}~
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ok ok
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Alignment

* Tracking detectors are very precise instruments
* Silicon strip detector: ~ 50 ym
* Pixel detector: ~10 pm
* Drift tube: ~100 pm

* Positions of detector elements need to be
known to a similar or better precision

* Alignment with charged tracks from collisions,
beam halo and cosmic rays
 Continuous process

* Alignment constants need to be updated and stored
in a database

160
o LHCb Preliminary
- ¥ Aoy 1) = 92 MeV

W~ % N S
L s adasss sy sl | WG T & T e

0 W;l EROO 9000 ')3([04‘;4(!0 G600 ‘)Sllljlill(l) 10200 10400 10600 {ll\!;'i
o)) [MeVie®)

220 =

200 E—

180 LHCb Preliminary

160 ¥ O = 49 MeV

- ¥ Y(1S)

|u.i

120—

I

: $ % > .
. | PRI T W INPER. TS D ) D, O B )0 . N

8600 SS00 9000 9200 9300 9600 9800 10000 10200 10400 10600 10800
o) [IMeViet)
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m im

Reconstruction o

Electron

Charged Hadron (e.g. Pion)

-~ = = « Neutral Hadron (e.g. Neutron)
- Photon

Find out which particles
have been created where
and with which momentum

Reconstruct charged particles

Hadronic

Reconstruct neutral particles N

dentify type of particles
Reconstruct vertices (interaction points)

Reconstruct kinematics of the interaction
Not trivial, very time-consuming ...

Muon
detectors

There are many many types of
sensors, and other types of
detectors (e.g. the Time
Projection Chamber in ALICE)

Very active field, with uses
outside of High Energy Physics

33




Reconstruction of charged particles

* Measure position in detector
layers (“hits”)

* Curved trajectory due to the
magnetic field

* Use position measurements
to determine track
parameters (location,
direction, momentum) and
their uncertainties

34



Reconstruction of charged particles

* Measure position in detector
layers (“hits”)

* Curved trajectory due to the
magnetic field

* Use position measurements
to determine track
parameters (location,
direction, momentum) and
their uncertainties

LHC tracking... |

35



Reconstruction of charged particles

Difficult task!

Assignment of hits to particles is unknown

Huge background from low-momentum
tracks

Material interactions: Multiple Coulomb
scattering, Energy loss (ionization,
bremsstrahlung

Mathematically complex (Kalman Filter,
matrix algebra, propagation in a not uniform
maghnetic fleld)

ngle comblnatorlal given a set of N signals,
it scales as N™, with M>1 and algorithm-
depending

< walltime/event > [s]

Reconstruction in rel. 21.0.37:

- high-mu run 335302 (2 051 jobs)

produced only single (AOD) output

q:

0 20 30 40 50 60 70 80 90 100
<u>

LB BNLINL L B S B LN B B P o ™ T ™7 T

36
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Problem decomposition

* Pattern Recognition or Track Finding

* Assign detector hits to track candidates (collection of hits all believed to
be created by the same particle)

e Parameter estimation or Track Fit

* Determine track parameters + their estimated uncertainties (covariance
matrix)

* Test of the track hypothesis
* |sthe track candidate the trace of a real particle?

37



Track finding

* Very detector-dependent
* Many solutions available, no general recipe

* Global methods: include all measurements (clusters) in a
formulation of the problem where solutions match to tracks

e L ocal methods: iterative methods where a seed is found first and
IS there forwarded to other sensors

38



A local method: Search by triplet in the LHCb Velo

s Clusters from different sensors are
e ||||||||Mﬂ,l/|/|/l'l’!'!;m{%m grouped in tracks that crossed the
|1 detector

wing

We can make hypotheses to simplify the
problem: our tracks come from the
beam interaction point, this means that
they stay at constant phi angle

The tracks are straightin the LHCb Velo
as there is no magnetic field there

Back view of the Velo https://arxiv.org/pdf/2207

(The beam travels on the Z axis) 39


https://arxiv.org/pdf/2207.03936

A local method: Search by triplet in the LHCb Velo
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Figure 5: Iterative seeding and following stages, where modules are considered from right
to left. ’@[ Seeding stage. For hit ¢p, four hits coq, cgp, coc and cgg are considered on the
neighbouring module on the right. Each of the resulting doublets is extrapolated onto the
neighbouring module on the left, where hits in the ¢ window are considered. The ¢ search
wraps around. Following stage. Forming tracks are extrapolated and hits are sought in a
© window. andSubsequent seeding and following stages. Hits found in previous follow
stages are marked as flagged and not further considered.
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Finding the primary collisions: Vertexing

1

Record z of closest approach to beamline for each track ~ IR
Peaks in distribution identify PVs ~ AAARANN
beamline
L
€ - . 2 T T,
"E’ 4,55— ? l_ . R Sin ak —ore
e 45_ LHCb simulation, GPU R&D 5 K T ]
g E g 081 - LHCh simulati =
.E 3'5»‘-_ > : ‘ !sA on ]
v E / B e GPU R&D g
3;_ dP\(/j t 0.6 —T
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) e e ]
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Dt e : '“’8“\‘ ' ‘1&‘ e % 20 44
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Combinatorial Kalman filter

1 2 3 4 5 |0

e e e ”SQ«%, '+ fg\; Aae
e A“seed”(initial measurement and RSN +

covariance) defines the initial state and its . +++@'
covariance o e
e A propagation operator defines the predicted : /v§¢+/
state on the following layer ‘H’ §_,§ +i (S
o  Noise (e.g. multiple scattering) taken into

accou nt Prediction Measurement Filtered
e State is updated with measurement
information, and propagated to the next ; 2 et | :

(“ Sm

\ 11 2 k@
\ uses 2:xs S gpd?
\ pally "¢ poil
ayer . gL ”
\ l o S o

=
¥

e ...andsoon, until the last layer ], et

e Back propagation “smooths” the track ,ﬁg//%‘/
parameters by globally using all *%% o
measurement points A}r%

e Wrong combinations of hit associations P

(fake tracks) are reduced by starting from a
very pure track seeds (e.g. pixel triplets)

Prediction Measurement Smoothing

(Richard Cavanaugh)



A global method: the Hough transform .

VELO

Real space point-to-line Transformed 1.
(framelet) L e space
B L ]
Y A b &
¥ z Forwarding tracks in LHCb
point-to-line %
-i ]
K projections
: :q’w:i o ".: - r"—.'L
single real point = family of straight lines - line of (a, b) parameters
single (a, b) point = line on the real space (track!)
track

referance plane #hils

Map each point to a line in the space of parameters (a and b are the parameters defining the line), and
look for accumulation points in the transformed space.
Can be Computationally expensive, but can be optimized and is useful in e.g. LHCDb to forward Velo

tracks downstream.
43



Neutral particles

* An incident neutral particle produces a
shower in the calorimeter

* cluster of cells with energy deposit above
threshold

* overlapping clusters must be separated
* The cell-to-cluster associationis a
pattern recognition problem

* Various clustering techniques are used '< .
to find showers i | ) The dashed iracks

are invisible to
* The algorithms depend on various
characteristics of the calorimeter

* Type (electromagnetic or hadronic)
* Technology (homogeneous or sampling)
* Cell geometry, granularity ”°"‘i“9{ 5

the detector

Basic reconstruction =
-\
L+
od
Oc

27
xed/SCT detector %
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Particle ldentification

* Dedicated detectors
 Calorimeters
e Cherenkov-based
* Transition radiation
* Time-of-flight
* lonization

* Information combined from
several detectors
* Using log-likelihoods, machine
learning, etc.

 Performance is monitored on
data control samples

Efficiency

0.4 1

0.2 4

0.0

K= K
| P .
:ﬁ:—l—i'ﬁ'-a-_a__e_
| - -E-‘E"-rj-
LHCb Preliminary 2024 -
_,-,_
{ 44 ALLK=m) =0 .-
44 ALLIK=m =5 -
+
_,-_
=
m—= K ==
o _E_—&'E'-E:E-

20 40 éﬂ Eb
Momentum [GeV/c]

100
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Data quality

* Only reliable, high-quality data
are used

* The amount of useful data is
maximised in data quality
checks at several stages e.g.

* In real-time during data-taking monitoring

» after a quick -
calibration/alignment on a

fraction of data

* With the best " shifter
calibration/alignment on all data S T v

Oracle
streams

(online)

2" update

(ole)

Physics streams

Calibration streams

! Express streams \
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From RAW data to physics results

Data
preparation

Detector characteristics N A .
a2 U Analysis
Weight: 14’500t
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Physics analysis

* Extract physics signals from background

* Measurement or discovery limits of
masses, cross-section, branching
fractions, and other physics observables

* Further selection of events, with a
statistical interpretation

* high dimension likelihoods on million/
billions of events, use of sophisticated
multi-variate techniques

T e T S T e

0, 6, G, 0, O [/ 0,
Figure 9: Contours of constant probability density for the true probability density function and
the Gaussian approximation for the nuisance parameters in the toy search where an asymmet-
ric background systematic is included. The red dotted horizontal and vertical lines indicate
the regions for which [6;| < /Vj;, where 6; is the nuisance parameter along the vertical and
horizontal axes, respectively.
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Simulation

* The core of our studies is comparing hypotheses
with the collected data

* For simple systems, we can analytically compute
’éhe expected result (given a hypothesis) with the
ata

* For more complex systems, in which many stages
and processes are taking part to the outcome,
this is simply not possible

* Generate artificial events resembling real data as
closely as possible

* Needed for background studies, corrections, error
estimation

* Crucialto guide the design of new detectors / facilities
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Theoretical model Trigger

Simulation of decays of Simulation of detector
unstable particles electronics

Simulation of interactions
particle-detector

Data
preparation

Analysis
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Simulation steps

Event generation

* Generate particles according to physics of the
collision

* General-purpose and specialized generators

Detector simulation

* Track particles through the detector, using detector
geometry and magnetic field

e Simulate interaction of particles with matter

* Generate signalsin sensitive volumes
Digitization

* Simulate digitization process (ADC or TDC)

e Simulate trigger response

Reconstruction

* Treat simulated events exactly as real events

* Keep (some) truth information: association of hits to
tracks,association of tracks to vertices, true track
parameters, true vertex parameters, ...

e Store everything

Event Generation
simulate the physics process.

Detector Simulation
simulate the interaction of the

particles with the detector material.

Digitization
Translate interactions with detector

into realistic signals.

Reconstruction
Go from signals back to particles,
as for real data.
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uuuuuuuuu

GEANT4

A SIMULATION TOOLKIT

Detector simulation —
* GEANTA4: the widely used standard
* Object oriented, C++

* Extremely general and versatile i

* Implements detailed models of artlcle
interactions with matter in a wide energy
range

* Needs detailed description of the
apparatus (sensitive and insensitive
parts)

* Geometry
* Partition the detector into a hierarchy of volumes

* Describe their shape and their position relative to
a mother volume

* Use possible symmetries
* Material
* Chemical composition, density

. Ithystlcalpropertles radiation length, interaction
ength
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Simulation for detector understanding

Vertex X [mm]

ATLAS Preliminary

* Use software simulations to : N
model the detector as
accurately and precisely as
possible based on our best -
understanding of the physics
involved

Vertex X [mm]

* Test accuracy of simulations : P ——=

LISIﬂg real data LEI 10~ ; li] E;tt:i::;?mulation (Updated Geometry) Al Prellm;njry §
. . . = = [ ] Pythiag Simulation (Default Geometry) pagiey o

* Correct simulations if necessary £, .f.. = /<24 3

* Once simulation gives an SRR T e E
accurate detector model, itcan £ - i 3
be used to correctthedatafor > =): [If L[i{ “anf TR
detector response . Rk ML N

10°° AMMMMTTHb. W =
30 40 50 60 70 80 90107 2x10? 3x10?

Hadronic Interaction Radius [mm]



Where do we spend CPU work?

Different experiments have different
shares in the CPU utilization, but in
general simulation (from partons to
electronic signals) and reconstruction
(from electronic signals to “physics
objects” like jets, leptons, ....) are the
most time consuming

As a rule of thumb, # of simulated
events > # of collected events

CMSPublic

Total CPU HL-LHC fractions
2020 estimates

RECO: 60%
DIGI: 5%

Analysis: 3%

reMINIAOD: 5%
RECOSim: 22%
ATLAS Preliminary

2020 Computing Model -CPU: 2030: Baseline

I Data Proc
o, [ MC-Full(Sim)
MC-Full(Rec)
[ MC-Fast(Sim)
B MC-Fast(Rec)
Il EvGen
Heavy lons
Il Data Deriv
I MC Deriv
Analysis




Towards absolute numbers

Event Generation: depends strongly on the generator
choses (Madgraph vs Sherpa vs PowHeg vs ...) and the
precision requested (LOvs LNOvs NLO vs ...)
Simulation: by now, the vast majority (all?) the
experiments use Geant4 as the simulation toolkit;
still, its requested resources depend on stuff like:
volume of the detector, number of volumes, intrinsic
detector resolution, importance of low energy
secondary interactions, capability to use
parametrization

Reconstruction: The most time consuming task is
charged particle tracking using very high resolution
detectors (e.g. thin silicon layers). Itis a good example
since itis mathematically complex and Highly
combinatorial

------
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But before giving absolute numbers ..
unit of measurement for CPU!

e The“number of CPU seconds” atask needs is not a proper unit of
measurement for CPU, even more if we want to compare results from CPU
generations distant in time

e Evenindustry standard benchmarks (Spectint, SpecFP, ...) are not suitable,
since they probe CPU aspects not necessarily interesting to us

e HEP (via HepiX) created a synthetic benchmark based on a subset of SPEC®
CPU2006, which was inuse in 2009-2023: HepSpec06 (HS06)

e anew, improved synthetic benchmark based on a weighted average of
workflow from HEP experiments was deployed in 2024 and used since then

o Rule of thumb: a CPU “core” today is ~10-20 HS23
- Hence, a128 core CPUis~ 2000 HS06
- Hence, a2 CPU boxis today ~4000 HS06
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Absolute numbers

o Joday, with standard Run-2 LHC, typical numbers are
o Eventgeneration: 100-1000 HS23.s (which means ~ 10-100 sev/evon a

single CPU core)
o Simulation (G4): 500-3000 HS23.s

o Reconstruction: 150-300 HS23.s
o Analysis: can be anything, usually quite fast (<1-100 HS23.s)

o With these numbers, we can try and project the Computing (CPU and
storage) needs for a HEP experiment today, assuming that LHC
collides beams ~ 7/Ms/y and 4 experiments
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Estimate for a single data taking year

Storage
Data:
7 PB RAW (x2 for a backup copy)
3.5 PB reconstructed data
MonteCarlo
14 PB RAW

7 PB reconstructed simulation

TOTAL ~30 PB/year

CPU

Data:
7e9 ev*300 sec™HS23/ev = 2e12
sec*HS23 = 70000 HS23*year (= 7000
CPU cores)

MC
70000 HS23 reconstruction
7€9 ev*2500sec*HS23/ev = 1.7e13 = 500000
HS23*year simulation

Analysis (MC + DT):
7€9ev*2*10 sec*HS23/sec *N = 1.4e11
sec*HS23 *N =4500*N HS23
Where N is the number of independent
analyses, can be very high (~100)

TOTAL ~1.1M HS23

...corresponding to 3000 HDD/y 100000 computing cores per experiment!




CPU [kHS23] _ Disk [PB] _ Tape [PB]

lit Tier0 2690 201 825

Inrea y Tier1 3648 414 1072
i 4421 431

| Total

10759

1045

1897

o The estimate in the last page does not account for the fact
that multiple years are used at the same time, mistakes are
done, special data taking periods also take resources. And,

on top of that, there are always (at least) 3 activities going on
o Analyzing data from previous + current year

o laking datain the current year
o Preparing future data taking periods and
detector upgrades

e S0, allin all, real resource number per experiment are

underestimated by at least a factor 3x



How to handle this?

o Bytoday’s metric, handling some 1 Million CPU cores and 2-3
Exabytes of data does not seem an impossible task

e But, LHC was approved in the mid 90s, when 1 single HDD
was 10 GB, and a CPU was probably 0.1 HS06

e You can understand what leap of faith in technology is
needed to think that in 10 years (the expected start of LHC
was < 2005) you will be able to handle resources which, in
1995, were of the same size of the entire world IT resource
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How to design a computing model for HEP in ~ 19957

e Build aBIG data center

0 A large building with ~1000000 computing cores, and 200000 HDD;
Probably it would work; Google apparently has facilities much larger than
that; NSA for sure...

o But: It would be a single point of failure; problem finding enough personnel
in a single area, member states not willing to fund resources abroad, ...

« Use many smalldata centers

o De-localized cost / expertise / redundancy; member states happy since
they can build a local infrastructure, ...

61



Introducing the GRID

« ldeawas not newin Computer
Science; HEP had “simply” to make it
real at a large scale

aP“‘ca\

geﬁ‘/

‘When the’network is as fast as the computer's

internal links, the machine disintegrates across
the net into a set of special purpose appliances”

(George Gilder)
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The idea in a nutshell

Split the problem into two levels:

e The physical level:

o Distribute resources worldwide in N (>100) centers
o Technically a nightmare: distributed Authentication, Authorization,
network paths, multiple access protocols to CPUs/Storage, ...

e The logical level:
o Try and provide the users (the physicists!) with a logical single view, where
”many CPUs” and “a lot of storage” is available in a “flat view”
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Build a wall
(call it API
layer,
intelligent
system, ...)

mAP»PSMroo—-= O—-—3230

Visualising
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The implementation

Leaving aside the historical development, we have now

A global entity for LHC computing (and more, see later), the
Worldwide LHC Computing GRID (WLCG) — sometimes
called the “5™ big LHC Collaboration”
A set of low-level tools allowing the collaboration to work:
o Atrust model for mutual Authentication and
Authorization
o A setof recognized protocols for data access, data
movement, metadata organization, support,
accounting
O(200) centers in the collaboration
o  With “guaranteed” service levels and some
obligations...

ODIRAC

THE INTERWARE

WLCGG

Worldwide LHC Computing Grid

Accounting Portal

§ MAMAGEM

GGUS




1016 TO Tape reading (PB/month) —
1.6 1 E LHCbh

Bl ATLAS
ALICE

Data management

* Dealing with exabytes of data and a
complex distributed computing
infrastructure. Data are stored

* ondisk forimmediate access
* ontape for archive
* accesstakeslongerbutitis much
cheaper, so we can store much more data

* Data management systems catalog
data and track the location of data
(site A, B, C...)

* Rucio and DIRAC are prominent
examples of data management systems

« Data management systems can also =

AAAAA

initiate transfers between sites =

N DIRAC o

THE INTERWARE Q’

‘RUCIO i

AAAAA

Data (PB/month)

Data (GB/s)
=
3




e [HCB == ATLAS
= CMS ALICE

Workflow management

* Multi-dimensional optimization
problem : orchestrating work
accessing data and producing
derived data

* Submission infrastructure software
(like HTCondor) and workflow et miaa
management software (Like Panda,
Dirac, WMAgent) automate i

* Job creation iZZZZZE

O 1250000

CPU Delivered: HEPScore23 hours per month

lel0

res

* Job execution S
© 1000000

* Job monitoring and failure recovery g roues M
3 500000

‘ 250000
0
[N e
DIRAC N ‘
> <
THE INTERWARE S

PonDA



Authentication & Authorisation

o« Mutualtrustand AAl is the mostimportant building block:

o As a LHC scientist, you can literally access resources in every corner of
Earth

o Itisthe cornerstone on which the various access protocols will be based

upon. We started with X509 certificates, we are transitioning to Indigo-IAM
tokens

o Ifyou have a distributed infrastructure which you want to use as a big
single entity, the technical building block you need is “tons of
network” (aka have a WAN as fast as LAN)
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The network

e Theideal“asiflocal”is possible when all the nodes see all the data at “as
local” speed; which in LHC metrics mean ~ each core should be able to
access every piece of data at O(5 MB/s)

e In 1995 this was a dream: network lines are expensive and rare (no Netflix
yetl); we cannot assume to prepare the full mesh of networking for O(100)
centers —which would mean n(n-1)/2 connections = O (10%)

e MONARC project studied and proposed a hierarchy of computing centers:

the “Tiered data model”; fewer paths are needed, and theirimportance is
different

@
o
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CERN
Master copy of RAW data
Fast calibrations

Prompt Reconstruction

A second copy of RAW data (Backup)
Re-reconstructions with better calibrations

Analysis Activity

They are dimensioned to help ~ 50 physicists in their
analysis activities

Anything smaller, from University clusters to your laptop




LHCOPN
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A Network Centric View of the LHC detector

Ih
T o
Level 1 and 2 triggers
F 350| 565 )
e O(10-100) meters |, G-
ltaly 570 920 - Level 3 trigger
UK 625| 1000 o()km
Netherlands 625| 1000 CERN CDmEUter Center
Germany 700| 1185 500-10,000 km | 50 Gb/s (25Gb/s ATLAS, 25Gb/s CMS)
i —— Universities
Spain 850| 1400 (T LHC Tier 1 ... and from
i sics groups Data Centers .
L [l PN Tier-1s to the
USA — New York | 3900 6300 physics e ——
USA - Chicago | 4400| 7100 R " physics other data
Oniversities # 1 roups
Canada—BC | 5200/ 8400 . — centers ...
Taiwan 6100| 9850 = : O
M 3 physics
The LHC Open physics  J§ / =
Metwork groups ' > dniversities
Environment A X ' physics
(LHCONE) b W H oga 4
"hysics — | - .

This ~\{/-is intended to = W B-0% B
indicate that the physics
groups now get their data
wherever it is most readily

available

niversities,
physics
groups

The LHC Optical
Private Network
(LHCOPN)

Universities
physics
groups

Universities

physics
groups
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LHCONE L3VPN: A global infrastructure for High Ener

Physics data analysis (LHC, Belle Il, Pierre Auger Observatory, NOvA, XENON)
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Tiered model: the distributed system must be smarter!

o« Optimize transfers, avoid too many “jumps”

o Moving data is expensive / time consuming > move the jobs
to data, and not vice versa

e ...which means at some point you need to have the “most

important data” in the “best places” 2 need for smart data
placement, data lifecycle, multiple copies, caches, ...
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Software

HEP collaborations have quite unique needs for software:

o Itisinevitablylarge - see later

e Itmustberunnable on every country participating the effort, and
more = no copyrights, no embargoed code

o It must cover alarge range of use cases =2 simulation,
reconstruction, selection, analysis, ...

e Itis alongjourney; experiments last O(10-30y), difficult to rewrite
from scratch when taking data
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Software stack H S F

Main languages used:

e C++forthe physics data processing framework and some analysis software
e Python for the analysis and scripting/configuration

But other languages too: C/C++ used for interfacing with electronics, VHDL for
FPGA, Julia, etc...

More than 5 million lines of code per experiment, development started in the
early 2000s. Covers the code to integrate with the DAQ, data analysis, event
reconstruction,....

Using frameworks to process the events (Athena/Gaudi, CMSSW, ROOT)

Using many external tools and libraries when needed: e.g. BOOST for C++, BLAS,
Eigen for linear algebra, Tensorflow, Catboost for ML...

@ python
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How big?

e SLOC are astandard industry metric, and there are tools to translate them
into «man years» and in the end to $$ (assuming a US typical programmer)
e Theresultis enormous, but reflects the fact that both software stacks are

15 years old or more
e Itdoes NOT include externals, like Geant4, geometry engines, particle

generators, ROOT, etc

Table 6. SLOCCount measured lines of source code for ATLAS and CMS.

Experiment Source Lines of code Development effort Total estimated cost to
Type (SLOC) (person-years) develop
ATLAS 5.5M 1630 220 M$
CMS 4.8M 1490 200 M$

e As areference:
o Linux Kernelis: 15M sloc, 4800 FTEy, 650M$ (3x CMS)
o Geantdis: 1.2M sloc, 330 FTEy, 45 M$ (1/4x CMS)
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https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

.. But this is only the "core code”

« We rely on many externals (Geant4 is an external, ROOT is an
external, Pythia is an external) which inflate greatly the total size

o This (inunreadable fonts) is the list of externals for a typical CMS
release

alpgen qd root_cxxdefaults sockets catch2 gec-ccompiler gec-cxxcompiler gec-f77compiler mpfr cmsswdata codechecker csctrackfinderemulati cuda-stubs cuda-gcc-support cvs2git dablooms db6 dmtcp doxygen eigen fastjet-contrib fastjet-contrib-archi gcc-analyzer-ccompile gcc-analyzer-
cxxcompi gec-atomic gecec-checker-plugin gec-plugin gdb geantd-parfullcms geant4data py2-numpy openloops gitglibc glimpse gmake gnuplot gosam gosamcontrib hdf5igprof intel-license ittnotify lapack lcov libffi libxslt lvm md5 openblas ofast-flag openmpi professor py2-sympy py2-absl-py py2-
appdirs py2-argparse py2-asnicrypto py2-atomicwrites py2-attrs py2-autopep8 py2-avro py2-awkward py2-backcall py2-backports py2-backports-functooccj py2-backports_abc py2-beautifulsoup4 py2-bleach py2-bokeh py2-bottleneck py2-cachetools py2-certifi py2-cffi py2-chardet py2-click py2-
climate py2-colorama py2-contextlib2 py2-cryptography py2-cx-oracle py2-cycler py2-cython py2-dablooms py2-decorator py2-defusedxml py2-docopt py2-downhill py2-dxr py2-entrypoints py2-enum34 py2-flake8 py2-flawfinder py2-fs py2-funcsigs py2-functools32 py2-future py2-futures py2-gast
py2-gitdb2 py2-gitpython py2-google-common py2-googlepackages py2-grpcio py2-h5py py2-h5py-cache py2-hep_ml py2-histbook py2-histogrammar py2-html5lib py2-hyperas py2-hyperopt py2-idna py2-ipaddress py2-ipykernel py2-ipython py2-ipython_genutils py2-ipywidgets py2-jedi py2-jinja2 py2-
jsonpickle py2-jsonschema py2-jupyter py2-jupyter_client py2-jupyter_console py2-jupyter_core py2-keras py2-keras-application py2-keras-preprocessi py2-kiwisolver py2-lint py2-lizard py2-lIlvmlite py2-xml py2-1z4 py2-markdown py2-markupsafe py2-matplotlib py2-mccabe py2-mistune py2-mock
py2-more-itertools py2-mpld3 py2-mpmath py2-nbconvert py2-nbdime py2-nbformat py2-networkx py2-neurolab py2-nose py2-nose-parameterize py2-notebook py2-numba py2-numexpr py2-oamap py2-onnx py2-ordereddict py2-packaging py2-pandas py2-pandocfilters py2-parsimonious py2-parso
py2-pathlib2 py2-pbr py2-pexpect py2-pickleshare py2-pillow py2-pip py2-pkgconfig py2-plac py2-pluggy py2-ply py2-prettytable py2-prometheus_client py2-prompt_toolkit py2-protobuf py2-prwlock py2-psutil py2-ptyprocess py2-py py2-pyasni py2-pyasni-modules py2-pybind11 py2-pybrain py2-
pycodestyle py2-pycparser py2-pycurl py2-pydot py2-pyflakes py2-pygithub py2-pygments py2-pymongo py2-pyopenssl py2-pyparsing py2-pysglite py2-pytest py2-python-cjson py2-python-dateutil py2-python-ldap py2-pytz py2-pyyaml py2-pyzmq py2-gtconsole py2-rep py2-repoze-lru py2-requests
py2-root_numpy py2-root_pandas py2-rootpy py2-scandir py2-schema py2-scikit-learn py2-scipy py2-seaborn py2-send2trash py2-setuptools py2-simplegeneric py2-singledispatch py2-six py2-smmap2 py2-soupsieve py2-sqlalchemypy2-stevedore py2-subprocess32 py2-tables py2-tensorflow py2-
terminado py2-testpath py2-theanets py2-theano py2-thriftpy py2-tornado py2-tqdm py2-traitlets py2-typing py2-typing_extensions py2-uncertainties py2-uprootpy2-uproot-methods py2-urllib3 py2-virtualenv py2-virtualenv-clone py2-wcwidth py2-webencodings py2-werkzeug py2-wheel py2-
widgetsnbextensio py2-xgboost py2-xrootdpyfs pydata pyminuit2 pyqt python-paths python_tools rootglew scons sloccount tcmalloc tcmalloc_minimal tensopy2-virtualenvwrapperrflow tinyxm(2 xtl blackhat boost boost_header python bz2lib cascade_headers ccache-ccompiler ccache-cxxcompiler
ccache-f77compiler zlib gmp photos_headers pythia6_headers openssl clhep clhepheader cppunit cuda curllibxml2 dcap root_interface xz xerces-c vecgeom_interface hepmc_headers distcc-ccompiler distcc-cxxcompiler distcc-f77compiler dpm expat fastjet fftjet fftw3 freetype gbl gdbm gsl giflib
google-benchmark libjpeg-turbo hector heppdt madgraph5amcatnlo llvm-cxxcompiler jemalloc jimmy_headers ktjet libhepmllibuuid Llivm-ccompiler lvm-f77compiler meschach mxnet-predict numpy-c-api x11 oracle pacparser yoda protobuf python3 qd_f_main sqlite sigcpp tauola_headers tbb
tensorflow-framework tensorflow-runtime tensorflow-xla_compil0-pafccj3 toprex_headers utm valgrind vdt_headers xrootd xtensor boost_system boost_iostreams boost_serialization boost_program_options boost_python boost_regex boost_signals boost_test cascade yaml-cpp photos pythia6 pcre
cub cuda-api-wrappers cuda-cublas cuda-cufft cuda-curand cuda-cusolver cuda-cusparse cuda-npp cuda-nvgraph cuda-nvjpeg cuda-nvmlcuda-nvrtc das_client vecgeom hepmc frontier_client google-benchmark-main libpng iwyu-cxxcompiler li bti ff li bungif Uvm-analyzer-ccompil lvm-analyzer-
cxxcomp mcdb openglopenldap oracleocci pyclang gtbase sip starlighttauola tensorflow-c tensorflow-cc tkonlinesw toprex vdt boost_chrono boost_filesystem boost_mpi cgal lhapdf classlib davix rootcling geant4core photospp geantdstatic graphviz lwtnn millepede qt3supportrivet tkonlineswdb
cgalimageio herwig rootmathcore rootrio pythia8 geantdvis thepeg pyquen gt rootrint rootrflx rootsmatrix rootx11 sherpa charybdis rootthread dire tauolapp geant4 geneva herwigpp jimmy qtdesigner rootgeom rootxmlio vincia rootcore evtgen roothi stmatrix rootmath rootxml rootphysics rootgpad
rootfoam rootspectrum root rootminuit rootgraphics rootgui rootinteractive roothtml rootminuit2 dd4hep-core roofitcore mctester professor2 rooteg rootgeompainter rootrgl rootged rootguihtml rootmlp rootpy dd4hep dd4hep-geantd roofitrooteve roottmva roostats rootpymva histfactory coral

e Notethatgcc isthere! CMS ships its own compiler, so dependency on the host Linuxis
only at the level of glibc
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The HEP framework(s)

e Such a complexity of use cases and code, with multiple alternatives in each of
them, needs a coherent Framework, which is at the core of the HEP software,
and is the piece which basically stays stable-with-adiabatic-changes within the
experiment lifetime. Changing a FW is not easy; itis not done during data taking.

e Typical needs from aframework
o Modularity: large utilization of plugins, algorithms, external libraries
o Scheduling: must be efficiently able to schedule the execution of code (taking into
account dependencies) on the available resources
o Portability: not attached to a single compiler/ OS / architecture
o Evolution: the computing scenario is not static. From 2008 to now for many things
happened; still most of the FW interface has been stable:

From GRID to Clouds to Virtualization to HPC to heterogeneous From single process to multi process to multi threaded

computing (GPU, FPGA, QC even...) From single core PCs to O(300) cores per PC

From data locality to streaming storage federations From configs to Python as the uber language

From SL4/gcc4 to CC7/gcc8 From fully scheduled execution to unscheduled (needed for multi threading)

From 32 to 64 bit Analysis support from ROOT(cint)-ROOT(cling)-PyROOT-UpROOT 80



Software Engineering

Requirements on software are strict:

e Reproducibility of the results (we need to re-run old versions of the

software) . .
e Tracking the provenance of the datais crucial!

The software engineering process is critical to keep the software running,
when ~100s of developers potentially modify the code

e Adequate unit and integration tests are necessary
e Use of version control software (Git)
e Continuous integration (Gitlab ClI, Jenkins...)

€ Jenkins O

‘ GitHub

& GitLab

\ I
a
]
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© @ g summaries of nightly builds for - X | =+

& O o [ £ https://lhcb-nightlies.cern.ch/nightly/summary/

Q Allslots

LHCb Nightly Builds

Nightly builds Release builds Periodic tests Nightly dashboard CVMFS installation status Testing builds External links ~

Show filters

Latest Friday Thursday Wednesday Tuesday Monday Sunday Saturday

Builds 2019-10-25  2019-10-24  2019-10-23  2019-10-22  2019-10-21  2019-10-20  2019-10-1g oot adate

as

Test siot with patches for 2016 production stack
avalable on: evmfs

x86_64-slc6-gcca9-opt O x86_64-slc6-gccd9-dbg O
Project §} Version Completed at 02:24:56 Completed at 03:22:25

e
2016 patches  hwe e T ewae s
Locom 2ot pates I ™S ™ R ™
2016 patches  ewe e [ ewe [ e
2ot patces I ™ I R S
2016 atches I e ™ e I
2016 patches ok 45 s
T S -

Bender 2016-patches

Jenkins

& GitLab

GitHub



The future ....

“it all works”, so why change?

« We have the proof that the computing systems for today’s collider
experiment do work. The LHC collaborations have published
thousands of papers each

« Computingis a large operational cost; but is ~ constant year over
year and somehow possible to cover ....

e Arewe done? No we are not...
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The expected future within ~a decade

* CMS and ATLAS undergoing

the largest upgrades with el oz Lon loza Loow L ogee Lo J oz [z ]
Rund4: 3000/fb total lumi o e ot S AT
. Computing planning and (I [AHCEZ LHCb Upgrads) RN ARRARNARARNAE
modelling well advanced T . S A
e ALICE and LHCb have ATLAS|and GM$ Phasell
successfully upgraded for : !
Run3 - gea ring up to have 2039 2040 2041 . e s;ﬂaé leones *
upgrades approved for Run5 (- AASERdENSHissei T T T
« Computing under (early) SEHED Dpgtade 2 z L >
studies

* Future projects (FCC, ILC,

etc) not considered | 7.5e34; trigger rates in the O(10) kHz ballpark
* Expect further stepsin LHCb: from 2e33 up to 1.5e34
resource requirements ALICE: 3x Pb-Pb rates, 90x pp

ATLAS and CMS: nominal inst lumi from 2e34 to up to




Projections for HL_LHC (ATLAS+CMS)

* In the end, main parameters are
* Trigger rate: from 1 to 7.5kHz

3500

* Mean number of collisions per T 3000 ",
bunch crossing (pileup) <PU>: 5 ° 2500 =
from 35 to 200 ‘2 ° | 5000 &
* More and more crowded events £ ¢ 1500 5
* increased bandwidth to storage (x42) g 3 1000 %
* Impacts storage (~linearly)and CPU = 2 >
(superlinearly) g 00 £

* Live time of the Accelerator 0 - 0

) 2010 2015 2020 2025 2030 2035 2040
* Monte Carlo production needs Year

* Expect naive scaling of x50-x100

Some true but amazing statements:

e “We collected 5% of LHC foreseen
integrated luminosity”

o “We are at 1/5th of the LHC
machine capabilities”
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Annual CPU Consumption [MHSO08years)

Total CPU[kHS06-years]
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In the meantime, technology

CHF/GB  price/performance evolution of installed disk server storage (CERN
CHF/HS06 Price/performance evolution of installed CPU servers (CERN) 0 0000 /p ge ( ) . Aug 2024
v15 Mar 2023 N
104, o reference is usable disk space, cost figures include mirrored space
1.25 €¢ M AN
— Panzer/Sciaba
CERN disk server
1.48
100.00 1.0000 IQ l Ot S
HDD -> SSD 120% RAM price increase
/ INTEL - AMD price war, low RAM prices COVlDlS side effects
20,00 AMD market push 0.1000 *
145 ﬂ 07 089 oo improvement factor/year
. improvement factor/year PN FEr
l 1.10 ole
/ 1.00 '5‘-31‘-:5""-“-.. e-.ﬁ .'Q"o ‘@
il / . @ re Front-end server price increase ‘.. ‘m.,

1.00 1.20 v g 0.0100 (memory + SSD) 120 |

COVID19 side effects T
2030 diff = factor 1.8 2032 diff = factor 1.8

0.10 0.0010
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
Last 5 year average improvement factor = 1.09
Average cost reduction for CPUs: Average cost reduction for disk:

last 5 years: 15% - last 3 years: 11% - last year: 13% last 5 years: 11% - last 3 years: 7% - last year: 3%

CPU Cost Reduction

(compared to previous year)
70% 120%
60%
50%
40%
30%
20%
10%

5
Q
2

80%
60%
40%

20%

(compared to previous year)

DISK Cost Reduction

—&—Average
—DBaseline

0%
-10%
-20%

0%

20%

Cost reduction from previous year
Cost reduction from previous year

Year of Deployment ( = Year of Procurement + 1)

Year of Deployment ( = Year of Procurement + 1)

1TB disk~5TB tape ~ 10
HS23[1/2 CPU core]

A “constant investment” on
computing buys X% more

resources every year.
X=10% - x2.5in 10 years
X=20% -> x6 in 10 years



https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf
https://indico.cern.ch/event/1484669/contributions/6479122/attachments/3062293/5415494/Technology%20Tracking%20WLCG%20-%20v1.0.pdf

Two questions ...

e Assuming we cannot get more money per year for computing,
where do we get the 12x-25x missing?

e Also, whatis the environmental impact of HEP computing? s
it sustainable?

e A non-exaustive list

o

o

o

Infrastructure changes (where/how to get CPU and Disk, at which
price)
Technological changes (use different technologies)

Physics #1: change analysis model (do the same physics with less
resources)

Physics #2: reduce the physics reach (for example
increasing trigger thresholds)
s Noteven considered here ... itis the “desperation move” if we
fail with everything else
Use “modern weapons” (new/faster algorithms/tools)
Something unexpected...
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Environmental Sustainability

* Data centers and computing
contribute 2-4% of global green house
gas emissions, only expected to grow.

* Great variation of electricity emissions
across countries and even regions.

* Can we be smarter about how we use
existing facilities?
* expose and use information on specific
carbon impact

* schedule workloads to run when
electricity is cheaper/cleaner

* Consider carbon impact as an
element of computing “performance”
in benchmarking

Carbon
intensity
20gC0O2/kWh

400gCO2/kWh

https://app.electricitymaps.com
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Datacenters

Climate-controlled building with enough
electrical and cooling power for all the
hardware

* Large rooms with racks
* CPU boxes, HDD/SDD storage boxes, networking
equipment, tape libraries, GPU boxes
Cooling: Forced Air or Water
* Newest developments: immersion cooling

Power Usage Efficiency (PuE)

* Wikipedia:” PUE is a ratio that describes how
efficiently a computer data center uses energy;
specifically, how much energy is used by the
computing equipment (in contrast to cooling and
other overhead that supports the equipment).”

Average PukE: 1.4-1.7 (between 40% and
70% is “wasted!”)

Large datacenters tend to have better PUkE

‘e I

—AP
IERE . S ;
m oy ] ’

8

LS A
| i
/// Aml CERREERN

(n=558)

(O. Gutsche)


https://en.wikipedia.org/wiki/Power_usage_eﬀectiveness
https://en.wikipedia.org/wiki/Power_usage_eﬀectiveness

Towards high-efficiency data centers

* Perlmutter Supercomputer @
NERSC (Berkeley Lab, US)

* Direct water cooling, PukE: 1.05-1.08

* Green IT Cube: supercomputing

center for GSl and FAIR
(Darmstadt, D)

* water cooling in doors of computer
cabinets, PukE: <1.07

° LH C b on l_| ne fa rm (C E R N) Outside lFansv ru_rm'ing 0-20% - 70% ihsatabinainion

g T insufficient not enough,
. H water is sprinkled on
* Free air cooling, PuE: <1.1 | [Setvatichangens
] when outside air
) T>~20°C

* Energy efficient data centers are
coming, but not everywhere and f
not fast enough!
Return Alr. e | | .
A e foop ene i e 93

> 50°C 27°C

Adiabatic




Efficient compute architectures

* GPUs are much more energy efficient

* Perlmutter @ NERSC: 5x on average, up
to 9.8x in weather forecast

* GPUs are much more compute-
efficient

* Upto 300 CPU cores replaced by a
single GPU in ALICE’s track

reconstruction

(Rome, 3.3GHz) replaced by GPU

Number of CPU cores

Energy Consumed per Job

mG
DeepCAM _ p—
e KE
IR
EXAALT I
00
gy per | W ner]
350
300
250 | R
N 4 T T4 + + B+ o+ + % +
ot # ot
L Q5 +
200 at ALICE Performance
Pb-Pb VSyy = 5.02 TeV
150 - @gno 00 bo 00D p0 0O O O om
pm g
Xx X
L@Qx& KO X
100 |-+ )
bd and A An A JAAYAY.N
v, LA & . W A AN
50 | i TR
NVIDIARTX 3090 + NVIDIAV100s [
NVIDIARTX 2080 Ti X NVIDIAAIOD ©
NVIDIARTX 1080 Ti AMD MISO £
1x10% 1.5x108 2x108 2.5x108
94

Number of TPC clusters

3x108



Efficient compute architectures

Energy Consumed per Job

DeepCAM

* GPUs are much more energy efficient

* Perlmutter @ NERSC: 5x on average, up
to 9.8x in weather forecast

* GPUs are much more compute-

efficient ”
* Upto 300 CPU cores replaced by a S ot e e
single GPU in ALICE’s track 10
reconstruction : = S
* Other architectures being considered e
* Mobile (low power) processors (ARM) ‘e
 Code-in-hardware (“FPGA”, “ASIC”, ...) =
O1 00 1.50 2.00 2.50 3.00

° ARM

WLCG Grid Deployment Board, D. Britton



Efficient compute architectures

Energy Consumed per Job

* Large HPCs are and will be installing GPUs
to boost their compute power and consume
less electricity
* Can we use them? oo .
* Not easily - limited to mission critical algorithms 0
* GPU programming is different: Need to use
special code constructs (Essentially, if-
statements have to be rethought) g wof
* We need frameworks to embrace Heterogeneous )
Computing L R R
* We need a way not to write the code once per i e v ey
platform %150- o oo Oo oo 00 g0 O O O om
* Portability libraries (Kokkos, Alpaka, OneAPl|,...) allow N e
to write algorithms once and then compile/execute 3R ae waba B8 8800 men "
on GPUs of different vendors andCPUs B sof dhonon o momx Xx
=ERD . 5x107 1x10° Numheri.fs:;(o:sdustm 2x108 28%08 3x10°



Infrastructure changes

««««««««

rrrrrr

e Today’'s HEP computing
o Owned centers, long lifetime (10+ y)
o Well balanced in storage vs CPU
o FAs pay for resources + infrastructure + personnel

TeRABIT & terabit

slcsc )

a0 Quantum Computing

planned

Is it the most economic/sustainable computing
available today?

cagliari

e YES, if you care about your data safety (and your
capability to access it)

e NO, if you can use stateless resources (CPUs!)
o They come and go fast
o You can hire them (from a commercial provider, ...)

(11
o You can use “someone else” resources CPU for free can be found,

Disk for free cannot!”



Real operation mode today

* Netflix, Spotify, ... 2 commercial
commodity networks available at a
lower price / larger bandwidth than
expected

* No need to have strict hierarchical
network paths, = full mesh: every
site can transfer from any other
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How to use the new network capabilities?

* Direct Remote data access (a.k.a Streaming!)

* You remember the problem with Data Driven: jobs go where data is

* |f a site has spare CPUs, but no data = not used
* |f a site has data, but no spare CPUs = jobs kept waiting

* If we remove the constraint of Data locality, match-making becomes
very easy + efficient
* Direct Remote Data Access: think of Youtube/Netflix!
* You do not download the file, you access it over the network
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The data lake model

World — sae= T S e g
e Keep the real value from the experiments Map_ = YA ESTE o S, | CPU
safe /I | center
o (RAW) data and a solid baseline of / .Nidﬂ : 0T
CPU in owned and stable sites b § mﬁ.‘% NERZ e il i
o  Allow for multiple CPU resources to | CPU |57 ol L
join, even temporarily center P S “~amazon
s Eventually choosing the e A p
cheapest at any moment s = — el
o  Solid networking: use caches / > N de2 5> 1 Th/s \ R L
streaming to access data Y = W g "
e Reduce requirements for Computing CPU
resources center
o Commercial Clouds
o Other sciences’ resources
m  SKA, CTA, Dune, Genomics, ... @ N
o HPC systems
10 ] - &;_ § .. Asingle
ME B/s (ike OMS); ﬁ_& AP R o RTIT ( Cta CTA projects
0EEP UNDERSROUND Rl Dune 80X ay 100GB.a 1M to 10 PB/y
NEUTRINO EXPERIMENT survey =100 10

PB



Commercial clouds

 Massive data centers with $B investment
provide access to vast amounts of
resources

* HEP resources are sizable but tiny
compared to industry

* Industry selling compute in small slices for §
profit NS

* Allows for both large scale (if you can pay
for it) and fine granularity

* Some hyperscalers (Googlez offer
subscription models that allow to boost
Into unused capacity

* In general, higher prices to buy elasticity
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Supercomputing (HPC) W Rteg g

Countries Performance Share

@ United
States

* High Performance Computing (HPC) is oo
designed for single large applications

@ Japan

using significant resources -

* Scientific use cases: climate models, lattice ® foun

@ Canada
Q C D @ United Ki...

» specialized hardware with very fast oo
interconnects | - P -""L‘_ 1 Exaflop

* Recently they are opening up to HEP o e

workflows (HEP = high throughput P 1 Petaflop
computing (HTC)) b

* Even we don’treally need fastinterconnects ™ =

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025 2030

1 Petaflop = 10" floating point operations per second Lists 102
1 Exaflop = 108 floating point operations per second o Sum 4 #1 = #500


https://leonardo-supercomputer.cineca.eu/

L

Supercomputing (HPC) g | ) O = WML L

Countries Performance Share

@ United
Many non-trivial problems to solve ® crim
* Data access (access, bandwidth, ...) o Someny
® France
* Accelerator Technology (GPU, FPGA, TPU, ...) oy
* Submission of tasks (MPI vs Batch systems o oores.
VS proprietary systems) ® .
* Node configuration (low RAM/Disk, ...) e ® otters
* Not-too-open environment (OS, ...) o 1 Exaflop
* Processing time is allocated through g 1 Petaflop
approval processes based on science use
Case 1 TFlop/s
* Resources are not necessarily available
24/7/365 -
1 Petaflop = 10" floating point operations per second bists 103

1 Exaflop = 10"8 floating point operations per second e sum 4 #1 = #500


https://leonardo-supercomputer.cineca.eu/

Physics #1: change analysis model

Event loop

Most HEP physics analysis use a sequential model

«event loop» on a single CPU:
e Loadrelevant values for a specific event into local variables

VD s o s e S et A S Sy o S S S i i A A, S A — — m— o v g A

e Evaluate several expressions

e Store derived values \Tagtonal
e Repeat (explicit outer loop) ‘

e Make it faster by making it embarassly parallelusingalotofCPUs __________ &

(for example, using the GRID)

Big data tools are known to be better at this |
Columnar analysis: A

e Loadrelevant values for many events into contiguous arrays

e Evaluate several array programming expressions
e Implicitinnerloops
e Store derived values
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Physics #1: change analysis model

From vertically-integrated solution to ecosystem

A
D /@ pl7 T LT rl ]
anguoge Scikit UPEO0 FK?%lIlJTHEE
numpythia HEP Fé{’é-r JET

Experiment-specific and pyhepmc nndrone

analysis frameworks

o v
avg G
2

https://root.cern.ch/

histoprint

[H}Boostﬁ
istogram
7 @ python” & Numba
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Physics #1: reduce storage footprint

* Selective persistency: write out only the “interesting” part of the event. %

HLT2

candidate

PV PV ~-...... ,—
j — F‘!:.

"--,_.__“_1"_

ik

i

* Turbo stream:
* Miminum output: only HLT2 signal candidates

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW
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Physics #1: reduce storage footprint

* Selective persistency: write out only the “interesting” part of the event.

PV PV ...

* Turbo stream:
* Miminum output: only HLT2 signal candidates
* Optionally: (parts of) pp vertex (e.g. "cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW
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Physics #1: reduce storage footprint

* Selective persistency: write out only the “interesting” part of the event.

N N/ -
& DT

Raw banks: VELO RICH e ECAL

* Turbo stream:
* Miminum output: only HLT2 signal candidates
* Optionally: (parts of) pp vertex (e.g. "cone” around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.
Advantage: Event size O(10) smaller than RAW

* FULL stream: all reconstructed objects in the event
* Optionally adding selected RAW banks
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Physics #1: reduce storage footprint

 CMS has developed more and Data Tier
more reduced data formats RAW
* “nanoAOD” is the prevalent GEN

analysis format in CMS

* Event size reduced by a factor
3000x since the start of Run-1 DIGI

RECO(SIM) - 2010

SIM

* Note: only very high-level AOD(SIM) - 2012
quantities are saved; not all
analyses can use it MINIAOD(SIM) - 2015

* e.g. flavour physics analyses NANOAOD(SIM) - 2018

Size (kB)
1000
< 50
1000
3000
3000

400 (ex

reduction)

o0 (8% reduction)

1 {50x reduction)
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Use “modern weapons”

e These canbe from the technology point of view (Big Data Tools)...
e ...0rnovelways to write algorithms.

e Alingeneral and Machine Learning / Deep Learning techniques
obviously stand up

e The space/time hereis waytoo shortto go into any detail, but by

now ML techniques are used everywhere in HEP processing
o Trigger level (even on FPGA)
o Simulation (GAN tools are very promising)
o Reconstruction (... everywhere, from S/N separation to clustering in
calorimeters and trackers)
o Analysis (selection, interpretation, ...)
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DISCLAIMER: the list is not intended to be complete, and the
classification is not rigorous but just for illustrative purposes

The Al/ML zoo

e Fully Connected Neural Networks (FCNNs / MLPs)

o Usedinearly applications (e.g. event classification, regression)
o  Still widely used for tasks with structured tabular input (e.g. particle 4-vectors)
o Examples: S/B discrimination, parameter estimation, ..

e Convolutional Neural Networks (CNNSs)
o Suitable forimage-like data: calorimeter hits, tracking detector layouts, jet images
o Benefit from local connectivity and translational invariance
o Examples: jet tagging, energy deposition maps, neutrino detectors

e Graph Neural Networks (GNNSs)

o Represent events as graphs (e.g., hits, tracks, or particle interactions as nodes/edges)
o State-of-the-art for tracking, jet reconstruction, and physics object identification
o Examples: Track finding, calorimeter clustering, particle flow

e Autoencoders (VAEs) (and Variational-AE)
o Used for anomaly detection and dimensionality reduction
o Examples: Searching for rare or unknown physics events.
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DISCLAIMER: the list is not intended to be complete, and the
classification is not rigorous but just for illustrative purposes

The Al/ML zoo

o Generative Adversarial Networks (GANS)

o Fastsurrogate models for simulation (e.g., calorimeter shower generation).
o Examples: Simulation acceleration, anomaly detection

o Transformers
o Originally from Natural Language Processing (NLP), now extended to handle
structured or variable-length (long!) inputs.
o Strong performance in classification and generative modelling, even in physics.
o Examples: Event classification, generative modelling, scientific document parsing.

e Diffusion models

o Model data generation as reversing a diffusion process (progressive noise addition)
o Examples: fast calorimeter and tracking simulation, anomaly detection, structured
generation
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ML usage patterns #1

hls 4 ml
At trigger level, modern tools (hls4dml, BM, LeFlow, ...) allow
to write on FPGA the result from the training on “largish” i;:ng Q
machine learning networks, taking into account pruning to : @\jﬂ
match the limited resources hi

Applications under study
o Bkg and trigger rate reduction ‘F\_*
o Signal specific trigger paths
o Anomaly detection in data taking
o Unsupervised new physics mining

Existing implementations, e.g. LHCDb HLT selections in Run3
Next-generation trigger systems - real-time reconstruction
> real time analysis

Challenge is the trade-off between algorithmic complexity
and the performances achievable under severe time
constraints in inference

Tensor
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https://fastmachinelearning.org/hls4ml/#:~:text=hls4ml%20is%20a%20Python%20package,configured%20for%20your%20use%2Dcase!
https://cds.cern.ch/record/2708682/files/PoS(ISGC2019)020.pdf
https://github.com/danielholanda/LeFlow

ML usage patterns #2

e The production of simulated events is extremely intense from the computation standpoint
o uptothe pointit might impact the physics reach of the experiments

e ML can help to reduce such load
Calorimeter shower surrogate simulator
Analysis-level simulator

Pile-up overlay generator

Monte Carlo integration

ML-enabled fast-simulation

e Asanexample, GANs have shown the potential to mimic more complex iterative algorithms
(like those in Geant4) with a huge gain in timing

o O O O

O

u.a. - [ hz_gé .
Entries 1576880
0.08— i S Mean 138
v Std Dev 4 654
0.07}
006-
opsf-  Coreeed 7 , Longitudinal shower shape in a
0.04 _ . calorimeter from 100 GeV e from
e _ 2 . ’ here. Timingis 1 minute vs 0.04
0.02 ‘ - . msecC
0.01 - Shower longitudinal section K

0 5 10 15 20 25
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ML Usage patterns #2

Online/offline reconstruction might be partially replaced by ML surrogate models
(approximate—>faster) or new algorithms (offering unprecedented performance)
might partially replace existing algorithms.

e Charged particle tracking (GraphNN, vertexing, ...)
e Calorimeterreconstruction (local, clustering, ...)
e Particle flow (GraphNN, ...)

e Particle identification (boosted

e jets,isolation,...)

e Pileup mitigation



ML Usage patterns #2

A couple of examples on how ML is used at

reconstruction level

e Improvementin classification (Svs B, and in
general category Avs B, C, ...) using a large
number of (even poorly) discriminating variables

— —
OI o
8] L -

Misidentification probability

=
<
w

Typical classical algorithm:
60% efficiency for 50x rejection

|

o

13 TeV, 2016

S L U B B B B D B
S oMs T udsg )
- Simulation: N _
- i+ jets : i o 7
- e P o
r . - i— CSV(Run1) ]
- o - CSW2 (AVR)
I~ P A : — CSVv2 ]
I o= DeepCSV. |
E GO R : _ i— cMVAV2 3
C i L' > A . NN RS R R R
01 02 03 < 05 06 07 08 09 1
DeepCSV and 6ther Al based b jet efficiency

algorithms: 60% efficiency
for 300x rejection
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ML Usage patterns #2

. > 14—

A couple of e.xamples on how ML is used at g | ATLAS Simuation Preiminary E
reconstruction level S %L Vs=14TeV, i, qu>=200, p.> 2 GeV .
W] 1E 1Tk layout: 23-00-03 ]

T I . e TP L

0.6 .

e Clustering algorithms which exhibit 0.4F ———— 3
combinatorial explosion with classical 02F S :
algorithms (jet clustering, tracking) ol B Vol e Bt o TimurBy sl

o  CNNs (input-as-images), Graph Networks

Graph Neural

o o -
le‘ael'trll’ll:g o. % Network .' oss ou% o8 Walkt:rOUgh
k3 ;2& 4 o) 1‘1" M .::: ::ﬁoss Lol oz"“, 0.92 PY
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Removal
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ML usage patterns #3, #4

ML in Data Analysis

’ 4%
13% 6%
1%
10% —
— 7%
— 2%
— 3%
N__ 10
12% 1%
— 13%
4% ———
4%
16% |
. Data: IML
® W/Z tagging @ particle identification
@ H-b bar neutrino detectors

@ quarksand gluons @ direct Dark Matter detectors
~ topquarktagging @ cosmology, astroparticle, and cosmic ray physics
@ strange jets @ tracking

@ b-tagging ; .
@ flavor physics ©" heavy ions / nuclear physics

& BSM particles and models



ML usage patterns #3, #4

ML in Data Analysis

13%

ML in Computing Operations

Application of ML to non-event
(meta-)data might help to increase
efficiency and reduce the need of
personpower in Ops, e.g. automating
specific tasks, developing
- ~2% Intelligent/adaptive systems

— 3%

' ultimately acting on the full chain -
~ 4 fromdata collection to data analysis -

10% ——

12%

and make it more agile
——3% ¢ Detector control
" Data quality monitoring

16% | . ] ] .
—— Operational intelligence

@® W/zZ tagging particle identification . . .
H—b bar neutrino detectors i PredICtIVG malntenanCe
® quarks and gluons @ direct Dark Matter detectors

top quark tagging @ cosmology, astroparticle, and cosmic ray physics
@ strange jets tracking
@ b-tagging ; | .
@ flavor physice heavy ions / nuclear physics

BSM particles and models 120
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ML usage patterns #5 chAT LAS@

“ChATLAS”: A prototype LLM-based Al-assistantin a

* Data gathering part is interesting

* Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’
agendas incl. attached slides and minutes (>440k), Mattermost, Jira tickets, experiment’
papers and internal notes (>66k)

e Either HTML or scraped into markdown

* Many open challenges:

* highly heterogeneous data

* ensure that collaboration DBs are accessible and exportable; websites should live on a
git repo; pubs should be saved as latex, and compiled separately; discussion forums
should have anonymisation options... Estimates indicate that this would have saved ~1
yr of data wrangling

* Hallucinations are a real problem

* Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned Al
assistant
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ML usage patterns #5 chATLAS

What is the crack veto for electron reconstruction? Are reconstructed tracks treated as massless in ATLAS MC?

The crack veto for electron reconstruction is applied to ensure that no In the ATLAS experiment, reconstructed tracks are typically treated as massless
electrons are reconstructed in the crack region of the detector. Specifically, the particles in the Monte Carlo (MC) simulations. This is because, in high-energy
crack veto is defined for electrons with a transverse momentum (pT) greater physics, the momentum and energy of particles are often more relevant than

than 10 GeV and is applied in the region where the absolute value of the their mass, especially for particles like electrons, muons, and neutrinos, which

pseudorapidity (|n]) is between 1.37 and 1.52. This is to avoid issues related to ;
; ; are treated as massless in many analyses.
the detector’s performance in that region.

| = _ However, it's important to note that the actual mass of particles can be taken
n summary, the crack veto conditions are:

into account in specific analyses or when simulating certain processes. The
pT > 10 GeV

treatment may vary depending on the specific requirements of the analysis
1.37 < |n| < 1.52

being conducted. If you have a particular analysis or scenario in mind, please
provide more details for a more tailored response.
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A possible Al / ML path

OK, the past.. OK, the present.. Yes, work in progress Ok, well.. maybe.. Wait, what?!

Deep Generative Foundation

Learning Models Models

[ Credits: Sasha Caron ]

s this a possible path that extrapolates the past to a “possible” future?

11 11

Foreseeing “one big trainable unit”, that just goes end to end, and we
get rid of more and more of the traditional pipelines we are confident
with? What if e.g. the entire physics data “analysis" pipeline becomes
trainable, e.g. all the experiment code becomes an end-to-end
differentiable pipeline that can be adjusted for a goal?

\\(// A\\\'ll: A\} A\\‘
\\:‘t ;ll ‘ ‘\ " ‘\\V X"IJ, '//
' Q

l -v

\' IR LR
\-o l:A ' l‘ﬂ“" ’«\ !él.}“
' ""‘ ’f i§ \‘\ "““v/
—\¢ N

How will we treat data? Will a large foundation model be a black box, or
will it be interpretable? If the latter, through human-in-the-loop? Will we
want to talk to our data via large language models? What about
performance gains? What about scientific rigour and reproducibility?
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A Large "fundamental physics” foundation model?

A foundation model in general:

(D. Bonacorsi)

+ A large-scale ML model trained on broad and diverse data, at scale, mainly with self-supervised learning objectives, designed to be
adaptable to a wide range of downstream tasks with “minimal” fine-tuning

+ In general: training on text (e.g. web, papers), audio, video, code, images, math, structured data, ..

A foundation model for fundamental physics (LPM)?

« Training on large and diverse datasets within a given scientific domain

+ In HEP: detector-level raw data, simulation-level data, reco-level data, analysis-level papers/plots/logbooks/docs, metadata, ..

 + transfer learning (minimal fine-tuning) + many parameters + multipurpose + some capability not explicitly included during training..

Large Physics Models: Towards a collaborative
approach with Large Language Models and
Foundation Models

Kristian G. Barman*!, Sascha Caron*?, Emily Sullivan®, Henk W.
de Regt?, Roberto Ruiz de Austri®, Mieke Boon®, Michael Firber?,
Stefan Frose®, Faegheh Hasibi®, Andreas Ipp'?, Rukshak Kapoor!!,
Gregor Kasieczka'?, Daniel Kostié!®, Michael Kramer!?, Tobias
Golling'®, Luis G. Lopez'®, Jesus Marco!”, Sydney Otten'®!?, Pawel
Pawlowski!, Pietro Vischia®®, Erik Weber!, and Christoph
Weniger?!

arXiv:2501.05382

PROs

Tailored to physics tasks and structures

Scaling to complex inference across simulation, data and
theory

Shared infrastructure — scientific collaboration at scale

Potential to enhance discovery, reproducibility, and
understanding

Can be open, not in the hand of companies

Prototype for other fields of science

CONs:

High cost: compute, data, engineering,
manpower, money

Epistemic opacity: hard to interpret latent
space reasoning

risk of premature hype without careful testing

risk of “dead of arrival” (obsolete before
completion)

risk of being less useful / capable
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Conclusions

In this (long) walk | tried to show you how the complexity of
Computing and Software systems for High Energy Physics has
dramatically increased in the last ~30 years, becoming an integral
part of the planning for new experiments, ... and their cost!

In parallel, new skills and competencies have become more and
more important. We now need more and more “physicists with CS
skills”

Itis an interesting time to be in the Computing and Software for HEP

- A complex task, no trivial solutions > we need new ideas
o Atthe forefront of technology
o Please join!
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