# Decoupling the production and the Acceleration stages Long lived rare isotope beams prodused in batch mode

batch mode.

A computer operation in which a specific task, ticketing, for

example, is performed on a group of records.

An example: 85Kr s-process waiting point



### Nuclear Structure and EDM search

- Explanations of the Baryon Asymmetry of the Universe require additional CP violation
- Permanent EDM of fundamental spin systems are the most sensitive probes for bejond Standard Model CP violation
- Axion like Dark Matter probe?



Observed:<br/> $(n_B - n_{\overline{B}})/n_{\gamma} = 6 \times 10^{-10}$ Sakharov 1967:<br/>B-violation<br/>C & CP-violation<br/>non-equilibrium<br/>JETP Lett.5(1967)24



# **Octupole enhanced atomic EDM moment**





Haxton & Henley; Auerbach, Flambaum & Speyak; Hayes, Friar & Engel; Dobaczewski & Engel

|                                                | <sup>223</sup> Rn | <sup>223</sup> Ra | <sup>225</sup> Ra | <sup>223</sup> Fr | <sup>225</sup> Ac | <sup>229</sup> Pa | <sup>199</sup> Hg | <sup>129</sup> Xe |
|------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| t <sub>1/2</sub>                               |                   | 23.2 m            | 11.4 d            | 14.9 d            | 22 m              | 10.0 d            | 1.5 d             |                   |
| Ι                                              | 7/2               | 3/2               | 1/2               | 3/2               | 3/2               | 5/2               | 1/2               | 1/2               |
| $\Delta e_{th}$ (keV)                          | 37                | 170               | 47                |                   | 75                | 49                | 5                 |                   |
| $\Delta E_{exp}$ (keV)                         |                   |                   | 50.2              | 55.2              | 160.5             | 40.1              | 0.22              |                   |
| 10 <sup>5</sup> S ( <i>e</i> fm <sup>3</sup> ) | 1000              | 400               | 300               | 500               | 900               | 12000             | -1.4              | 1.75              |
| $10^{28} \mathrm{d_A}(e\mathrm{cm})$           | 2000              | 2700              | 2100              | 2800              |                   | 30000             | -5.6              | 0.8               |

Octupole Enhancement

Cannot be transported with the present SPES infrastructure

HIE-ISOLDE for  ${}^{223}Fr \sim 2x10^6 s^{-1}$ SPES for  ${}^{229}Pa$  by  ${}^{232}Th(p,4n)$   $I \approx 10^{16} atoms in 10 days$ SPIRAL2 (Linag) for  ${}^{229}Pa$  by  ${}^{232}Th(p,4n)$ 



#### 30000 more sensitive then <sup>199</sup>Hg

 $S_{\text{intr}} \sim eZA\beta_2\beta_3$   $S_{\text{lab}} \sim eZA^{2/3}\beta_2\beta_3^2/\Delta E$   $\beta_2,\beta_3\sim 0.1$ 

Haxton & Henley; Auerbach, Flambaum & Speyak; Hayes, Friar & Engel; Dobaczewski & Engel

|                                                | <sup>223</sup> Rn | <sup>223</sup> Ra | <sup>225</sup> Ra | <sup>223</sup> Fr | <sup>225</sup> Ac | <sup>229</sup> Pa | <sup>199</sup> Hg | <sup>129</sup> Xe |
|------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| t <sub>1/2</sub>                               |                   | 23.2 m            | 11.4 d            | 14.9 d            | 22 m              | 10.0 d            | 1.5 d             |                   |
| Ι                                              | 7/2               | 3/2               | 1/2               | 3/2               | 3/2               | 5/2               | 1/2               | 1/2               |
| $\Delta e_{th}$ (keV)                          | 37                | 170               | 47                |                   | 75                | 49                | 5                 |                   |
| $\Delta E_{exp}$ (keV)                         |                   |                   | 50.2              | 55.2              | 160.5             | 40.1              | 0.22              |                   |
| 10 <sup>5</sup> S ( <i>e</i> fm <sup>3</sup> ) | 1000              | 400               | 300               | 500               | 900               | 12000             | -1.4              | 1.75              |
| $10^{28} \mathrm{d_A}(e \mathrm{cm})$          | 2000              | 2700              | 2100              | 2800              |                   | 30000             | -5.6              | 0.8               |

# s-process nucleosynthesis and stellar n-flux

Stellar nucleosynthesis: the s process



Gallino et al., Ap. J. 497 (1998)

In massive AGB: <sup>87</sup>Rb

# Indirect Determination of Cross Sections Surrogate Reactions



# <sup>85</sup>Kr(d,p $\gamma$ )<sup>86</sup>Kr for <sup>85</sup>Kr(n, $\gamma$ ) capture rate

#### $^{85}$ Kr + CD<sub>2</sub> 10 MeV/n & HELIOS I=10<sup>6</sup> pps

HELIOS: Solenoidal magnetic spectrometer with 2.0 T field

For protons: position sensitive Si array

For gammas: Apollo scintillator array, 5 LaBr and 15 Csl











# Excitation spectrum (coincidence $p-\gamma$ )

# <sup>85</sup>Kr (10 MeV/n) -> CD<sub>2</sub> I=10<sup>6</sup> pps





 $\gamma$  energy [keV]

#### THE <sup>60</sup>FE

<sup>60</sup>Fe half life is 2,62•10<sup>6</sup> y

A high <sup>60</sup>Fe/<sup>59</sup>Fe would represent a smoking gun for stellar nucleosynthesis

There is the need of two neutron capture especially passing through the <sup>59</sup>Fe that is a branching point due to its half life of 44.5 days. Observed in the galactic disk by INTEGRAL, <u>in meteoritic solar grains</u> and in oceanic sediments 100 million of years old.



Production source under discussion and several candidates have been proposed: AGB, supernova core-collapse ....

|                                    | AGB                                              | SNII                 | AGB/SNII |
|------------------------------------|--------------------------------------------------|----------------------|----------|
| <sup>26</sup> Al                   | $2.7 	imes 10^{-13} \ 4.3 	imes 10^{-13} \ 1.56$ | $1.1 	imes 10^{-10}$ | 0.2%     |
| <sup>60</sup> Fe                   |                                                  | $1.3 	imes 10^{-11}$ | 3%       |
| <sup>60</sup> Fe/ <sup>26</sup> Al |                                                  | 0.117                | 13.3     |

Production rates (M $_{\odot}/Myr)$  of  $^{26}Al$  and  $^{60}Fe$  calculated from AGB and SN models

# Batch Mode Beams: <sup>44</sup>Ti(alpha,p)<sup>47</sup>V

- <sup>44</sup>Ti, <sup>56</sup>Ni, <sup>68</sup>Ge, <sup>72</sup>Se, <sup>82</sup>Sr, <sup>88</sup>Zr
- Reaction used for the production:
- <sup>46</sup>Ti (p,p2n) <sup>44</sup>Ti T  $_{\frac{1}{2}} = 47.3y$
- <sup>58</sup>Ni (p,p2n) <sup>56</sup>Ni  $T_{\frac{1}{2}} = 6.1d$
- ${}^{70}\text{Ge}(p,p2n) \,{}^{68}\text{Ge}$  T  ${}_{\frac{1}{2}} = 288\text{d}$
- <sup>74</sup>Se (p,p2n) <sup>72</sup>Se  $T_{\frac{1}{2}} = 8.5d$
- <sup>84</sup>Sr (p,p2n) <sup>82</sup>Sr  $T_{\frac{1}{2}} = 25.5d$
- <sup>88</sup>Zr (p,p2n) <sup>88</sup>Zr T  $_{\frac{1}{2}} = 83.4d$
- $\bullet$  Proton beam, energy of 40-45 MeV from LNL SPES cyclotron. I up to 100-200  $\mu A.$



Ti production (color- coded) versus T and density in the supernova shock. Six regions appear where different nuclear rates play primary roles in determining the Ti yield



Istituto Nazionale di Fisica Nucleare

- ${}^{46}$ Ti(p,p2n) ${}^{44}$ Ti T<sub>1/2</sub>=47.3a
- $N(t) = 1.4 \quad 10^{16}$  atoms (10 days irradiation).
- $dN/dt = -\lambda N(t) = 6.6 \ 10^6 \ Bq$
- Dose =  $2.2 \ 10^{-5} \text{ Gy/h}$
- **I=3 10**<sup>7</sup> ions/s on target (previous 10^4)
- ${}^{58}$ Ni(p,p2n) ${}^{56}$ Ni  $T_{1/2}=6.1$ d
- $N(t) = 2.6 \quad 10^{15}$  atoms (10 days irradiation).
- $dN/dt = -\lambda N(t) = 3.4 \ 10^9 \ Bq$
- Dose = 0.05 Gy/h
- **I=3 10**<sup>6</sup> ions/s on target (previous 10^4)

- ${}^{70}\text{Ge}(p,p2n){}^{68}\text{Ge}$  T<sub>1/2</sub>=288d
- $N(t) = 2.7 \quad 10^{17}$  atoms (10 days irradiation).
- $dN/dt = -\lambda N(t) = 7.3 \ 10^9 \ Bq$
- Dose = 0.16 Gy/h
- **I=4 10<sup>8</sup>** ions/s on target (previous 10^4)
- $^{74}$ Se(p,p2n) $^{72}$ Se  $T_{1/2}$ =8.5d
- $N(t) = 3.2 \quad 10^{14}$  atoms (10 days irradiation).
- $dN/dt = -\lambda N(t) = 3.4 \ 10^9 \ Bq$
- Dose =  $5.1 \ 10^{-4} \ \text{Gy/h}$
- I=5 10<sup>5</sup> ions/s on target (previous  $10^{4}$ )

Istituto Nazionale di Fisica Nucleare



 Radioactive beam estimates using a static target. •  ${}^{46}\text{Ti}(p,p2n){}^{44}\text{Ti}$  T<sub>1/2</sub> =47.3 y  $I = 3 \ 10^7$  ions/s on target •  ${}^{58}Ni(p,p2n){}^{56}Ni$   $T_{1/2} = 6.1 d$  $I=3 \ 10^6$  ions/s on target •  ${}^{70}\text{Ge}(p,p2n){}^{68}\text{Ge}$  $T_{1/2} = 288d$  $I = 4 \ 10^8$  ions/s on target •  $^{74}$ Se(p,p2n) $^{72}$ Se  $T_{1/2} = 8.5$ d  $I = 5 \ 10^5$  ions/s on target •  ${}^{84}Sr(p,p2n){}^{82}Sr$   $T_{1/2} = 25.5d$  $I = 7 \ 10^8$  ions/s on target  $I = 7 \ 10^7$  ions/s on target •  ${}^{88}Zr(p,p2n){}^{88}Zr$   $T_{1/2}=83.4d$ 



GANIL – PAC Workshop – Caen 18 October 2019

Istituto Nazionale di Fisica Nucleare