

The PRISMA-FIDES experiment at LNL includes 2 lines of research

Quasi-elastic reactions nucleon-nucleon correlations, subbarrier transfer, coupling to fusion, n-rich isotope production and nuclear structure studies using the magnetic spectrometer PRISMA

Heavy-Ion fusion reactions

near V_B and at E $\ll V_B$ using the set-up **PISOLO** based on an electrostatic beam separator PRISMA-FIDES

"Heavy-ion reactions from grazing collisions to complete fusion"

Continuation experiment for the years 2022-2024

GROUP COMPOSITION

L. Corradi (100%, Resp. Naz.), E.Fioretto (100%), A.M. Stefanini (ass. senior) (INFN - LNL)

2.0 FTE

```
G.Montagnoli (100%, Resp. Loc.), M.Del Fabbro (100%), F.Scarlassara (100%)
(Univ. and INFN – Padova)
3.0 FTE
```

Collaboration with the Gamma group for the PRISMA-AGATA campaign

Some of the most recent scientific results

Contents lists available at ScienceDirect

Physics Letters B

Evidence of proton-proton correlations in the ¹¹⁶Sn +⁶⁰Ni transfer reactions

L. Corradi ^{a,*}, S. Szilner ^{b,*}, G. Pollarolo ^c, T. Mijatović ^b, D. Montanari ^d, E. Fioretto ^a, A. Goasduff ^a, D. Jelavić Malenica ^b, G. Montagnoli ^d, A.M. Stefanini ^a

Measured with PRISMA a complete excitation function for both neutron and proton transfers at bombarding energies from above to well below the Coulomb barrier

Data have been compared with microscopic calculations for neutrons and one proton transfer and with the GRAZING code for protons

For two proton transfer found large enhancement factors indicating strong nucleon-nucleon correlations

Transfer reactions in ²⁰⁶Pb + ¹¹⁸Sn: From quasielastic to deep-inelastic processes

J. Diklić,¹ S. Szilner¹,^{*} L. Corradi,^{2,†} T. Mijatović,¹ G. Pollarolo,³ P. Čolović,¹ G. Colucci,^{4,5} E. Fioretto,² F. Galtarossa,⁴ A. Goasduff,² A. Gottardo,² J. Grebosz,⁶ A. Illana,^{2,7} G. Jaworski,⁵ M. Jurado Gomez,⁸ T. Marchi,² D. Mengoni,⁴ G. Montagnoli,⁴ D. Nurkić,⁹ M. Siciliano,^{2,10} N. Soić,¹ A. M. Stefanini,² D. Testov,⁴ J. J. Valiente-Dobón,² and N. Vukman¹

Measured with PRISMA an excitation function at two angular settings for multinucleon transfers at bombarding energies from above to well below the Coulomb barrier

At high energies a detailed study of the transition from quasi-elastic to deep inelastic processes as function of A, Z, Q-values of the reaction products has been done

Fusion of ¹²C + ²⁴Mg at extreme sub-barrier energies

G Montagnoli^{1,*}⁽⁰⁾, A M Stefanini²⁽⁰⁾, C L Jiang³,

K Hagino⁴⁽⁰⁾, F Niola¹, D Brugnara^{1,2}, P Čolović⁵,

IOP Publishing

J. Phys. G: Nucl. Part. Phys. 49 (2022) 095101 (11pp)

Journal of Physics G: Nuclear and Particle Physics

https://doi.org/10.1088/1361-6471/ac7edd

Measurements of **fusion cross sections** for ${}^{24}Mg+{}^{12}C$ have been extended down to 4µb, confirming the presence of hindrance already at ~0.75mb.

The S-factor develops a clear maximum that is nicely fitted using both an empirical interpolation in the spirit of the adiabatic model, and the hindrance parametrisation

These results serve as a base for the understanding of the astrophysics reaction networks responsible for the energy production and elemental synthesis in **stellar environments**.

Sub-barrier fusion in ¹²C + ^{26,24}Mg: Hindrance and oscillations

A. M. Stefanini[®],¹ G. Montagnoli,² M. Del Fabbro,^{2,3} D. Brugnara[®],¹ G. Colucci,⁴ L. Corradi,¹ J. Diklić[®],⁵
E. Fioretto,¹ F. Galtarossa[®],² A. Goasduff[®],¹ M. Mazzocco,² J. Pellumaj[®],^{1,3} E. Pilotto,¹ L. Zago,¹ and I. Zanon[®],¹ INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
²Dipartimento di Fisica e Astronomia Università di Padova and INFN, I-35137 Padova, Italy
³Dipartimento di Fisica e Scienze della Terra Università di Ferrara, I-44122 Ferrara, Italy
⁴Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa, Poland
⁵Ruđer Bošković Institute, HR-10002 Zagreb, Croatia

The S factor maximum of ${}^{12}C + {}^{26}Mg$ is narrow and at lower energy. Oscillations appear below the barrier

Systematics of threshold energies for hindrance in light systems

The Prisma-Agata campaign

157 days of beam on target carried out successfully since May 2022

Highlights : The Tiniest Superfluid Circuit in Nature

Search for a nuclear Josephson effect - PRISMA-AGATA experiment Feb. 2023

A first challenging experiment has been carried out at LNL looking at the possible existence of a gamma radiation emitted via a **dipole oscillation D** generated by the two neutron transfer process in the ¹¹⁶Sn+⁶⁰Ni reaction at energies below the Coulomb barrier. This would evidence that two colliding nuclei behave like a Josephson junction, a device in which **Cooper pairs tunnel through a barrier between two superfluids**

¹¹⁶Sn beam PIAVE+ALPI, E_{lab} = 452.5 MeV, I = 3 pnA target thickness 300 µg/cm2, Prisma θ_{lab} = 20°

Data taken at INFN – Laboratori Nazionali di Legnaro Spokespersons L.Corradi, S.Szilner

Highlights : sub-barrier fusion cross sections using AGATA+Euclides

The existence of fusion hindrance in the light heavy-ion systems of astrophysical interest is not well established

The experiment has been performed, using the system ${}^{12}C$ + ${}^{30}Si$ in inverse kinematics

Highlights : high resolution detection of neutron-rich fission fragments

FIRST AGATA PHYSICS CAMPAIGN

A. Gottardo et al.

Recent detector developments of the PRISMA group

PRISMA : development of a more efficient MWPPAC

E.Fioretto

Distance from centre of wire

Detector efficiency improved from less than 1% to about 43% for ¹⁶O @ 50 MeV

Y position determination of the IC via drift time method

A matrix of Y_{MWPPAC} vs Y_{IC} has been constructed, showing a quite good linearity and demonstrating the good planarity of the ion trajectories at the focal plane

The Y-Y correlation should help in improving the Z resolution of the IC because one can partially correct for the tilted trajectories

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A gas detection system for fragment identification in low-energy heavy-ion collisions

E. Fioretto^{a,*}, F. Galtarossa^{a,b}, L. Corradi^a, H.M. Jia^c, F. Collini^d, T. Marchi^e, G. Colucci^d,

T. Mijatović^f, G. Montagnoli^d, D. Montanari^g, F. Scarlassara^d, A.M. Stefanini^a, E. Strano^d,

The ¹⁹⁷Au+¹³⁰Te experiment with the PRISMA spectrometer

New set-up for fusion studies with SPES beams detecting ER at 0°

PRISMA planned activity until 2025

Continue the campaign of measurements with PRISMA+AGATA in collaboration with international groups using the TAP beams

Perform measurements using the being developed 238U beams (second half of 2025)

Continue the study of multinucleon transfer processes ar sub-barrier energies

Continue the study of hindrance phenomena in deep sub-barrier fusion reactions for suitable medium-light ion reactions

Carry on the data analysis of the various systems already measured or scheduled

Prisma : the near future

Heavy ion transfer reactions at very forward angles

The successful implementation of ion detection with the PRISMA spectrometer placed at forward angles using inverse kinematic reactions at sub-barrier energies (in the figure an example is shown of transfer probabilites as function of the distance of closest approach) paves the road for measurements with even higher sensitivity, especially needed when dealing with low intensity radioactive beams

Improving existing techniques and developing new devices for a complete ion identification in transfer reactions at very forward angles is important for a variety of challenging studies

L.Corradi et al., PLB834(2022)137477 Montanari et al., PRL113(2014)052501

nucleon-nucleon correlations at sub-barrier energies, nuclear Josephson effect, onset of density dependent forces in neutron rich nuclei, neutron density profile

Population of neutron-rich heavy nuclei near N=126 shell and in the transactinide region

Options to be investigated for ion detection at very forward angles

Especially with the SPES beams one can take advantage of inverse kinematic reactions, due to the large detection efficiency (kinematic boost) and high A,Z,Q resolution (high ion kinetic energy). However, at forward angles one faces serious problems, like the large kinematic spread and the primary beam rejection

One may think to a (first stage) separator which can be used not only in stand-alone configuration, but designed in such a way to collect and focus ions of the wanted kind (like the deep inelastic ones) for further manipulation, e.g. followed by a high resolution PRISMA-like device for full ion identification or to stop the products to study their decays

Ion detection with gas filled magnetic spectrometers at very forward angles

The option of using a magnetic spectrometer in a gas filled mode for deep inelastic processes has been studied and the results suggest that it is worth to pursue further developments

