

Future Lepton Colliders

Mogens Dam
Niels Bohr Institute
University of Copenhagen

October, 2025

Preliminaries

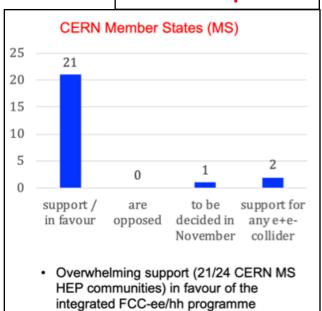
- ◆ These lectures will invariable be somewhat biased towards the FCC-ee e⁺e⁻ collider
 - □ For about 40 years, there have been plans for a next generation high-energy e⁺e⁻ collider
 - For many years, it was thought that such a collider would be linear: ILC, CLIC
 - This changed with the discovery in 2012 of the light 125-GeV Higgs boson
 - ⇒ The Higgs boson came within reach at a circular collider
 - □ I have been involved in the FCC-ee project from even before it was called FCC-ee
 - □ From the official kick-off of the FCC project in February 2014, the FCC-ee project has been gradually gathered more and more momentum

ESPP 2020 deliberations

An electron-positron Higgs factory is the highest-priority next collider.

Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

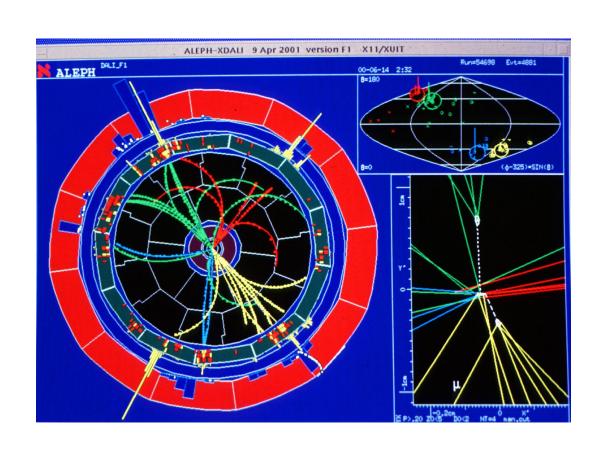
K.Jakobs, <u>Summary talk</u>, ESPP Open Symposiu, Venice, Jun. 2025


◆ Besides, I am really not an expert on muon colliders ...

First Look at the Physics Case of TLEP

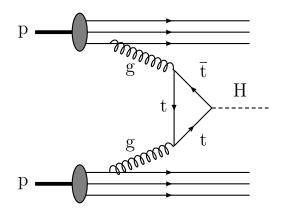
The TLEP Design Study Working Group

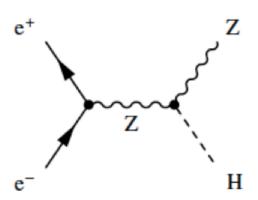
arXiv:1308.6176v3 [hep-ex] 11 Dec 2013

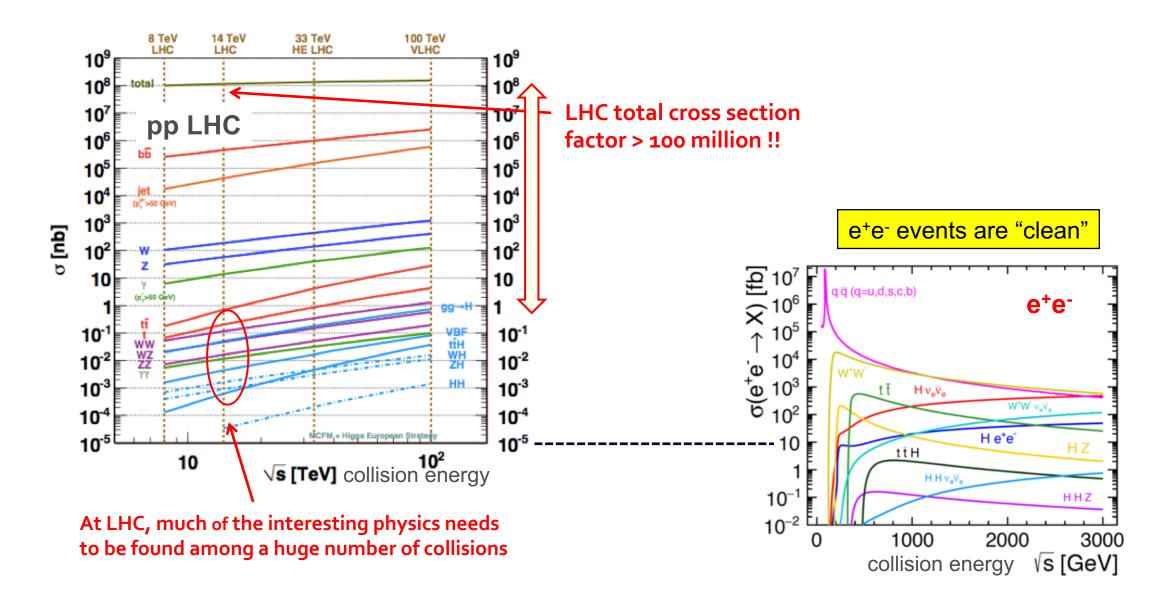

ESPP 2026 process

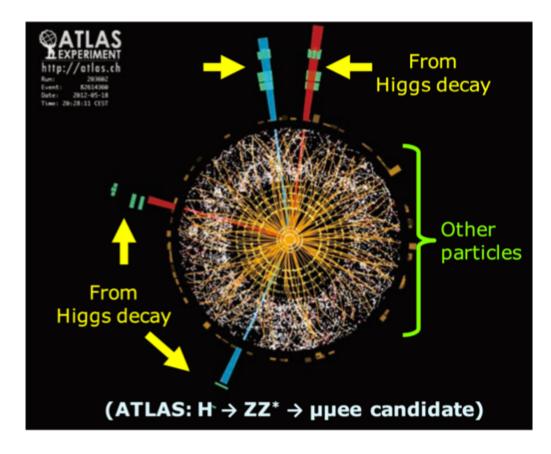


Outline

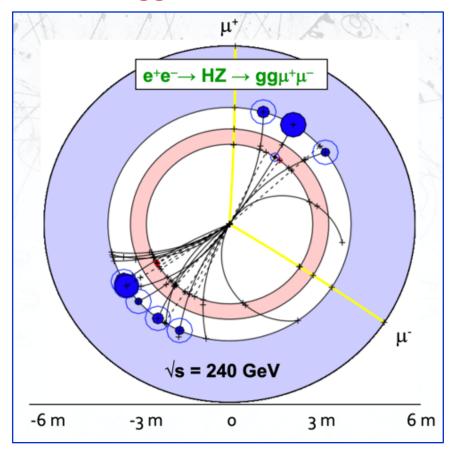

- ◆ Lepton Collisions vs. Proton Colissions
- ◆ The Rise of Precision
- Precision Higgs Physics
- ◆ Electroweak Precision Physcis Tera-Z
- ◆ Tera-Z: Flavour Physics and Direct Discoveries
- ◆ CLIC: High Energy e⁺e⁻ Physics
- ◆ Detectors for e⁺e⁻ Collisions
- ◆ Muon Colliders
- ◆ Main Points


Lepton Collisions vs. proton Collisions


pp collisions vs. e⁺e⁻ collisions

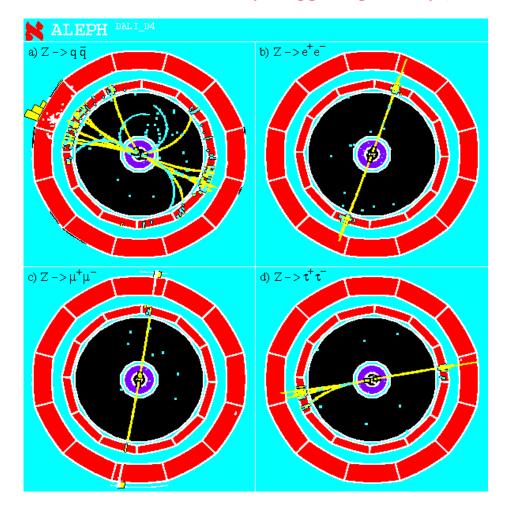

p-p collisions	e ⁺ e ⁻ collisions
Proton is compound object → Initial state not known event-by-event → Limits achievable precision	e ⁺ /e ⁻ are point-like → Initial state well defined (E, p), polarisation → High-precision measurements
High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation	Clean experimental environment → Trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states
High-energy circular pp colliders feasible	 At lower energies (≤ 350 GeV), circular e⁺e⁻ colliders can deliver very large luminosities. Higher energy e⁺e⁻ requires linear collider.

pp collisions vs. e⁺e⁻ collisions

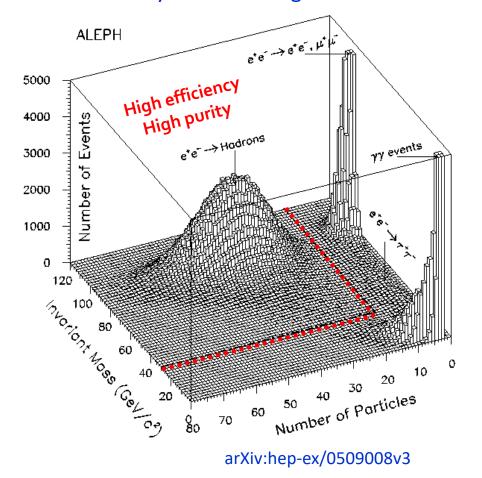

pp collisions vs. e⁺e⁻ collisions

Higgs event in pp

pp: look for striking signal in large background


Higgs event in e⁺e⁻

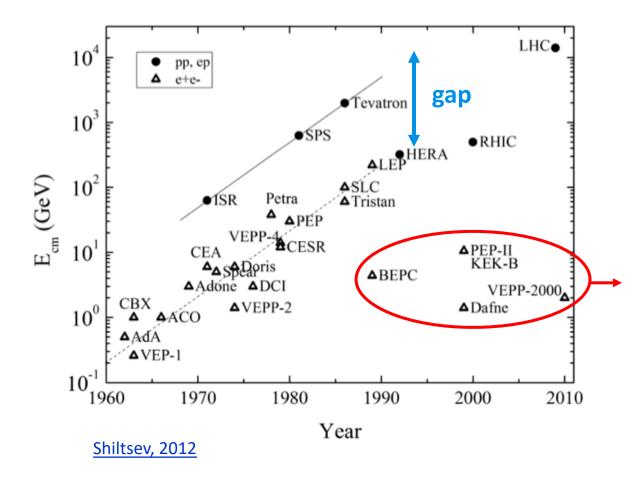
e⁺e⁻: detect everything; measure precisely


e⁺e⁻ collisions

- ◆ No pile-up collisions, no underlying events
 - □ Final state is clean and cozy, triggering is easy (100% efficient)

□ No huge QCD cross section: All events are signal

Analysis is a waking dream

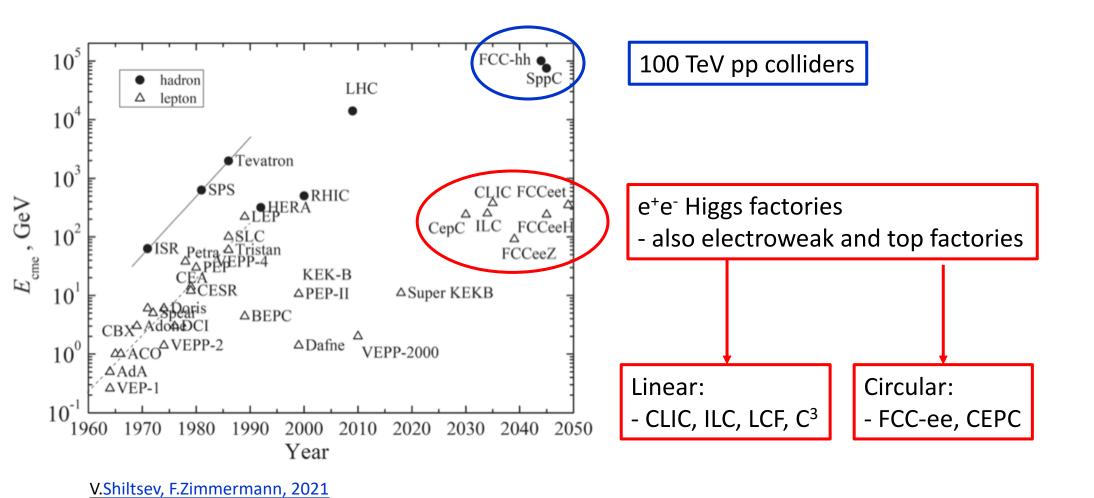


A look in the rear mirror

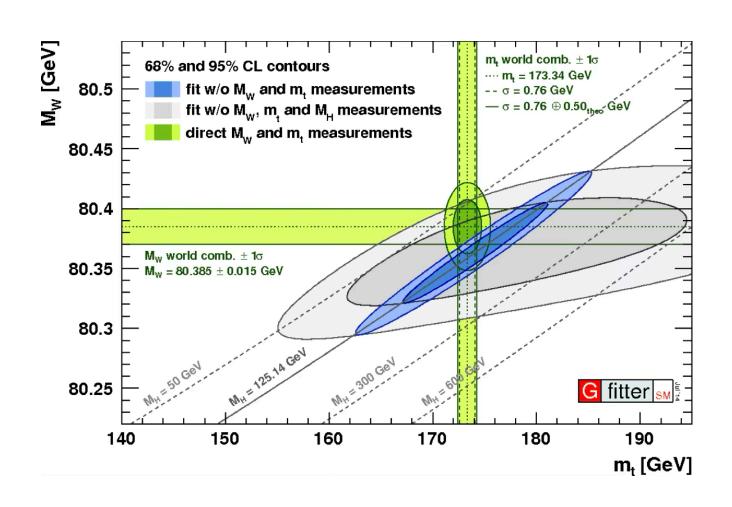
◆ Historic overview over important discoveries

Year	Discovery	Experiment	√s [GeV]	Observation
1974	c quark (m~1.5 GeV)	e ⁺ e ⁻ ring (SLAC) Fixed target (BNL)	3.1 8	σ (e ⁺ e ⁻ \rightarrow J/Ψ) J/Ψ \rightarrow μ ⁺ μ ⁻
1975	τ lepton (m=1.777 GeV)	e ⁺ e ⁻ ring (SPEAR/SLAC)	8	$e^+e^- \rightarrow \tau^+\tau^-$ $e^+\mu^-$ events
1977	b quark (m~4.5 GeV)	Fixed target (FNAL)	25	$\Upsilon \to \mu^+ \mu^-$
1979	gluon (m = 0)	e ⁺ e ⁻ ring (PETRA/DESY)	30	e⁺e⁻ → qqg Three-jet events
1983	W, Z (m ~ 80, 91 GeV)	pp ring (SPS/CERN)	900	$egin{aligned} W & ightarrow \ell V \ Z & ightarrow \ell^+ \ell^- \end{aligned}$
1989	Three neutrino generations	e ⁺ e ⁻ ring (LEP/CERN)	91	Z-boson lineshape measurement
1995	t quark (m=173 GeV)	pp ring (Tevatron/FNAL)	1960	Two semileptonic t-quark decays
2012	Higgs boson (m=125 GeV)	pp ring (LHC/CERN)	8000	$H \rightarrow \gamma \gamma$, $H \rightarrow Z^*Z \rightarrow 4\ell$

Colliders over time, pp and e⁺e⁻


- ◆ Historically there has been a gap in energy reach between pp and e⁺e⁻ colliders
 - □ Synchrotron radiation; electron is light
 - Energy lost per turn grows as

$$\Delta E \propto \frac{1}{R} \left(\frac{E}{m}\right)^4$$


e.g., 3.5 GeV per turn at LEP2 for $E_{BEAM} = 104 \text{ GeV}$

◆ Since the 1990s, highly productive e⁺e⁻ colliders ("factories") have focused on precise exploration of rare phenomena at low energies

Including proposed pp and e⁺e⁻ colliders

The Rise of Precision

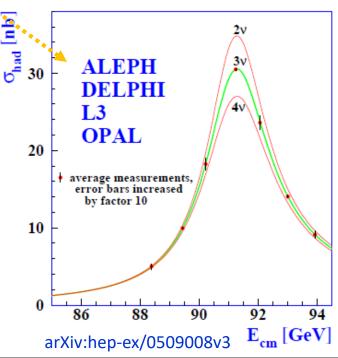
LEP and the Rise of Precision

- ◆ 27 km circumference e⁺e⁻ collider : "LEP tunnel", now "LHC tunnel"
- 1989-1995: Operation as Z factory at $Vs \simeq 91 \text{ GeV}$ (17 × 10⁶ Z decays)
 - □ 1989: Only three species of light, active neutrinos

$$\nu_e$$
 , ν_μ , and ν_τ

 \bullet e⁺e⁻ \to Z \to hadrons at LEP1; measurement of the Z boson lineshape

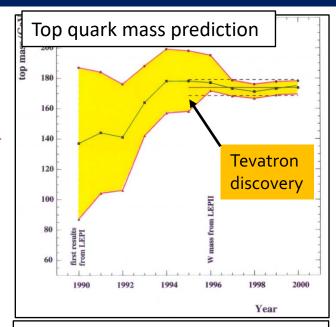
□ After 5 years at LEP1: per-mille level precision

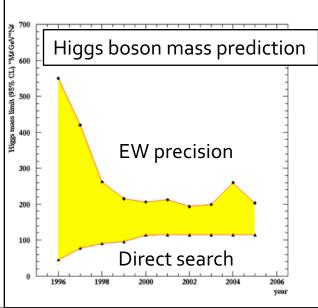

$$N_v = 2.984 \pm 0.008$$

 $\Gamma_Z = 2495.2 \pm 2.3 \text{ MeV}$
 $m_Z = 91187.5 \pm 2.1 \text{ MeV}$
 $\alpha_s = 0.1190 \pm 0.0025$

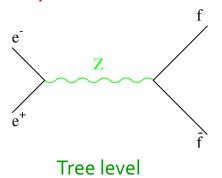
no updates since LEP

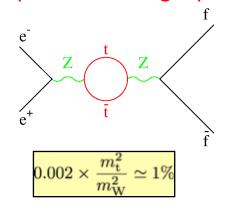
- ◆ 1996-2000: Operation at WW threshold and above (4 × 10⁴ WW events)
 - □ W mass, Higgs search

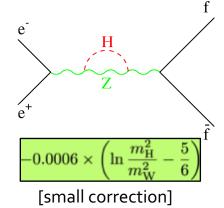

Herwig Schopper, CERN Director 1981-1988, in <u>CERN Courier</u>: LEP was a transformative machine "It changed high-energy physics from a 10% to a 1% science."



Indirect evidence from Precision Measurements

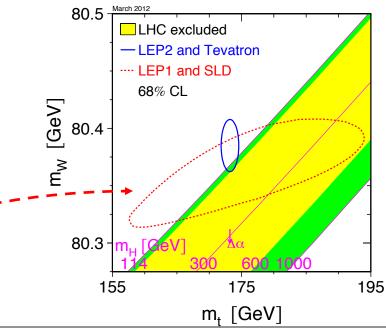

- ◆ Top quark
 - □ 1990-1994: Mass predicted from quantum loops
 - $m_{top}(pred.) = 178.0 \pm 10 \text{ GeV}$
 - □ 1995: Discovered at the Tevatron (DØ, CDF)
 - * Today: $m_{top}(obs.) = 172.52 \pm 0.33 \text{ GeV}$
- ◆ Higgs boson
 - □ 1996-2011: Mass predicted from quantum loops
 - $m_{Higgs}(pred.) = 98^{+25} GeV$
 - □ 2012: Discovery at the LHC (ATLAS, CMS)
 - ❖ Today: m_{Higgs}(obs.) = 125.11 ± 0.11 GeV
- Lesson:
 - Precision measurements interpreted via quantum loop corrections can give strong constraints on particles at higher masses than what can be directly probed!



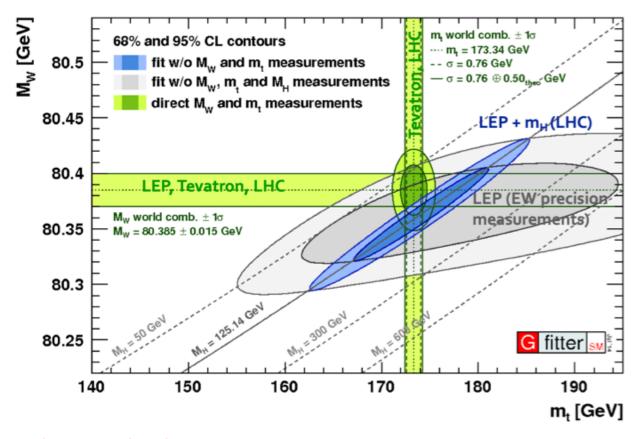


Why precision measurements are interesting

- ◆ Electroweak observables can be calculated / predicted with precision
 - □ They are sensitive to heavier particles through quantum corrections



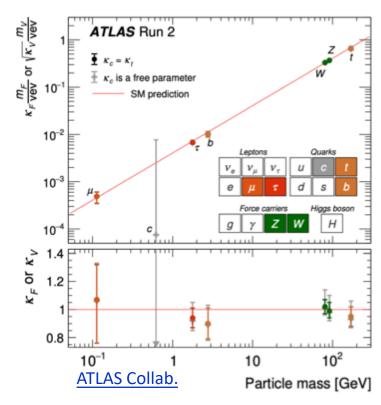
□ Example: $\Gamma_Z \rightarrow \Gamma_Z \times (1+\Delta \rho)$

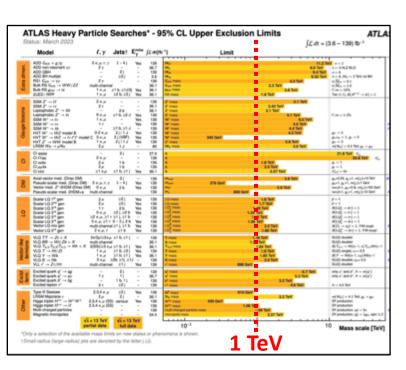

$$\Delta
ho = 0.0020 imes rac{m_{
m t}^2}{m_{
m W}^2} - 0.0006 imes \left(\ln rac{m_{
m H}^2}{m_{
m W}^2} - rac{5}{6}
ight) + \ldots$$

- □ Similarly, $m_W^2 = m_Z^2 \cos^2 \theta_W^{eff}$ (1+Δρ) (sin²θ_W^{eff} from, e.g., asymmetries)
- □ Precict m_W and m_{top} from Z measurements

Precision Measurements

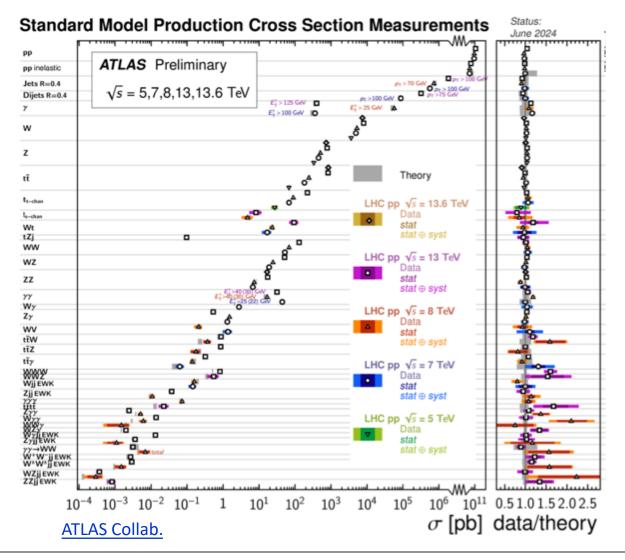

◆ With m_{top}, m_W and m_H known, the Standard Model has nowhere to go

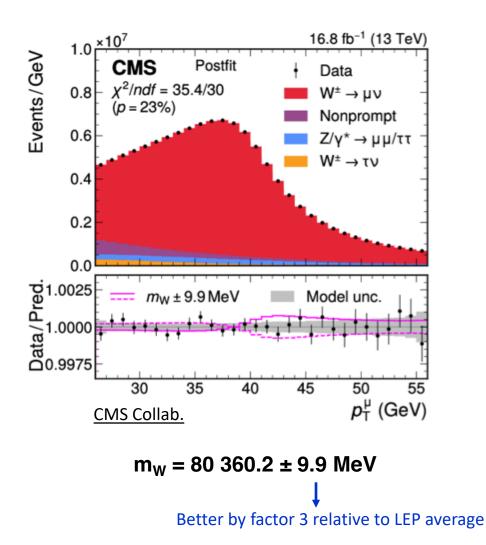



- □ Within current precision, direct and indirect constraints are consistent
 - ❖ No evidence for the need for BSM physics
- □ But what if measurements precisions were improved?
 - Strong incentive to significantly improve the precision of all measurement

The LHC Legacy (so far)

LHC = Higgs + Nothing*)




ATLAS Collab.

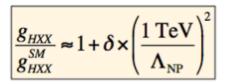
- *) Actually, a lot progress in our understanding of the SM:
 - 1) Improved measurements of SM processes; 2) Precise measurements in flavour physics; 3) New frontiers in heavy-ion studies.


The LHC Legacy (so far)

◆ Thanks to a firm control of EXP & TH systematic uncertainties, the LHC has become a precision machine.

Higgs couplings @ LHC and projections for HL-LHC

Run 2 Run 3:


Run 1 We are here

HL-LHC: Large increase of current data sample

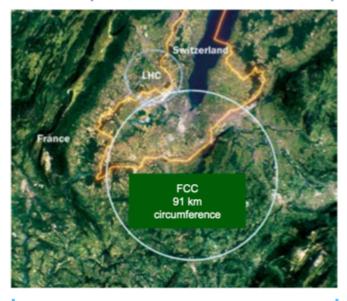
HL-LHC: 14 TeV 6000 fb-1 (ATLAS+CMS)

Precision Higgs physics – The need for a Higgs Factory

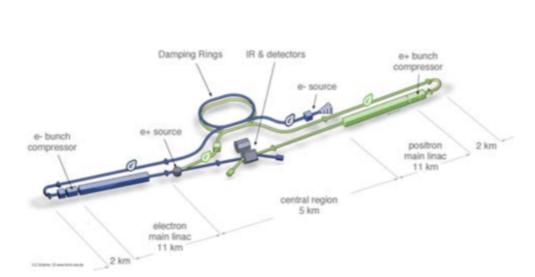
- ◆ The Higgs boson is different from all other SM particles (the only scalar)
 - □ May possibly open a window to *new physics*?
 - □ Study precisely its properties to look for possible deviations from SM predictions
- ◆ The (HL-)LHC is already a "Higgs factory"
 - □ Fabulous statistics: > 10⁸ Higgs bosons will be produced at HL-LHC
 - Main challenge is backgrounds: Many decay modes are hard to identify
 - □ Expected ultimate HL-LHC precisions at the *few percent level*
- ◆ Is this precision good enough to make a "discovery" ?
- ◆ Higgs couplings are sensitive to New Physics (NP)
 - □ Expected deviations from SM coupling strengths depend on NP scale:

with δ =

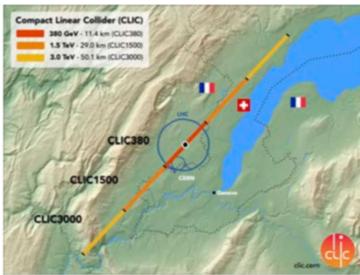
Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$


- ullet Need a <u>minimum</u> of 1% precision on couplings for a 5σ discovery if $\Lambda_{\rm NP}$ = 1 TeV
 - □ And better for heavier New Physics

An e⁺e⁻ Higgs factory identified as highest-priority next collider, by the European Strategy Update 2020 and by the US P5 process 2023


arxiv:1301.8361

Proposed e⁺e⁻ Higgs factories (at CERN)


FCC-ee (e⁺e⁻, circular, 91 – 365 GeV)

LCF (e⁺e⁻, linear, 91 – 240, 550 GeV)

CLIC (e⁺e⁻, linear, 380 GeV, 1.5 TeV)

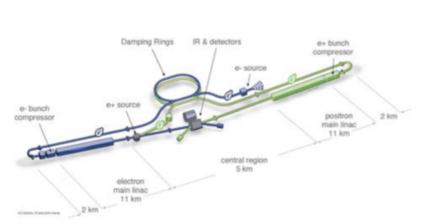
Circular

Beam goes in circle

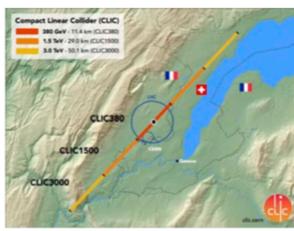
- Reused many times for higher luminosity
- Synchrotron radiation limits energy reach
- Non-destructive focussing, moderate collisionenergy dispersion

Linear

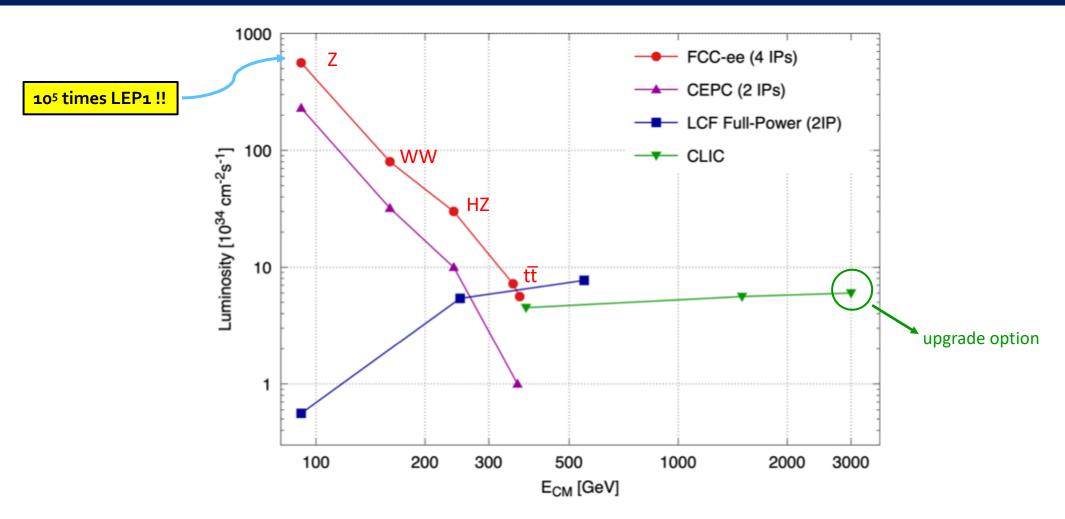
One pass only


- Lower luminosity
- Avoids synchrotron radiation can go to higher energies
- Extreme focussing large collision energy dispersion

Proposed e⁺e⁻ Higgs factories (at CERN)


FCC-ee (e⁺e⁻, circular, 91 – 365 GeV)

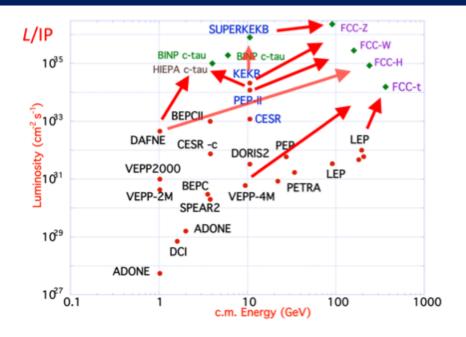
LCF (e⁺e⁻, linear, 91 – 240, 550 GeV)



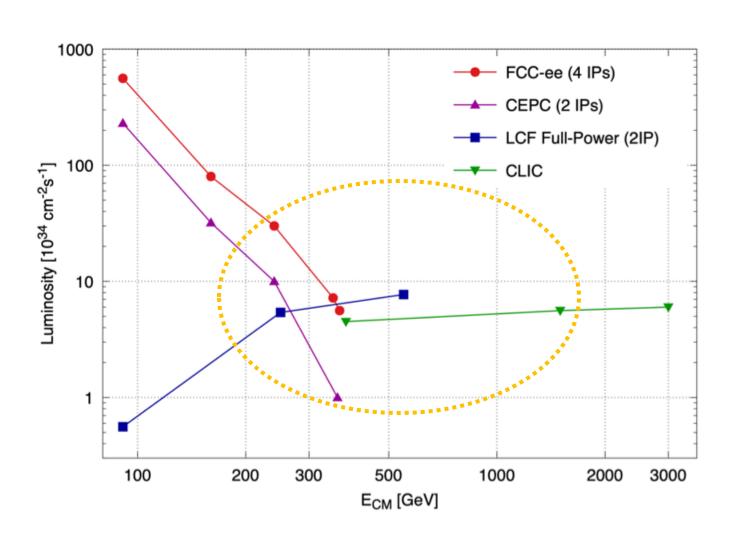
CLIC (e⁺e⁻, linear, 380 GeV, 1.5 TeV)

Length [km]	91	33.5	11.4 / 29
Energies [GeV]	91 / 160 / 240 / 350-365	91 / 250 / 550	380 / 1500
Run time [years]	4/2/3/1+4	1/10/10	10/10
Detectors	4	2	2
Possible upgrade	FCC-hh; ~100 TeV pp	1-3 TeV e⁺e⁻	3 TeV e⁺e⁻

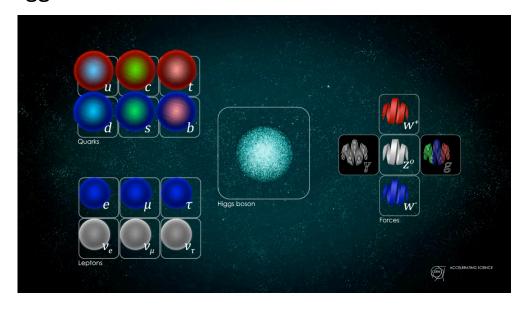
Projected Luminosities of e⁺e⁻ Colliders


- ◆ Complementarity
 - □ Ultimate precision measurements (luminosity!) with circular colliders (FCC-ee)
 - □ Ultimate e⁺e⁻ energies with linear colliders (CLIC)

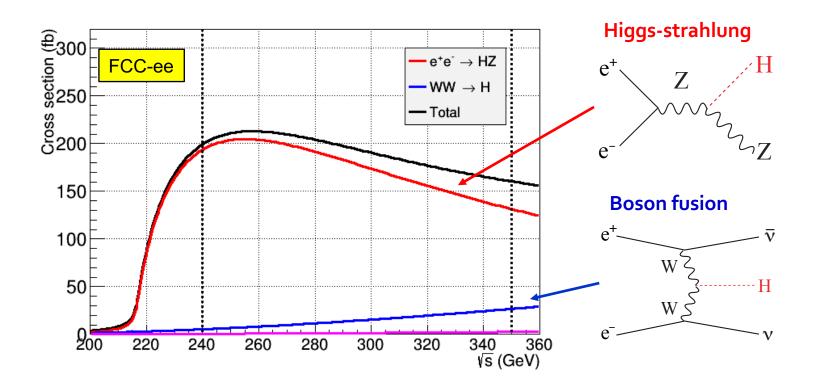
FCC-ee: Extremely high luminosities

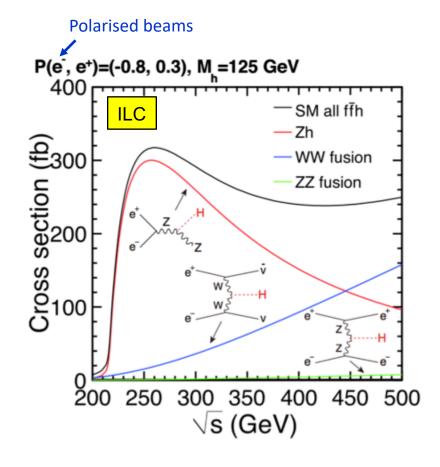


- □ Double ring collider, 91 km
- □ Large horizontal crossing angle 30 mrad, crab-waist optics
- □ Top-up injection
 - Separate booster ring
- □ Four Interaction Points (IPs)
 - increased integrated luminosity; experimental diversity


- ◆ Exploiting lessons from past & present colliders
 - □ LEP: high energy, synchrotron radiation effects
 - B-factories: double-ring, high beam currents, top-up injection
 - □ DAΦNE: crab waist, double ring
 - □ Super B-factories: e⁺ source
 - □ HERA, LEP, RHIC: spin gymnastics
 - □ VEPP-4M, LEP: precision energy calibration

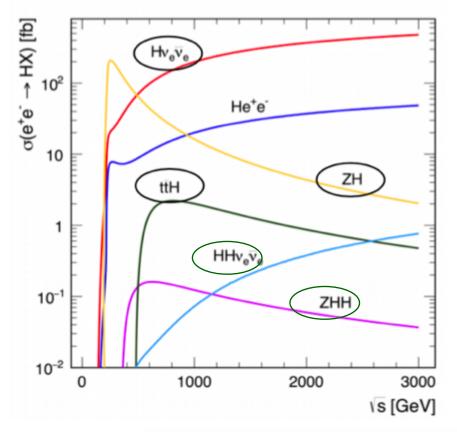
Precision Higgs Physics


Higgs Factory mission

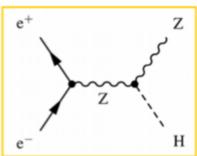

- ◆ Unravel as much as we can about the properties of the 125-GeV Higgs boson
 - Basic properties
 - ❖ Prodution cross section, total width
 - Decay rates to known particles
 - Invisible decays
 - Search for "exotic decays"
 - □ CP properties of couplings to gauge bosons and fermions
 - □ Self-coupling
- ◆ To interpret Higgs measurements, need matching precisions
 - □ Top quark: mass, Yukawa & electroweak couplings, CP properties
 - □ Z / W bosons: masses, couplings to fermions, triple gauge couplings, incl CP, ...
- ◆ Search for direct production of new particles determine their properties
 - □ Dark matter? Dark sector?
 - □ Heavy Neutral Leptons
 - □ SUSY, Higgsino
 - □ The UNEXPECTED

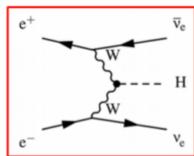
Higgs Production

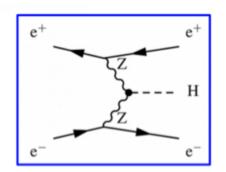
Higgs production for √s ≤ 500 GeV

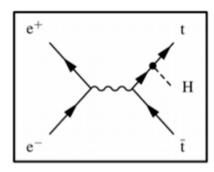


□ Effect of beam polarization

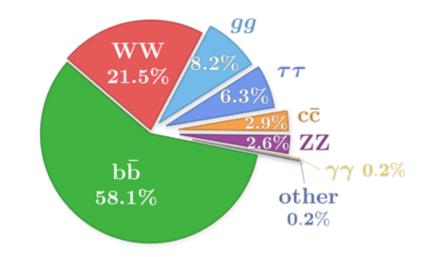

- * Higgs-strahlung cross section multiplied by $1 P_{\perp}P_{\perp} A_e \times (P_{\perp} P_{\perp})$
- * Boson fusion cross section multiplied by $(1-P_{-}) \times (1+P_{+})$

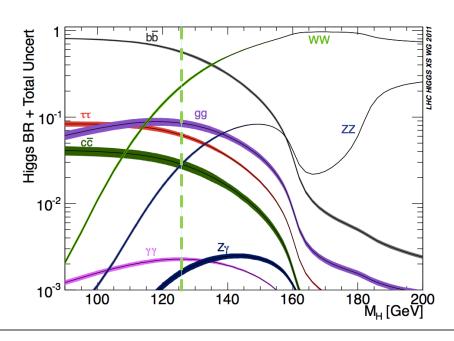

(exercise)


Moving to higher energies



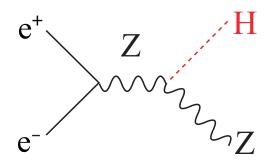
- ◆ Higgsstrahlung: e⁺e⁻ → ZH
 - $\Box \sigma \sim 1/s$, dominant up to $\approx 450 \text{ GeV}$
- WW fusion: $e^+e^- \rightarrow H\nu_e\overline{\nu}_e$
 - $\Box \sigma \sim \log(s)$, dominant above 450 GeV
 - □ Large statistics at high energy
- ◆ ttH production: e⁺e⁻ \rightarrow ttH
 - □ Accessible ≥ 500 GeV, maximum ≈ 800 GeV
 - ❖ Direct extraction of top Yukawa coupling
- \bullet ZHH and HH $\nu_{\rm e}\overline{\nu}_{\rm e}$ production
 - \Box From 500 GeV (ZHH) and ~800 GeV (HH $\nu_e \overline{\nu}_e$), di-Higgs production
 - Sensitivity to Higgs self coupling

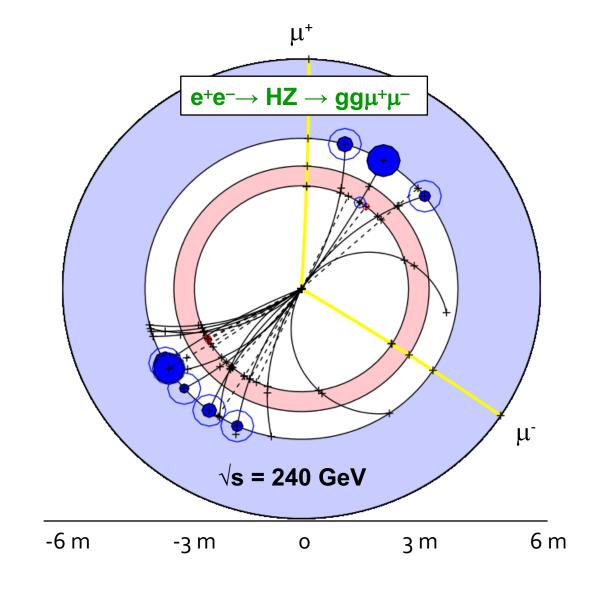

Higgs Decays


- ◆ Run at √s = 240-250 GeV and 350-500 GeV, in order to
 - □ Determine all Higgs couplings in a model-independent way
 - □ Infer the Higgs total decay width
 - □ Evaluate (or set limits on) the Higgs invisible or exotic decays
- Everything via the measurements of

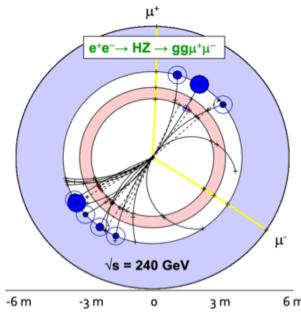
$$\sigma(e^+e^- \to H + X) \times BR(H \to YY)$$

with
$$Y = b$$
, c , g , W , Z , γ , τ , μ , invisible

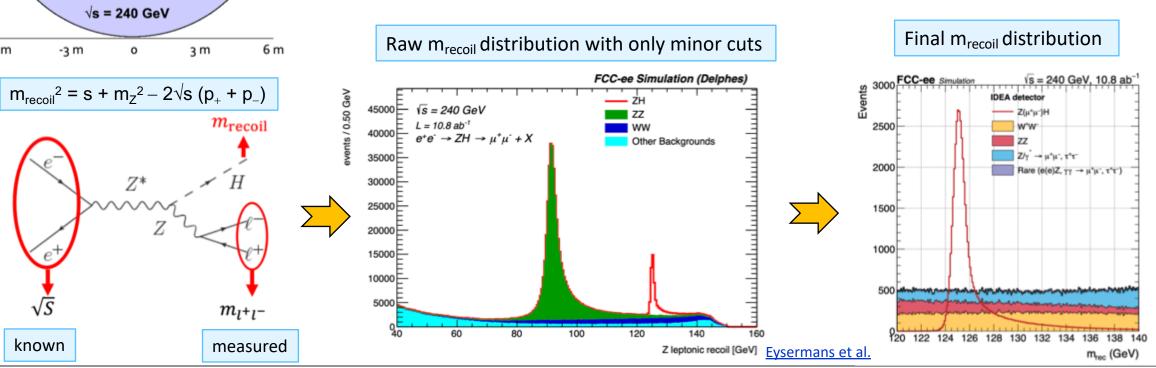

- ♦ We are lucky: m_H = 125 GeV is a very good place to be for precision measurements
 - □ All decay channels open and measurable can test new physics from many angles


Higgs Events

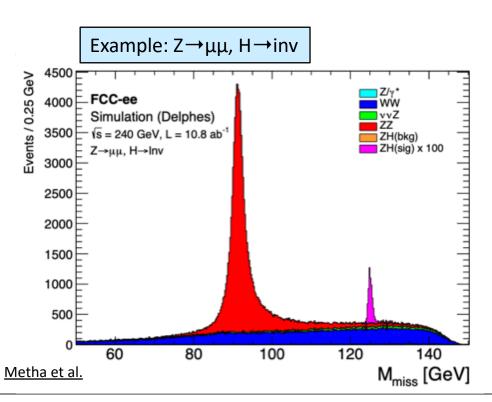
◆ ZH events allow the reconstruction of a tagged sample of Higgs bosons

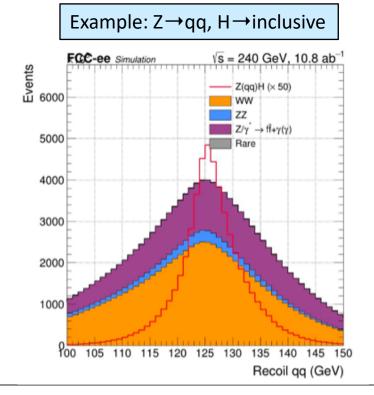


- ♦ Example, $Z \rightarrow \mu^-\mu^-$
 - Clean signature
 - □ Tagged with μ⁻μ⁻ from Z decay
 - * μ⁻μ⁻ system mass = Z mass
 - * Mass of system recoiling against $\mu^-\mu^-$ = Higgs mass


$$m_{\text{recoil}}^2 = s + m_Z^2 - 2\sqrt{s} (p_+ + p_-)$$

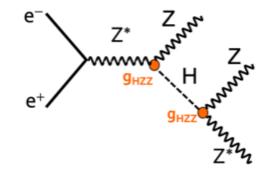
Higgs Physics Analysis

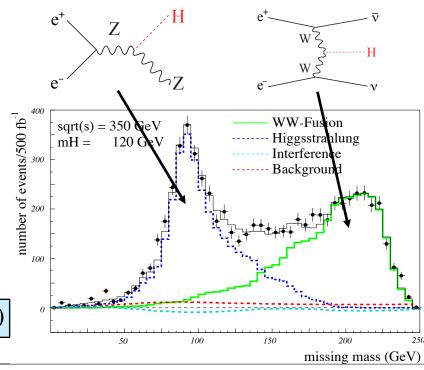



- Model-independent measurement of σ_{HZ} and g_{HZZ}
 - \Box The Higgs boson in HZ events is tagged by the presence of the Z \rightarrow $e^+e^-,\,\mu^+\mu^-$
 - * Select events with a lepton pair (e⁺e⁻, μ ⁺ μ ⁻) with mass compatible with m_Z
 - Apply total energy-momentum conservation to determine the "recoil mass"
 - ❖ Plot recoil mass distribution resolution proportional to momentum resolution
 - No requirement on the Higgs decays: measure $\sigma_{HZ} \times BR(Z \rightarrow e^+e^-, \mu^+\mu^-)$

Higgs Physics Analysis

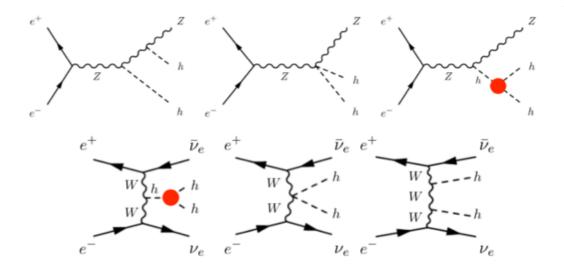
- ◆ Repeat analysis for all possible final states
 - \Box For all exclusive decays, YY, of the Higgs boson: measure $\sigma_{HZ} \times BR(H \rightarrow YY)$
 - Including invisible decays
 - event containing only the lepton pair with correct (m_{miss} , m_{recoil}), else empty (SM BF $\simeq 0.1\%$; H \rightarrow Z*Z $\rightarrow 4\nu$)
 - ❖ For all decays of the Z (hadrons, taus, neutrinos) to increase statistics
 - \Box For the WW fusion mode (Hvv final state): measure $\sigma_{WW\to H} \times BR(H\to YY)$

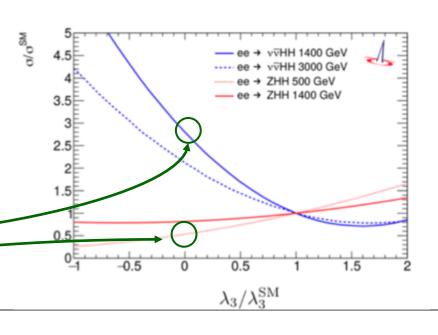

Eysermans et al.


Higgs total Width

- ◆ Indirect determination of the total Higgs decay width
 - □ From a counting of HZ events with H \rightarrow ZZ at \sqrt{s} = 240 GeV
 - ♦ Measure $\sigma_{HZ} \times BR(H \rightarrow ZZ)$
 - σ_{HZ} is proportional to g_{HZZ}^2
 - Previous slide
 - ❖ BR(H → ZZ) = Γ (H → ZZ) / Γ _H is proportional to g_{HZZ}^2/Γ _H
 - $\sigma_{HZ} \times BR(H \rightarrow ZZ)$ is proportional to g_{HZZ}^4 / Γ_H
 - \star Infer the total width $\Gamma_{\rm H}$
 - □ From a counting WW \rightarrow H \rightarrow bb events at 350-500 GeV in the bbvv final state:
 - * Measure $\sigma(WW \rightarrow H \rightarrow bb)$
 - * Take branching ratios into WW and bb from σ_{HZ} and $\sigma_{HZ} \times BR(H \rightarrow WW,bb)$
 - ❖ Infer the total width

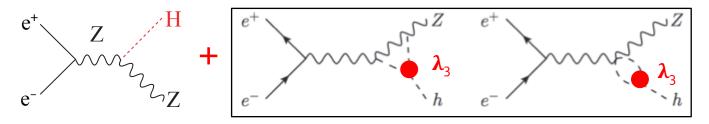
$\left| \Gamma_H \propto \sigma_{WW \to H} / BR(H \to WW) = \sigma_{WW \to H \to bb} / BR(H \to WW) \times BR(H \to bb) \right|$


Final state with three Z's Almost background free

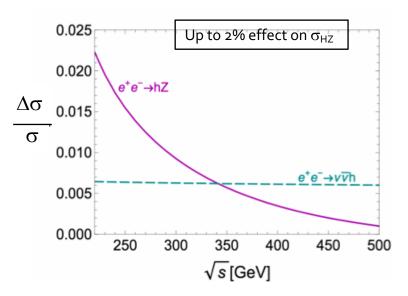


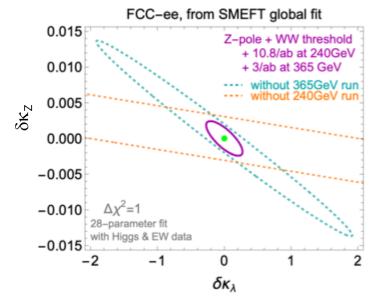
Higgs Self Coupling, λ_3 - Di-Higgs production

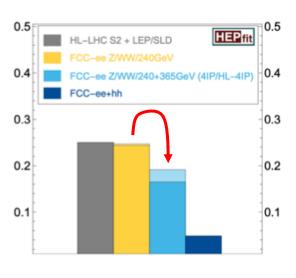
- \bullet Higgs self-coupling, λ_3 , is a fundamental parameter of the SM whos value should be measured
 - □ Determines the shape of the Higgs potential
- ◆ For vs ≥ 500 GeV, access to di-Higgs production



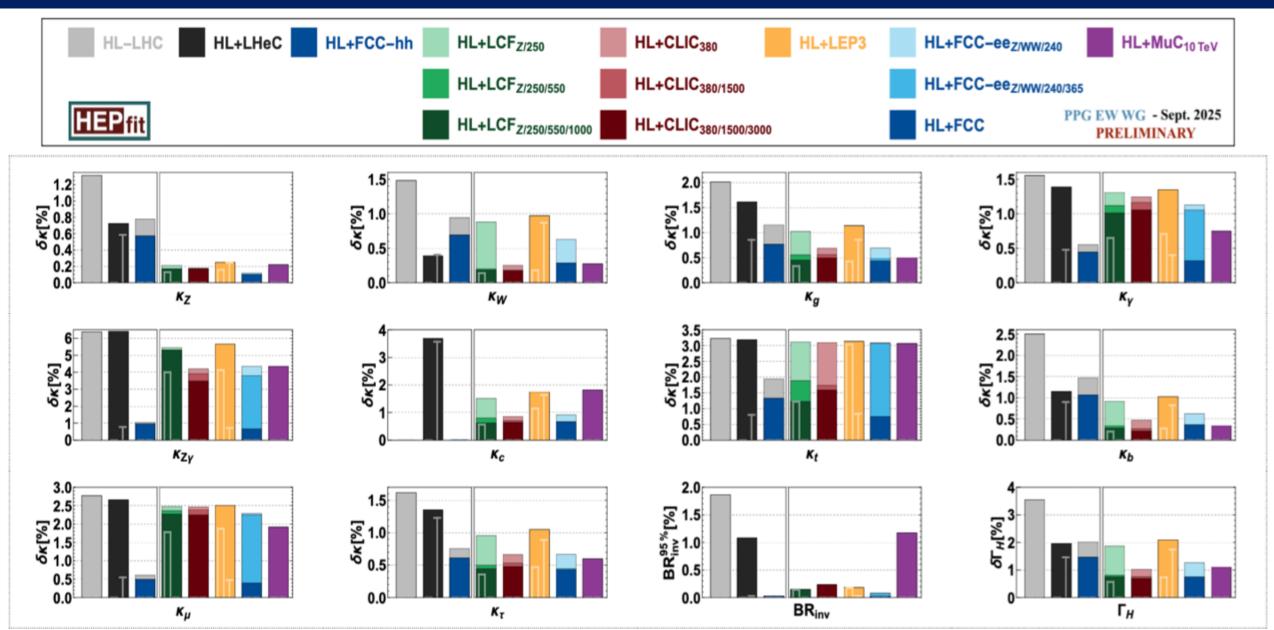
- □ In both cases, three interfering diagrams
 - * Higgs self coupling, λ_3 , extracted from fit to production cross section
 - At 1400 GeV: relatively strong dependence
 - At 550 GeV: weak(er) dependence

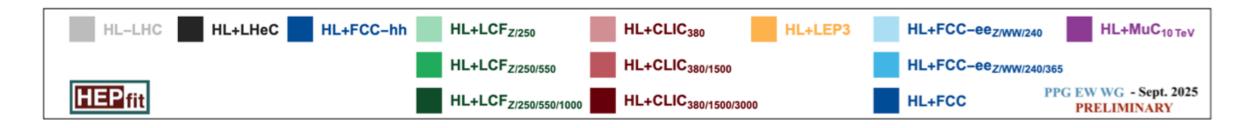


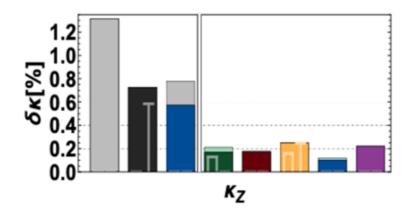

Higgs Self Coupling, λ_3 - Quantum Loop effects


- ◆ At lower energies, no di-Higgs production
- ◆ But loops including Higgs self coupling contribute to Higgs production

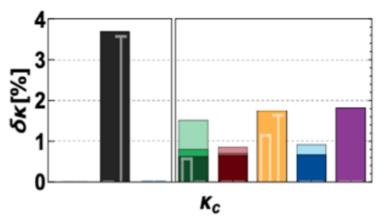
• Effect on σ_{ZH} and σ_{VVH} of Higgs self coupling (λ_3 and hence $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$) depends on \sqrt{s}



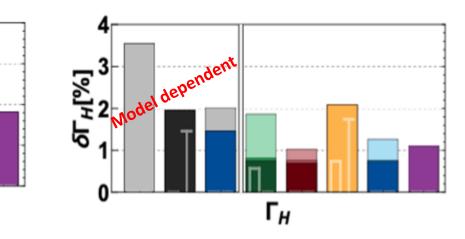



 \Box Two energy points (240 and 365 GeV) lift the degeneracy between $\delta\kappa_Z$ and $\delta\kappa_\lambda$

Complete Overview of Higgs Coupling Prospects



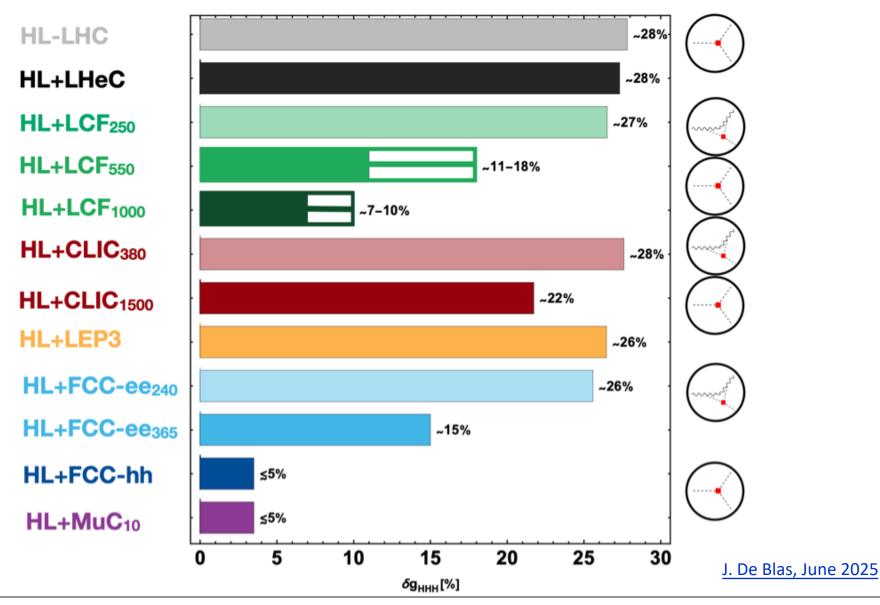
A few highlights



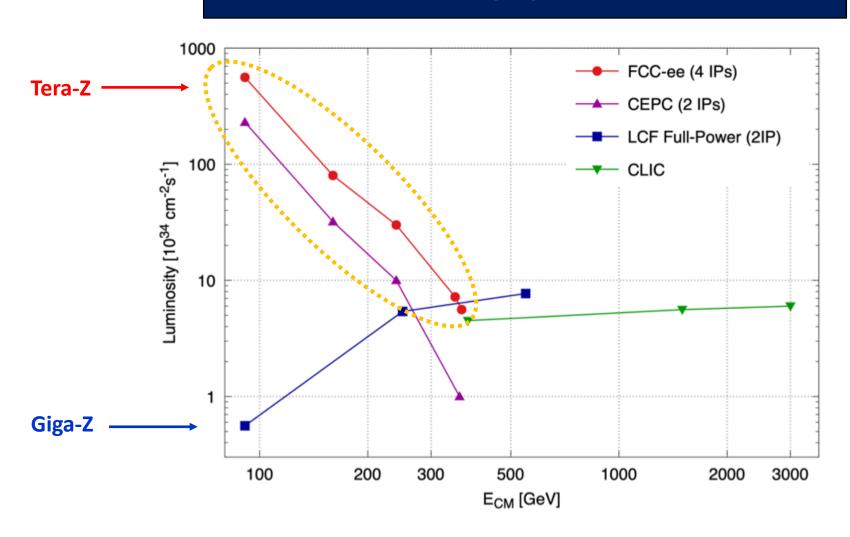
Very precise measurement of HZZ coupling from e⁺e⁻ → HZ channel

Charm tagging at lepton colliders

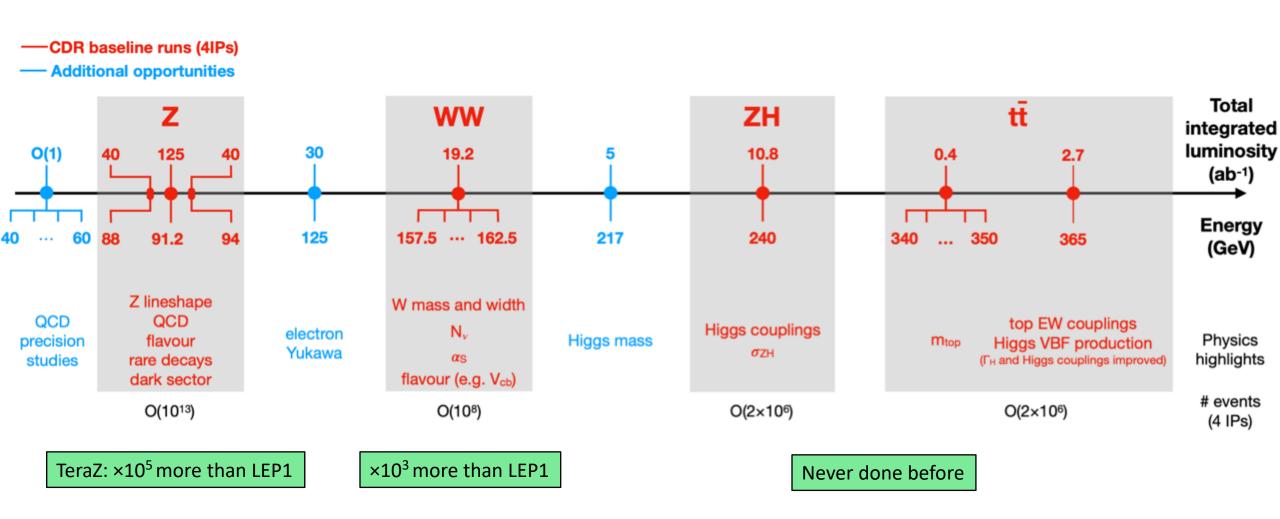
Model independent measurement of Higgs width at e⁺e⁻ colliders


FCC-ee Higgs Precisions in Numbers

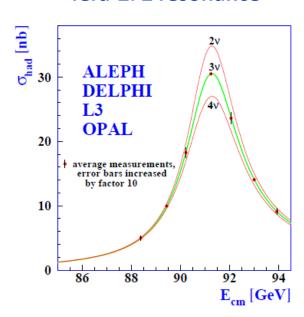
Coupling	HL-LHC	FCC-ee
$\kappa_{\mathrm{Z}}\left(\% ight)$	1.3*	0.10
$\kappa_{ m W}$ (%)	1.5*	0.29
$\kappa_{ m b}$ (%)	2.5*	0.38 / 0.49
$\kappa_{ m g}~(\%)$	2*	0.49 / 0.54
$\kappa_{ au}\left(\% ight)$	1.6*	0.46
$\kappa_{\mathrm{c}}~(\%)$	_	0.70 / 0.87
$\kappa_{\gamma}\left(\% ight)$	1.6*	1.1
$\kappa_{\mathrm{Z}\gamma}$ (%)	10*	4.3
κ_{t} (%)	3.2*	3.1
$\kappa_{\mu}~(\%)$	4.4*	3.3
$ \kappa_{ m s} $ (%)	_	$^{+29}_{-67}$
$\Gamma_{ m H}$ (%)	_	0.78
$B_{\rm inv}$ (<, 95% CL)	1.9×10^{-2} *	$5 imes 10^{-4}$
\mathcal{B}_{unt} (<, 95% CL)	$4\times10^{-2}\ ^{*}$	$6.8 imes 10^{-3}$


Generally, a factor of 2–10 better than HL-LHC. Plus, Model Independence

^{*} LHC numbers model dependent, since $\Gamma_{\rm H}$ not know; $|\kappa_V| \leq 1$ assumed


Higgs Self-coupling Precisions

Electroweak precision Physics Tera-Z


FCC-ee Programme

FCC-ee is the ultimate Z, W, Higgs and top factory

FCC-ee Electroweak Programme at a Glance

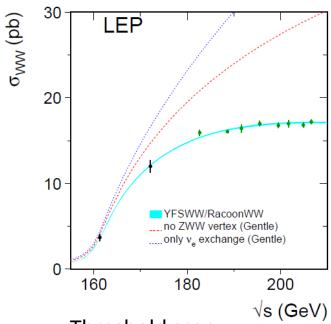
Tera-Z: Z resonance

Lineshape

□ Exquisite E_{beam} (unique to circular colliders)

 \Box m_Z (Γ _Z) to 100 (12) keV (2.2 MeV)

Asymmetries


 $\Box \sin^2\theta_W$ to 1.2×10⁻⁶ (1.6 × 10⁻⁴)

 $\square \alpha_{QED}(m_Z)$ to 1×10^{-5} (1.1 × 10⁻⁴)

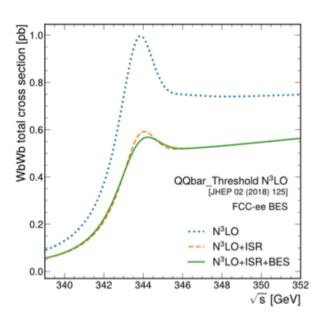
Branching ratios R_I, R_b

 $\alpha_{\rm S}(m_{\rm Z})$ to 0.0001 (0.003)

WW threshold scan

Threshold scan

 \square m_{W} to 0.2 MeV (10 MeV)

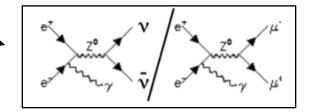

Branching ratios R_I, R_b

 $\alpha_{\rm S}(m_{\rm w})$ to 0.0002

Radiative return $e^+e^- \rightarrow Z\gamma$

 $\,\Box\,\,N_{\rm v}\,{\rm to}\,\,0.0005$

tt threshold scan



Threshold scan

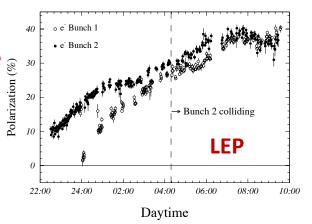
 \square m_{top} to 5 MeV (300 MeV)

 \square λ_{top} to 1.5%

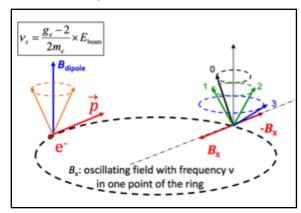
 \Box ttZ coupling to \sim 1%

FCC-ee Electroweak Programme

- ◆ The Tera-Z programme (and beyond) provides an unparalleled data-sample size
 - □ Lineshape scan of the Z resonance; threshold scans of the WW and tt production thresholds
 - □ 2-3 orders of magnitude improvement w.r.t current knowledge
- ◆ Several challenges to keep systematic uncertainties under control
 - \Box Beam energy calibration by resonant spin depolarization to \sim 100 keV
 - □ Detectors: acceptance, efficiencies, resolutions, hermeticity
 - \Box Luminosity measurement: using QED processes (Bhabha, $\gamma\gamma$)
 - □ Calibration: in situ using enormous samples of collected data
 - □ Theory: need to cope with orders of magnitude improvement of theoretical calculations and Monte Carlo generator accuracies

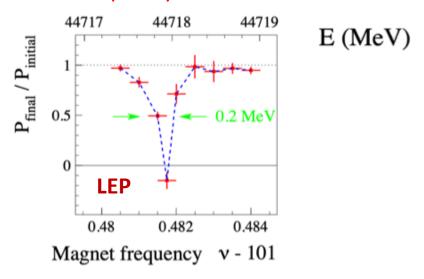

Uncertainty	$m_{\rm Z}~({\rm keV})$	$\Gamma_{\!Z}~({\rm keV})$	$\sin^2 \theta_{\rm W}^{\rm eff} \left(\times 10^{-6} \right)^*$	$\frac{\Delta \alpha_{\rm QED}(m_{\rm Z}^2)}{\alpha_{\rm QED}(m_{\rm Z}^2)} \ (\times 10^{-5})$	$A_{\rm FB}^{{\rm pol},\tau}~(\times 10^{-4})$
LEP	2000	2300	40	/	49
FCC-ee statistical	4	4	2	3	0.15
\sqrt{s} systematic	101	12	1.2	0.5	/

Improvements in precision of $\mathcal{O}(10^2)$ available


◆ Keep in mind that often systematic uncertainties also scale down with increased statistics

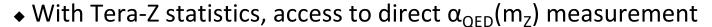
Example Challenge: 1 ppm measurement of collision energy

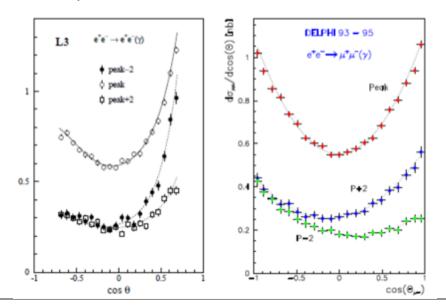
- ◆ Transverse polarisation builds up in the circulating beams via the Sokolov-Ternov effect
 - □ Experience from LEP
 - □ Will be slower at FCC-ee ⁵⁰ 30 (weaker dipole field) ¹⁰ 20
 - need for wigglers

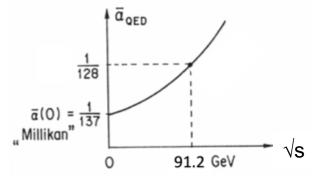


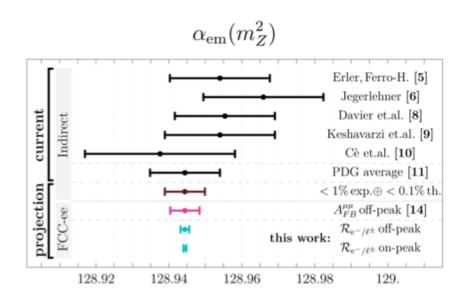
• Spin precesses around B-field (Larmor precession) with a frequency, v_s , proportional to E_{BEAM}

 \Box Determine E_{BEAM} by measuring v_s


- ◆ Resonant depolarisation:
 - By exciting the beam with a transverse oscillating magnetic field, the transverse polarization can be destroyed when the excitation frequency matches the spin precession frequency


- \bullet E_{BEAM} measurement to ~100 keV
 - □ LEP: extrapolation from dedicated runs to physics runs
 - ♦ Factor 20: $\delta Vs \simeq 2 \text{ MeV}$
 - □ FCC-ee: Use dedicated bunches in physics runs
 - ♦ No extrapolation: $\delta Vs \simeq 100 \text{ keV}$


Example challenge: $\alpha_{QED}(m_z)$


- Magnitude of electron electric charge (expressed via α_{OED}) increases with \sqrt{s}
- For extration of physics results from ee \rightarrow Z, value that matters is $\alpha_{QED}(m_z)$
- ◆ Currently, determined from extrapolation of low energy data
 - \square Relative uncertainty, $\delta \alpha_{QED}(m_z) / \alpha_{QED}(m_z) \simeq 10^{-4}$; Limiting factor to many BSM searches

- □ Off-pole (Janot, 2015): determined from slope of $A_{FB}^{\mu\mu}$ vs. \forall s (interference of Z and γ channels) $\rightarrow \pm 3 \times 10^{-5}$
- □ **On-pole** (Riembau, 2025): both s- and t-channel $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+ \mu^-$ at the Z pole; sizeable photon contribution for e^- only, not for $\mu^- \rightarrow \pm 0.6 \times 10^{-5}$
 - Experimental systematics ?

Observable	value ^I	presen ±	t uncertainty	FCC-ee Stat.	FCC-ee Syst.	Comment and leading uncertainty
m _Z (keV)	91 187 600	±	2000	4	100	From Z line shape scan Beam energy calibration
Γ _Z (keV)	2495500	±	2300	4	12	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\mathrm{W}}^{\mathrm{eff}} (\times 10^6)$	231,480	±	160	1.2	1.2	From $A_{\rm FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_{\rm Z}^2)~(\times 10^3)$	128 952	±	14	3.9 0.8	small tbc	From $A_{\rm FB}^{\mu\mu}$ off peak From $A_{\rm FB}^{\mu\mu}$ on peak QED&EW uncert. dominate
$R_{\ell}^{\rm Z} \; (\times 10^3)$	20767	±	25	0.05	0.05	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm S}(m_{\rm Z}^2)~(\times 10^4)$	1 196	\pm	30	0.1	1	Combined $R_\ell^{\rm Z},\Gamma_{ m tot}^{\rm Z},\sigma_{ m had}^0$ fit
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41 480.2	±	32.5	0.03	0.8	Peak hadronic cross section Luminosity measurement
$N_{\rm v}(imes 10^3)$	2 996.3	±	7.4	0.09	0.12	Z peak cross sections Luminosity measurement
$R_{\mathrm{b}}~(\times 10^6)$	216290	±	660	0.25	0.3	Ratio of $b\overline{b}$ to hadrons
$A_{\rm FB}^{\rm b,0}~(\times 10^4)$	992	±	16	0.04	0.04	b-quark asymmetry at Z pole From jet charge
$A_{\mathrm{FB}}^{\mathrm{pol}, au}$ (×10 ⁴)	1 498	±	49	0.07	0.2	au polarisation asymmetry $ au$ decay physics
au lifetime (fs)	290.3	±	0.5	0.001	0.005	ISR, $ au$ mass
au mass (MeV)	1776.93	±	0.09	0.002	0.02	estimator bias, ISR, FSR
τ leptonic (μν _μ ν _τ) BR (%)	17.38	±	0.04	0.00007	0.003	PID, π^0 efficiency
m _W (MeV)	80 360.2	±	9.9	0.18	0.16	From WW threshold scan Beam energy calibration
Γ _W (MeV)	2085	±	42	0.27	0.2	From WW threshold scan Beam energy calibration
$\alpha_{\rm S}(m_{ m W}^2)~(imes 10^4)$	1010	±	270	2	2	Combined R_{ℓ}^{W} , $\Gamma_{\mathrm{tot}}^{\mathrm{W}}$ fit
$N_{\rm v}~(imes 10^3)$	2920	±	50	0.5	small	Ratio of invis. to leptonic in radiative Z returns
m _{top} (MeV)	172 570	±	290	4.2	4.9	From $t\bar{t}$ threshold scan QCD uncert. dominate
Γ _{top} (MeV)	1 420	±	190	10	6	From $t\bar{t}$ threshold scan QCD uncert. dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.015	0.015	From $t\bar{t}$ threshold scan QCD uncert. dominate

EW Precision Measurements

Experimental (statistical and systematic) precision of a selection of measurements accessible at FCC-ee, compared to the present world-average precision. FCC-ee systematics scaled down from LEP estimates. Room for improvement with dedicated studies.

50

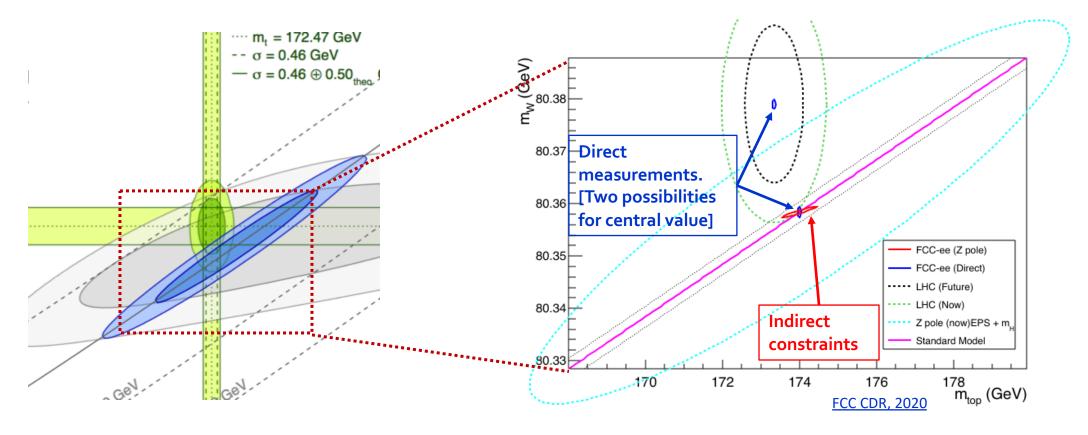
improvement

factor w.r.t. now 20

200

130

500

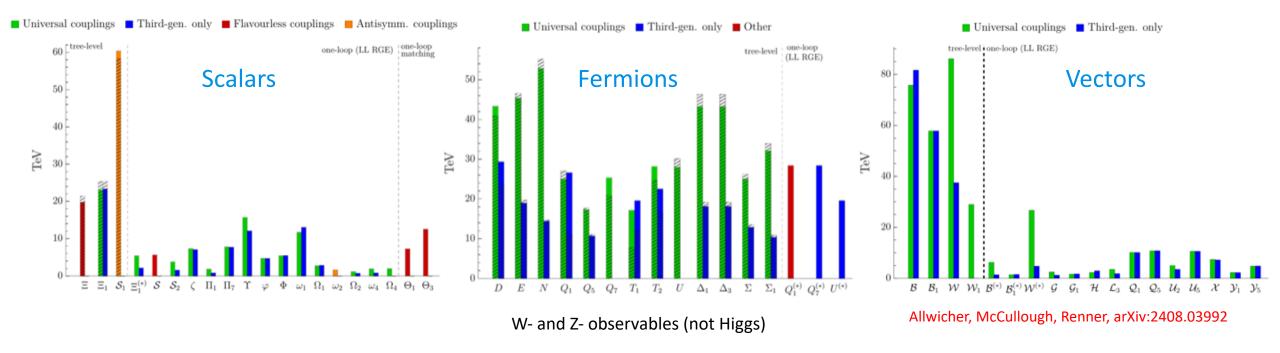

2000

60

46 no, Monopoli, Italy October 2025

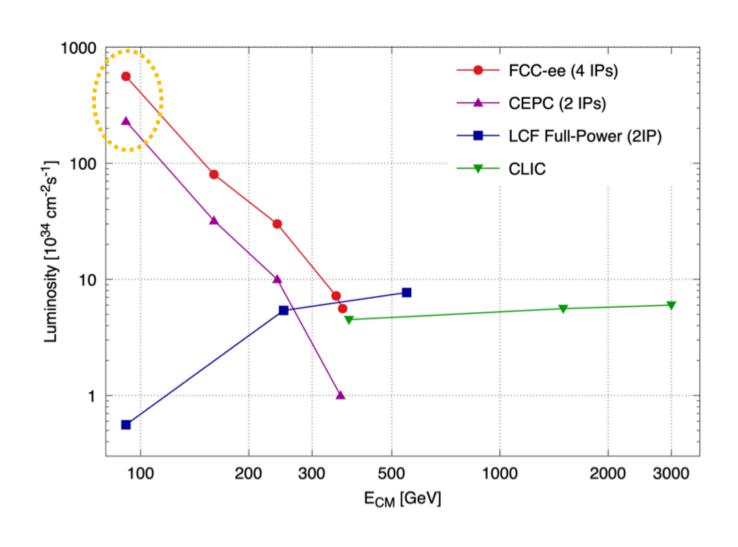
Ultra Precise EW Consistency Checks

- ◆ Combination of all precision electroweak measurements
 - \Box FCC-ee precision allows m_{top} , m_W , $\sin^2\theta_W$ to be predicted within the SM
 - ... and to be compared to the direct measurements


□ New Physics ?

* Direct measurement (tiny blue ellipse) and indirect constraints (tiny red ellipse) may or may not overlap

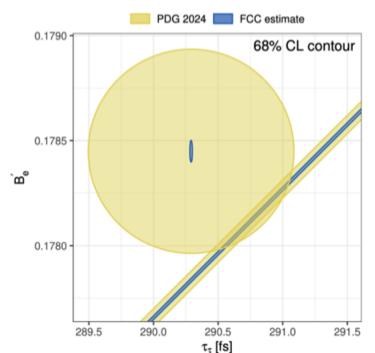
New-Physics Reach from FCC-ee


- ◆ There are 48 different types of particles that can have tree-level linear interactions to SM
 - □ They are not all affecting EW observables at tree-level
 - □ However, all, but a few, have leading-log running into EW observables

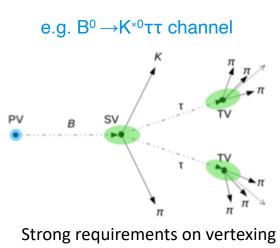
Projected bounds (95% CL) on the masses of new scalar fields

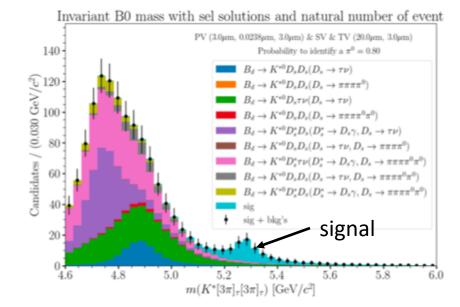
- ◆ Tera-Z programme gives comprehensive coverage of new physics coupled to SM
 - □ Takes advantage of the quantum nature of particle physics to maximise sensitivity to New Physics

Tera-Z: Flavour Physics and Direct Discoveries


FCC-ee as a flavour factory

- ◆ Tera-Z will produce a huge number of beauty hadrons in a very clean environment

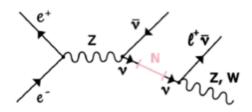

 □ Many measurement opportunities that are highly complementary to LHCb Upgrade II
- ◆ Tera-Z will also provide world's largest sample of "background free" tau decays.


Particle species	B^0	B^-	B_s^0	Λ_b	B_c^+	$c\overline{c}$	$ au^- au^+$
Yield (10 ⁹)	740	740	180	160	3.6	720	200

Example: lepton universality test with taus

Example: B decays with taus

link

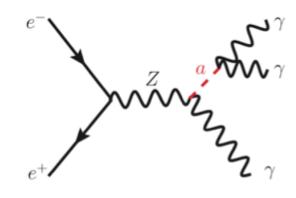

1 primary vertex

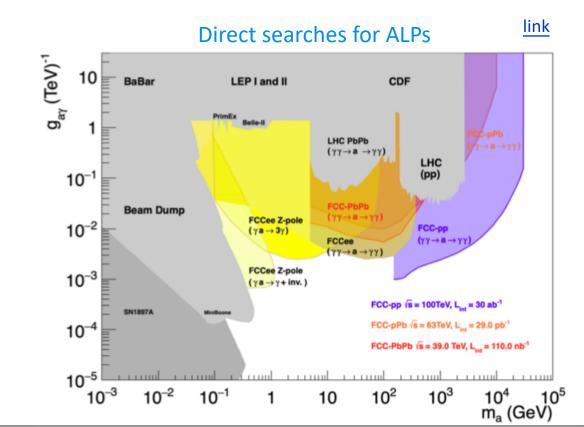
- 1 secondary vertex
- 2 tertiary vertices

Ambitious – possible feasible: sets detector requirements

Direct Searches for Elusive New Physics

- ◆ LLP searches with displaced vertices
 - □ e.g. Neutral Heavy Leptons, a.k.a. righthanded neutrinos




- ◆ Rare decays
 - □ e.g. ALP mixing w/ SM mesons:

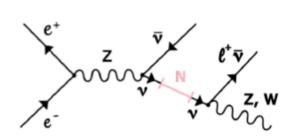
$$K_L \to \pi^0 a \to \pi^0 \gamma \gamma \text{ (KOTO)}$$

 $K^+ \to \pi^+ a \to \pi^+ \gamma \gamma \text{ (NA62)}$

- ◆ ALPs @ colliders
 - □ e.g.

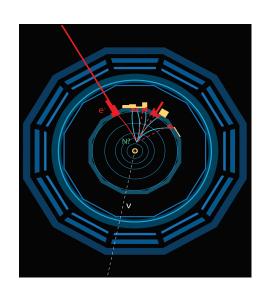

$$e^+e^- \to \gamma a$$

 $e^+e^- \to ha$

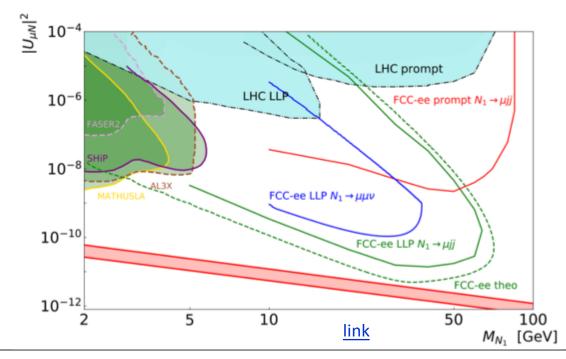


Heavy Neutral Leptons

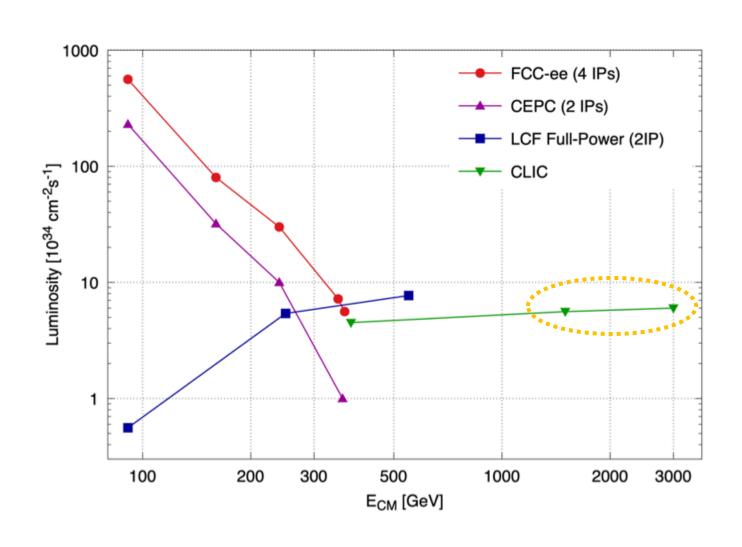
- $\bullet \nu$ MSM model: Complete Standard Model with addition of right-handed neutrinos
 - □ Could explain "everything":
 - ❖ Dark matter (N₁)
 - Baryon asymmetry
 - Neutrino masses



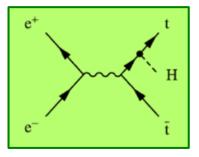
□ Searched for in rare Z decays

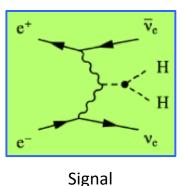


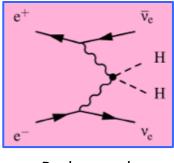
Signature:


- monojet + detached vertex

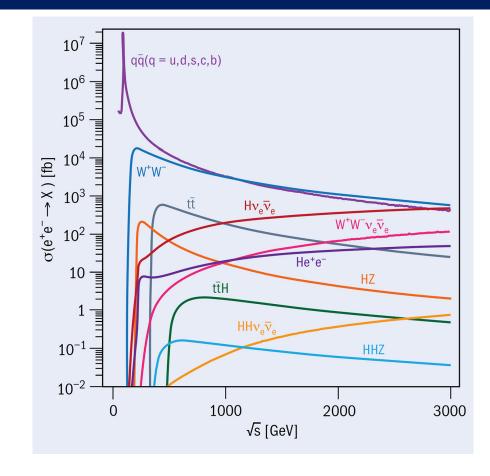
Huge statistics: explore large parameter space


CLIC: High Energy e⁺e⁻ Physics


Higgs Poperties at higher energies

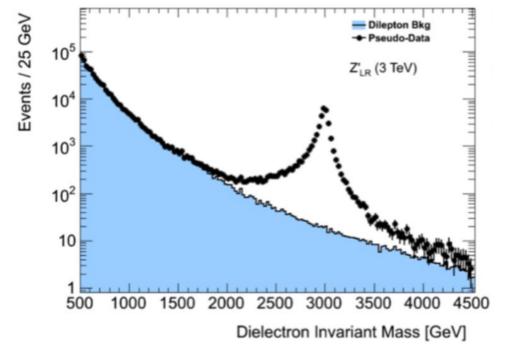

- ♦ Why do precision Higgs physics at high vs?
 - □ Precision achieved with e⁺e⁻ colliders at √s=240-500 GeV : 0.1% 1%
 - Superior to what can be done at higher energy
 - σ_{HZ} decreases, kinematics less favourable, backgrounds increase, ...
- ♦ However, ...
 - □ Some production processes are not directly accessible at low-energy e⁺e⁻ colliders
 - Hence more couplings become measurable at larger energy
 - Htt, HHH, HHHH, ...

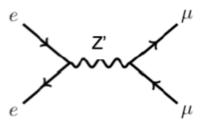
Htt



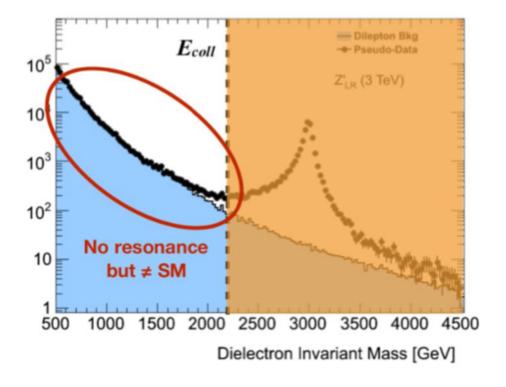
HHH (for λ_3 determination)

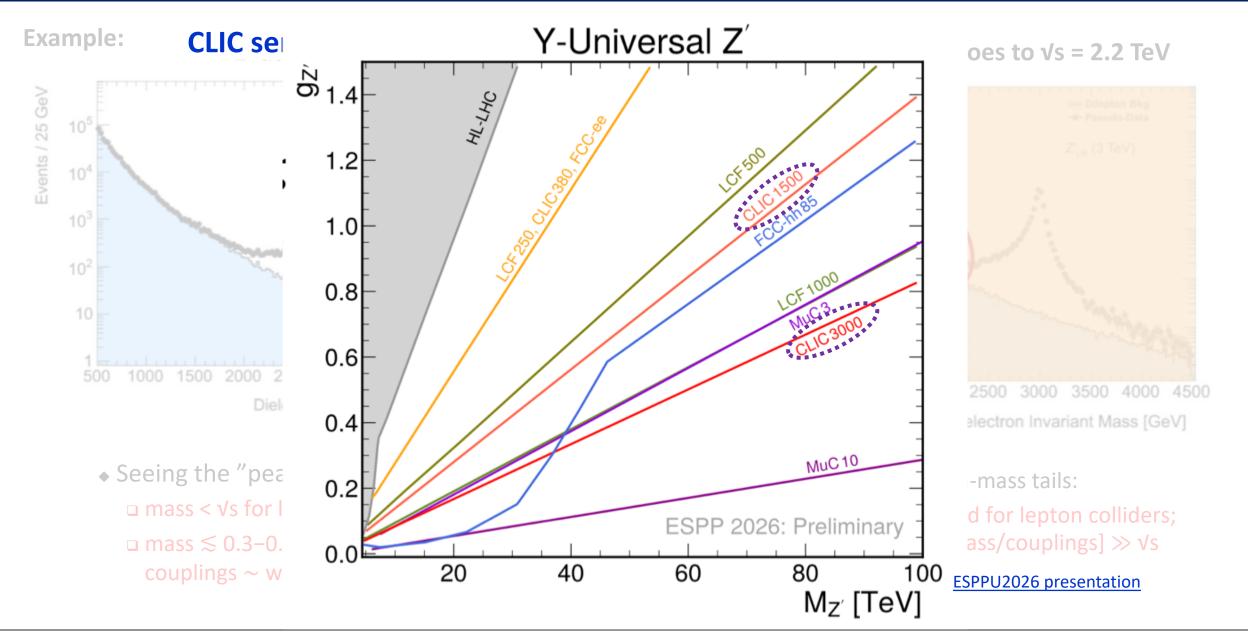
Background

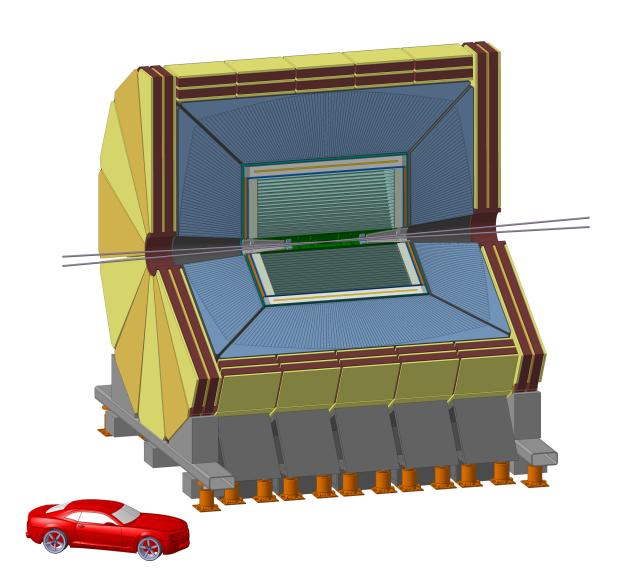



Note: Vector Boson Fusion diagrams increase with energy. Hotivation to go to even higher energies (μ -Coll)

High Energy Searches, Peak vs. mass tails

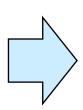

Example:


accelerator only goes to $\sqrt{s} = 2.2 \text{ TeV}$


- ◆ Seeing the "peak". Mass reach:
 - □ mass < √s for lepton colliders
 - □ mass \lesssim 0.3–0.5 \forall s at hadron for couplings \sim weak couplings

- Deviations in high-mass tails:
 - □ Very well suited for lepton colliders; sentitive to [mass/couplings] ≫ vs

High Energy Searches, Peak vs. mass tails


Detectors for e⁺e⁻ colliders

Requirements (case FCC-ee including Tera-Z programme)

Higgs Factory Programme

- At √s=240 and √s=365 GeV collect 2.6M HZ and 150k WW→ H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (2-4 σ) via loop diagrams
- Unique possibility: s-channel e⁺e⁻ → H at 125 GeV

- Momentum resolution $\sigma(p_T)/p_T \simeq 10^{-3} @ p_T \sim 50 \text{ GeV}$
 - $\sigma(p)/p$ limited by multiple scattering \rightarrow minimise material
- Jet $\sigma(E)/E \simeq 3-4\%$ in multijet events for Z/W/H separation
- Superior impact parameter resolution for b, c tagging
- Hadron PID for s tagging

Precision EW and QCD Programme

- 6×10^{12} Z and 2×10^8 WW events
- × 500 improvement of statistical precision on EWPO: $m_{Z_{i}} \Gamma_{Z_{i}} \Gamma_{inv} \sin^{2}\theta_{W_{i}} R_{b}, m_{W_{i}} \Gamma_{W_{i}} ...$
- 2×10^8 tt events: m_{top} , Γ_{top} , EW couplings
- Indirect sensitivity to new physics up to tens of TeV

- Absolute normalisation of luminosity to 10⁻⁴
- Relative normalisation to $\leq 10^{-5}$ (e.g. $\Gamma_{had}/\Gamma_{\ell}$)
 - Acceptance definition to $\mathcal{O}(10 \ \mu \text{m})$
- Track angular resolution < 0.1 mrad
- Stability of B field to 10⁻⁶

Heavy Flavour Programme

- 10^{12} bb, cc, 2×10^{12} $\tau\tau$ (clean and boosted): $10 \times$ Belle II
- CKM matrix, CP measurements
- rare decays, CLFV searches, lepton universality

- Superior impact parameter resolution
- Precise identification and measurement of secondary vertices
- ECAL resolution at few %/VE
- Excellent π^0/γ separation for τ decay-mode identification
- PID: K/π separation over wide p range \rightarrow dN/dx, RICH, timing

Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m_Z
- Axion-like particles, dark photons, Heavy Neutral Leptons
- Long-lifetime LLPs

- Sensitivity to (significantly) detached vertices (mm → m)
 - tracking: more layers, "continous" tracking
 - calorimetry: granularity, tracking capabilities
- Precise timing
- Hermeticity

Requirements (case FCC-ee including Tera-Z programme)

Higgs Factory Programme

- At \sqrt{s} =240 and \sqrt{s} =365 GeV collect 2.6M HZ and 150k WW→ H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (2-4 σ) via loop diagrams
- Unique possibility: s-channel $e^+e^- \rightarrow H$ at 125 GeV

Momentum resolution $\sigma(p_T)/p_T \simeq 10^{-3} \ @ \ p_T \sim 50 \ GeV$ - $\sigma(p)/p$ limited by multiple scattering \rightarrow minimise material

- Jet $\sigma(E)/E \simeq 3-4\%$ in multijet events for Z/W/H separation
- Superior impact parameter resolution for b, c tagging

Precision EW and QCD Programme

- 6×10^{12} Z and 2×10^{8} WW events
- × 500 improvement of statistical precision on EWPO:
 - $m_{Z_1} \Gamma_{Z_2}$, Γ_{inv} , $\sin^2 \theta_{W_1}$, R_b , m_{W_2} , Γ_{W_3} , ...
- 2×10^8 tt events: m_{top} , Γ_{top} , EW couplings
- Indirect sensitivity to new physics

Heavy Flavour Programme

- 10^{12} bb, cc, 2×10^{12} tt (clean and b)
- CKM matrix, CP measurements
- rare decays, CLFV searches, lepton universality

Paris Sphicas, ECFA Chair: Paris Sphicas, ECFA Chair: Paris Sphicas, ECFA Chair: Physical Paris Sphicas, ECFA Chair: Physical Phy osity to 10⁻⁴

- **Superior impact parameter resolution**
- Precise identification and measurement of secondary vertices
- **ECAL** resolution at few %/√E

Hadron PID for s tagging

- Excellent π^0/v separation for τ decay-mode identification
- **PID:** K/ π separation over wide p range \rightarrow dN/dx, RICH, timing

Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m₇
- Axion-like particles, dark photons, Heavy Neutral Leptons
- Long-lifetime LLPs

- Sensitivity to (significantly) detached vertices (mm \rightarrow m)
 - tracking: more layers, "continous" tracking
 - calorimetry: granularity, tracking capabilities
- **Precise timing**
- Hermeticity

Options for subdetector technology

Muon System:

- instrumented return yoke

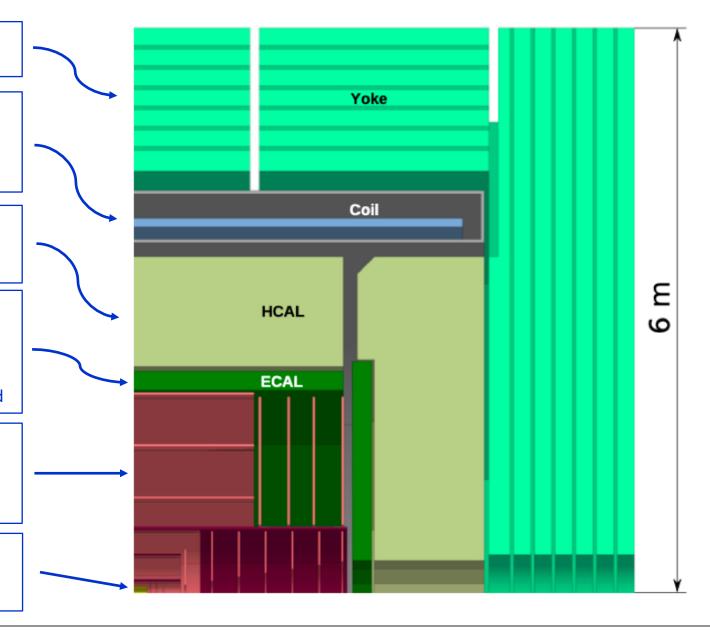
Superconducting Coil:

- Limited to 2 T by beam emittance considerations
- Inside / outside calorimeter system

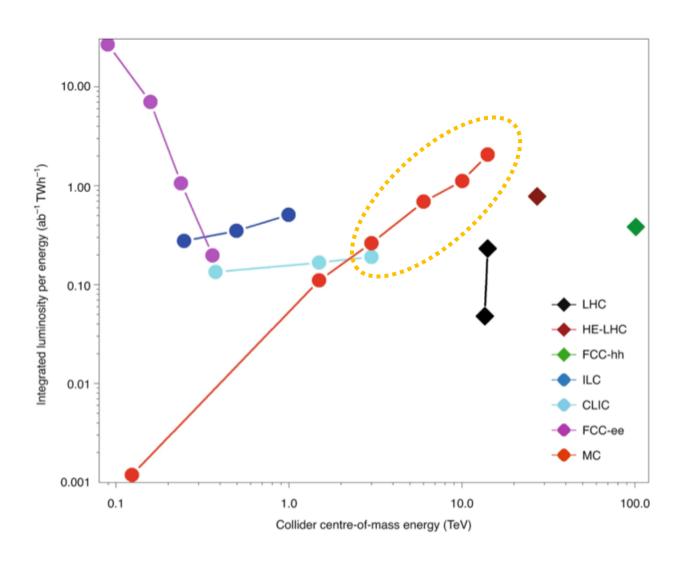
HCAL options:

- Fe / Scintillating tiles
- Dual readout radial fibres

ECAL options:

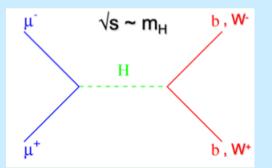

- W/Si sandwich
- Pb / LAr (or alternatively W / LKr)
- Crystal
- Granita: Crystal gains in heavy liquid

Main tracker options:


- Full silicon
- Drift chamber or straw chamber
- Time Projection Chamber (TPC)

Vertex detector

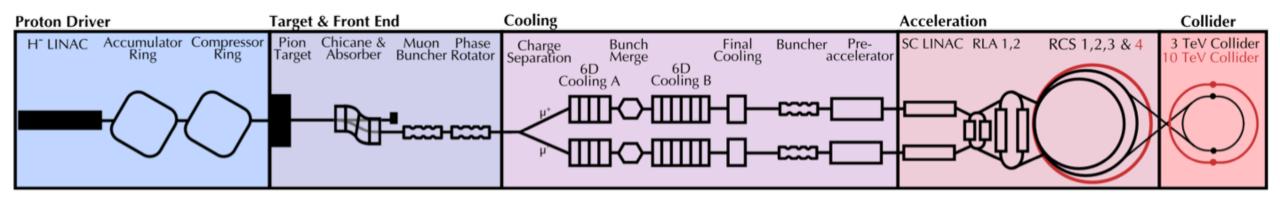
- Thin 50 μm MAPS silicon pixels sensors, 3x3 μm^2 resolution


Muon Colliders

Why muon colliders?

- ◆ Like electrons, muons are elementary
 - □ Collisions at the full energy, small physics background, (E,**p**) conservation
 - ❖ Muons can a priori do all what electrons can do
- Muons are heavy (107 times electron mass)
 - □ Negligible synchrotron radiation and beamstrahlung
 - ❖ Small circular colliders, up to large √s
 - ❖ Excellent energy definition (up to a few 10⁻⁵)
 - □ Sizeable direct coupling to the Higgs boson
 - ❖ Unique s-channel Higgs factory at √s = 125.11 GeV
- Muons are naturally longitudinally polarized (100%)
 - $\ \square$ Because arising from π^{\pm} decays to $\mu^{\pm}\nu_{\mu}$
 - Ultra-precise beam energy and beam energy spread measurement
- Muons eventually decay (τ = 2.2 μ s; c τ = 660 m) to $ev_{\mu}v_{e}$
 - Outstanding neutrino physics programme
 - Muon colliders could be the natural successors of neutrino factories?

Few years back there was talk of an s-channel Higgs factory



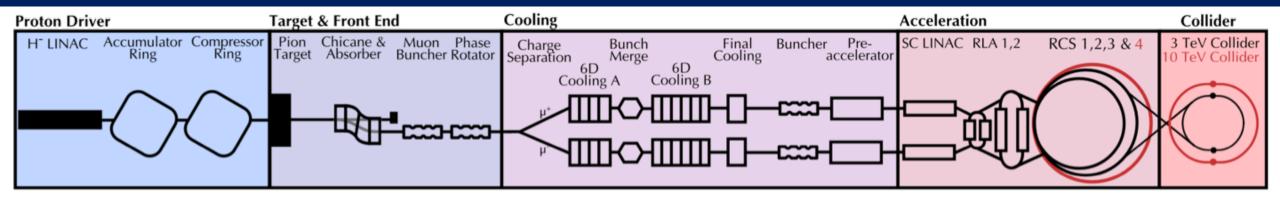
Problematic to get sufficient luminosity at such low energies. Projected event counts only at $\mathcal{O}(10^4)$ after years of operation.

Here, concentrate on High Energy Muon Collliders

Muon Collider Concept

Muons decay, $\tau = \gamma \times 2.2 \,\mu s$: Produce, Collect, Cool, Accelerate, and Collide them fast!

Short, intense proton bunch


Protons produce pions which decay into muons which are captured

Ionisation cooling of muon in matter

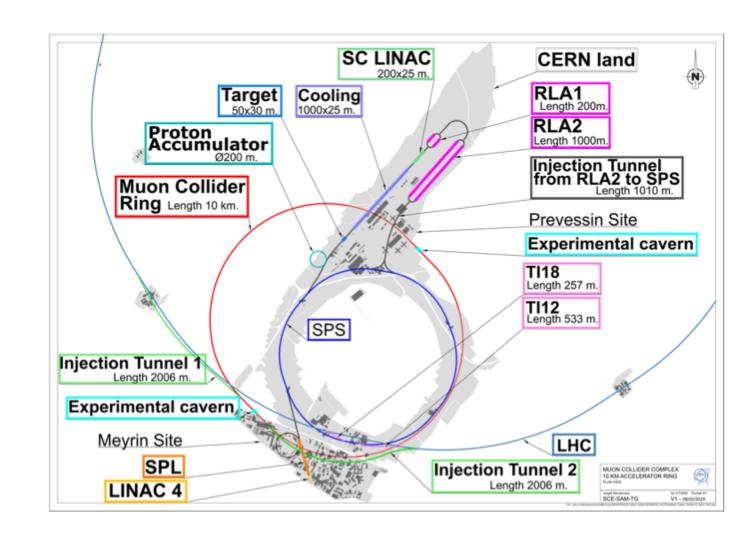
Fast acceleration to collision energy

Muon Collider Challenges

- ◆ Intense proton driver to get adequate number of muons
 - □ 2-4 MW for the desired luminosities
- ◆ Robust target to not evaporate at the first proton bunch
 - □ Re-circulated liquid metal (mercury) or possibly graphite
- ◆ Efficient muon collecor from pion decays
 - □ Focussing by solenoidal magnets of up to 40-55 Tesla strength
- ◆ Unique 6D muon cooling to reduce beam sizes and energy spread
 - □ Alternating multiple-scattering energy loss and re-acceleration
- ◆ Fast acceleration and injection into circular ring
 - □ Multiple acceleration rings of increasing size (RCS = Rapid Cycling Synchrotrons)
- ◆ Background from decaying beam muons
 - □ In detectors and environmental

All these aspects are at the level of intense R&D. Time is needed to demonstrate feasibility

<u>ESPP Comparative Evaluation</u> <u>Working Group</u>, May 2025:

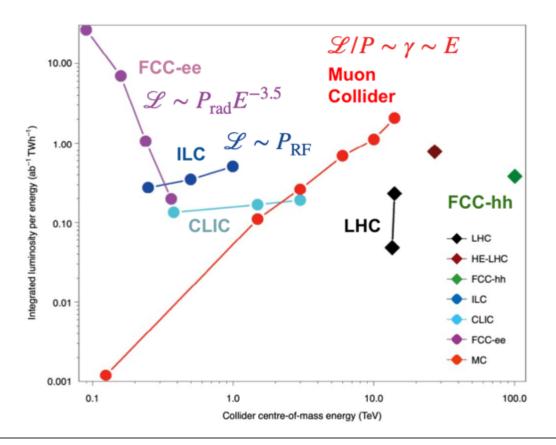

"While progress is being made, the MC has not yet reached a matyrity level that gives sufficient confidence in its feasibility"

CERN specific placement studies

First studies:

- Facility constructed entirely on CERN site except tunnels
- ◆ Three RCS accelerator rings
 - □ One in SPS, two in LHC tunnels
- New 10 km collider ring
 - □ Two experimental sites
- Collision energy considered
 - □ Stages of 3.2 and 7.6 TeV
 - □ 10 TeV maybe possible with better technology
 - ❖ e.g. 16 T dipoles

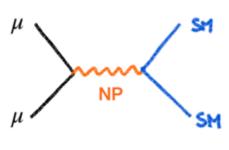
◆ Similar studies also for Fermilab site

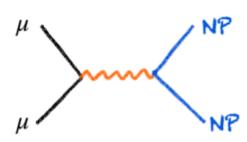

Muon Colliders at the energy frontier

- Muons are elementary
 - □ No energy lost in PDFs, full beam energy available for hard scattering
 - □ From comparison of pp and μμ cross sections
 - * Coloured particles: 100 TeV pp \sim 14 TeV $\mu\mu$
 - ♦ EW particles: 100 TeV pp ~ 8 TeV μμ
 - Energy at which $\sigma_{pp} = \sigma_{\mu\mu}$ EW physics

 Colored physics

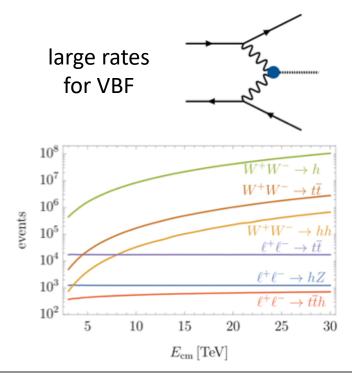
 Delahaye et al. 2019 $\sqrt{s_{\mu}}$ [TeV]

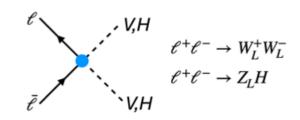

- Very attractive luminosity performance at highest energies
 - □ Luminosity scales with square of energy
 - Muon lifetime increases
 - Transverse beam emmitance decreases

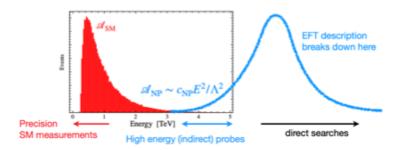


Muon Collider Physics brief Overview

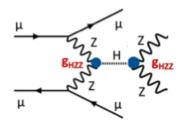
Direct Searches

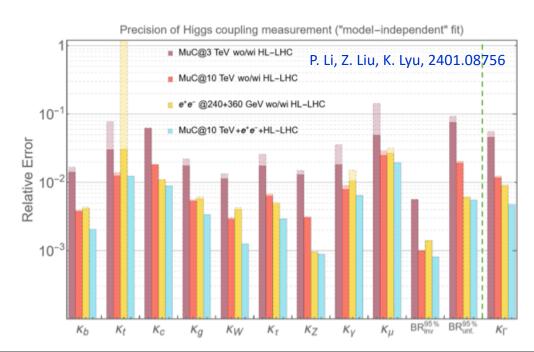

high energy to search for heavy new particles


High-rate SM measurements

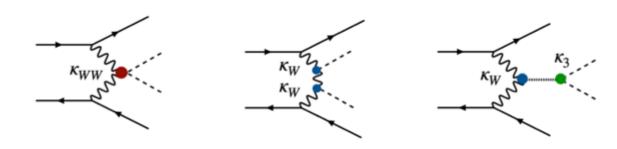

high statistics for precise measurements

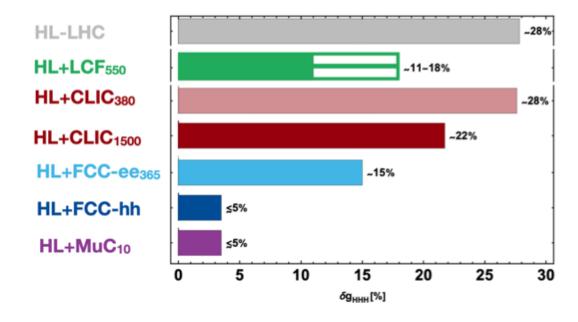
High-energy SM measurements


high energy to look for NP in SM processes

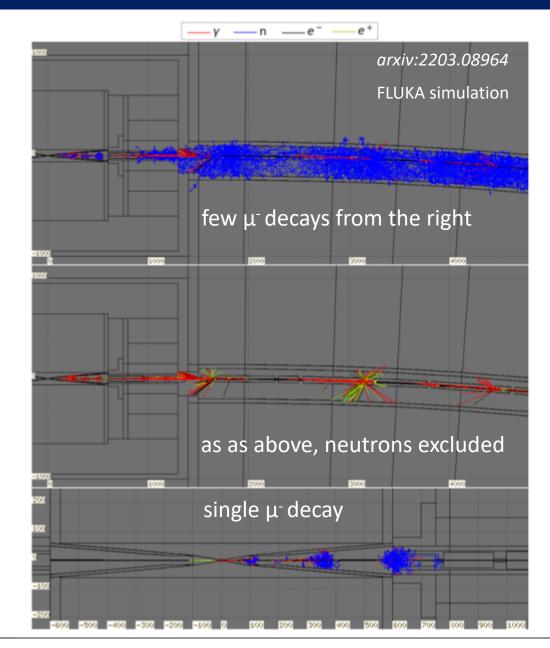


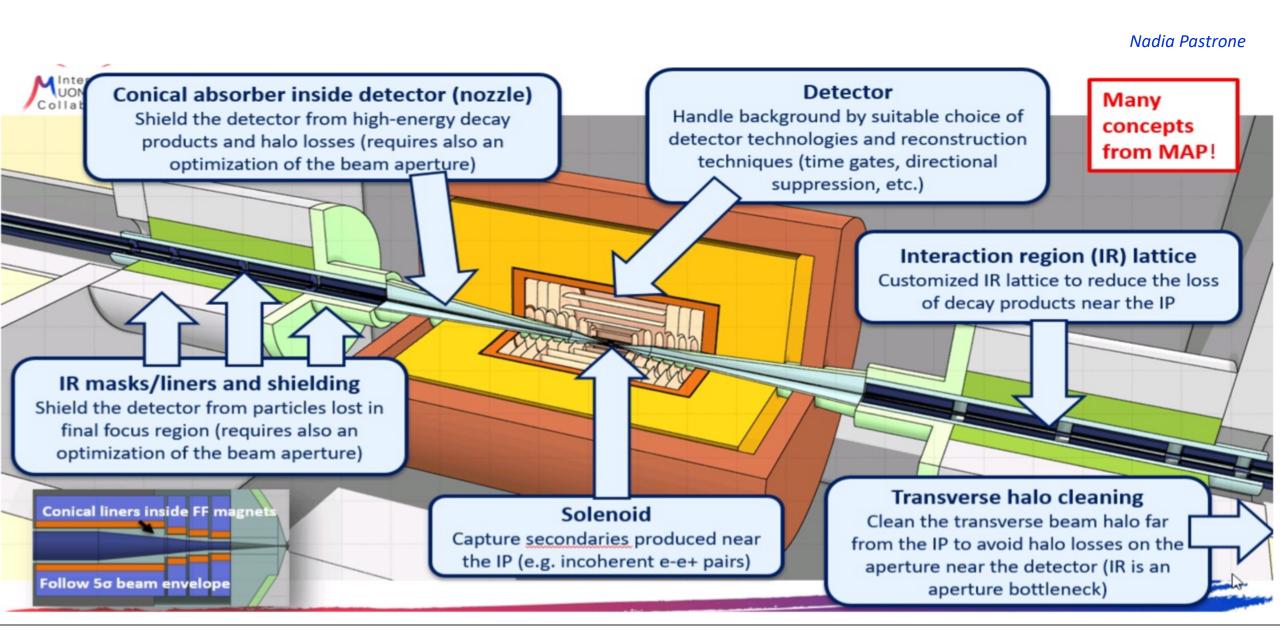
Higgs Physics at Muon Colliders


- ◆ Comprehensive Higgs programme
 - □ With forward muon tagging, can determine Higgs width and hence absolute couplings



□ Precisions: approaching but not beating FCC-ee...

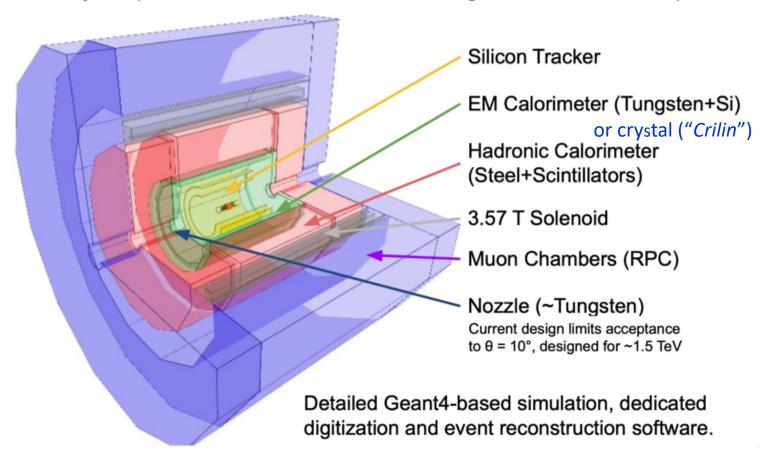

 Very competitive measurement of Higgs selfcoupling via di-Higgs production



Muon Collider Experimental Challenge

- ◆ Beam population of 2 × 10¹² per bunch
- \bullet Huge number, $\mathcal{O}(10^5)$, muon decays per meter of lattice
- ◆ Decay electrons carry enormous energy (>10⁴ TeV/meter)
- ◆ Secondary / tertiary particles interact with lattice creating "Beam induced Background" (BIB)
- ◆ Layout of Machine Detector Interface (MDI) crucial for absorbing as much of BIB as possible and keep it away from detector volume
- ◆ Design for 0.75 TeV beam
 - □ Conical nozzles with 10° opening angle
 - Iimiting forward acceptance; potential conflicting with desire to tag forward muons from ZZ-fusion process
- Designs being development also for 1.5 TeV and 5 TeV beams

Reduction of Beam Induced Backgrounds



Detector Studies

Nadia Pastrone

Multi-purpose detector that targets very broad physics goals.

many components still inherited from CLIC design and can be further optimized

Vertex Detector (VXD)

- 4 double-sensor barrel layers 25x25μm²
- 4+4 double-sensor disks 25x25μm²

Inner Tracker (IT)

- 3 barrel layers 50x50μm²
- 7+7 disks "

Outer Tracker(OT)

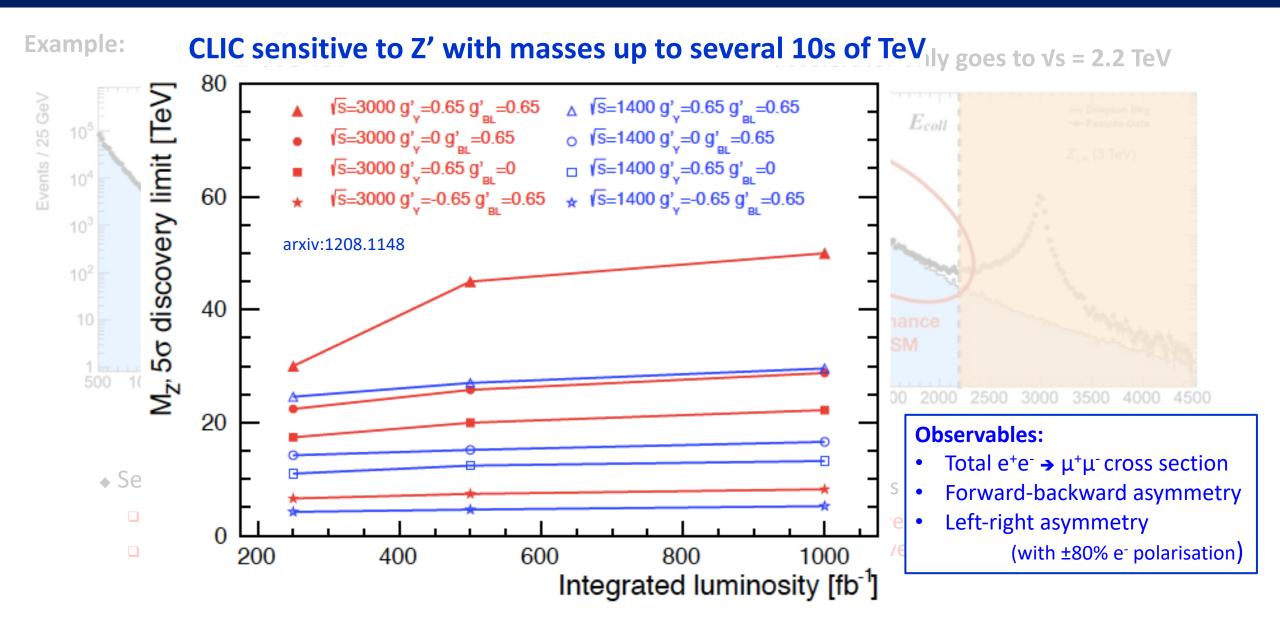
- 3 barrel layers 50x50μm²
- 4+4 disks

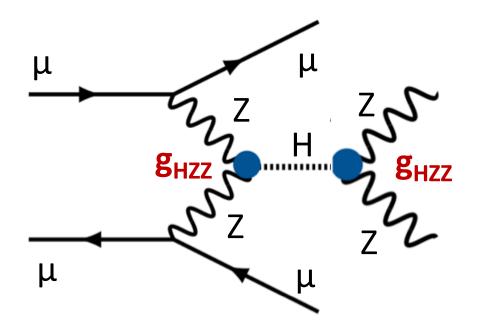
Electromagnetic Calorimeter (ECAL)

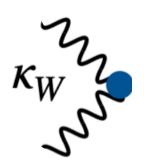
 40 layers W absorber and silicon pad sensors, 5x5 mm²

Hadron Calorimeter (HCAL)

 60 layers steel absorber & plastic scintillating tiles, 30x30 mm²

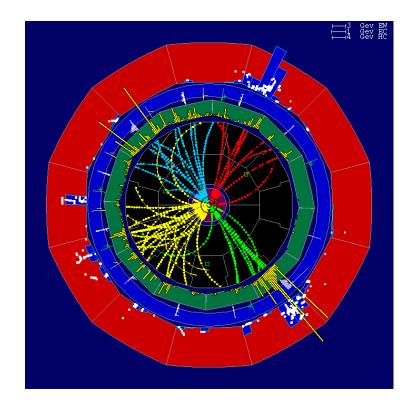

Rounding off


Key Points

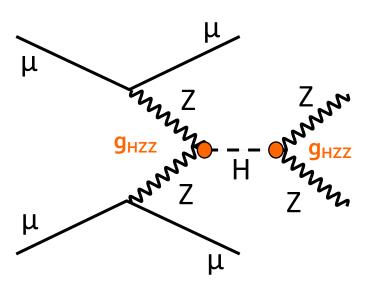

- Electron-positron colliders have played an important role in the development of particle physics research
- ◆ Since LEP, there has been a dramatic development in e⁺e⁻ accelerator technology
 - □ Linear colliders: Energy reach up to $\sqrt{s} = 3$ TeV
 - □ Circular colliders: Increase of instantaneous luminosity by 4-5 orders of magnitude
- With the discovery of a light Higgs boson and the non-discovery (so far) of new heavier states, e⁺e⁻
 communities have been sooming in on the √s < 400 GeV region
 - \Box LCF: Higgs factory at \sqrt{s} = 250 GeV as first stage; \sqrt{s} = 550 GeV in a later stage
 - \Box CLIC : Higgs/top factory at \sqrt{s} = 380 GeV; \sqrt{s} = 1.5 TeV in a later stage
 - □ FCC-ee: Very high luminosity electroweak, Higgs, and top factory at \sqrt{s} = 91, 160, 240, 365 GeV
- ♦ An e⁺e⁻ Higgs factory with $\mathcal{O}(10^6)$ Higgs decays provides sub-% level measurement of (most) Higgs couplings □ Strong New Physics reach!
- ◆ Electroweak precision measurements provide a strong test of SM
 - □ A circular e^+e^- collider with 90 < \sqrt{s} < 400 GeV could improve precision of EW parameters by 1-2 orders of magnitude □ Strong New Physics reach!
 - a strong new rinysies reach:
- \bullet CLIC programme at \sqrt{s} = 1.5 TeV has access to complementary measurements
 - □ Higgs self-coupling, precise top studies, sensitivity to New Physics
- ◆ In a longer-term future, muon colliders may be the way to go for the energy frontier lepton colliders

Thank you!

High Energy Searches, Peak vs. mass tails


e⁺e⁻ collisions

- ◆ Electrons are elementary particles: no underlying event
 - □ Final state has known energy and momentum: (√s, 0, 0, 0)
- ◆ Example: an e⁺e⁻ → W ⁺W⁻ candidate
 - □ Four jets and nothing else
 - □ Total energy and momentum conserved


$$★ E1 + E2 + E3 + E4 = √S$$

$$★ p1x,y,z + p2x,y,z + p3x,y,z + p4x,y,z = 0$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \beta_1^x & \beta_2^x & \beta_3^x & \beta_4^x \\ \beta_1^y & \beta_2^y & \beta_3^y & \beta_4^y \\ \beta_1^z & \beta_2^z & \beta_3^z & \beta_4^z \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix} = \begin{bmatrix} \sqrt{s} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- □ Jet energies (and di-jet masses, m_W) determined analytically by inverting the matrix
 - ❖ No systematic uncertainty related to jet energy calibration
 - A lot of Z are available anyway to calibrate and align everything

