Nuclear Physics Mid Term Plan in Italy

LNL – Session Legnaro (Pd), April <u>11th-12th 2022</u>

Nuclear Physics Mid Term PLAN @ LNL Summary & conclusions

Andrea Gottardo

LNL session (11-12 April 2022):

https://agenda.infn.it/event/28738/

About 120 researchers
 have joined the working
 groups, about 40% from
 abroad

 About 280 researchers attended the meeting, 82 in presence

Working group (Chair)	Торіс	S	peaker
Nuclear Astrophysics (R. Depalo)	 Nucleosynthesis up to the iron peak Nucleosynthesis of trans-iron elements Nuclear astrophysics theory 	A T S	. Caciolli Kurtukian Nieto . Cristallo
Nuclear Structure (D. Mengoni)	 Shell evolution Light to medium-mass exotic nuclei N~Z nuclei and isospin symmetry Deformation and collective states 	A S S F	. Gottardo . Bottoni . M. Lenzi C. Crespi
Nuclear Reactions and Dynamics (T. Marchi)	 Physics overview: alpha clustering, dynamics and structure, termodynamics, equation of state, collective motions Mechanisms/Tools: fusion-evaporation and pre-equilibrium em Mechanisms/Tools: transfer, particle spectroscopy Mechanisms/Tools: fission and sub-barrier fusion 	F ission K L M	Gulminelli & D. Dell'Aquila . Mazurek & M. Cicerchia . Gasques & F. Galtarossa . Caamaño-Fresco & I. Zanon
Applications (G. Pupillo)	 Nuclear cross sections measurements and modelling for direct radionuclide production and neutron beam lines at SPES ISOL and laser applications at the SPES facility Development, characterization and modifications of materials f applied nuclear physics 	L M Screensl	. Mou I. Ballan I. Campostrini not

Eur. Phys. J. Plus (2023) 138:709 https://doi.org/10.1140/epjp/s13360-023-04249-x Regular Article The European Physical Journal Plus

Check for updates

Nuclear physics midterm plan at Legnaro National Laboratories (LNL)

M. Ballan¹, S. Bottoni^{2,3}, M. Caamaño⁴, A. Caciolli^{5,6}, M. Campostrini¹, M. Cicerchia¹, F. C. L. Crespi^{2,3}, S. Cristallo^{7,8}, D. Dell'Aquila^{9,10}, R. Depalo^{2,3}, E. Fioretto¹, F. Galtarossa^{1,5}, L. R. Gasques¹¹, A. Gottardo¹, F. Gramegna¹, F. Gulminelli¹², T. Kurtukian-Nieto¹³, M. La Cognata¹⁰, S. M. Lenzi^{5,6}, T. Marchi¹, K. Mazurek¹⁴, D. Mengoni^{5,6,a}, L. Mou^{1,15}, R. Nania¹⁶, G. Pupillo¹, J. J. Valiente-Dobón^{1,b}, I. Zanon^{1,15}, L. Acosta¹⁷, M. A. G. Alvarez¹⁸, A. Andrighetto¹, A. Arazi¹⁹, A. Arzenton^{1,20}, M. Assié²¹, M. Bagatin⁵, F. Barbaro^{6,22}, C. Barbieri^{2,3}, S. Barlini^{23,24}, L. Basiricò²⁵, G. Battistoni³, D. Beaumel²⁰, M. A. Bentley²⁶, G. Benzoni³, S. Bertoldo¹, C. Bertulani²⁷, A. Bonasera^{10,28}, A. Camaiani²⁹ L. Canton⁶, V. Capirossi³⁰, M. P. Carante^{22,31}, C. Carraro¹, S. M. Carturan^{1,5}, G. Casini²³, F. Cavanna³², L. Centofante¹, E. R. Chávez¹⁷, A. Chbihi³³, M. Ciemała¹⁴, S. Cisternino^{1,34}, A. Colombi^{22,31}, M. Colucci^{2,3}, A. Compagnucci³⁵, S. Corradetti¹, L. Corradi¹, G. D'Agata^{10,36}, G. de Angelis¹, L. De Dominicis^{1,5}, D. De Salvador⁵, E. DeFilippo³⁷ M. Del Fabbro^{6,15}, A. Di Nitto^{38,39}, S. Ditalia Tchernij⁴⁰, A. Donzella^{31,41}, T. Duguet^{29,42}, J. Esposito¹, F. Favela¹⁷ J. P. Fernández-García¹⁸, F. Flavigny⁴³, A. Fontana³¹, B. Fornal¹⁴, J. Forneris⁴⁰, B. Fraboni²⁵, J. Frankland³³, E. Gamba^{2,3}, E. Geraci^{36,37}, S. Gerardin⁵, S. A. Giuliani⁴⁴, B. Gnoffo^{36,37}, F. Groppi^{2,3}, D. Gruyer⁴², F. Haddad^{45,46} J. Isaak⁴⁷, M. Kmiecik¹⁴, A. Koning⁴⁸, L. Lamia^{10,36}, N. Le Neindre³³, S. Leoni^{2,3}, A. Lépine-Szily¹¹, G. Lilli¹, I. Lombardo^{36,37}, M. Loriggiola¹, L. Loriggiola¹, M. Lunardon^{5,6}, G. Maggioni^{1,5}, A. Maj¹⁴, S. Manenti^{2,3}, M. Manzolaro¹, L. E. Marcucci^{49,50}, D. J. Marín-Lámbarri¹⁷, E. Mariotti²⁰, G. Martin Hernandez⁵¹, C. Massimi^{16,25}, P. Mastinu¹, M. Mazzocco^{5,6}, A. Mazzolari⁵², T. Mijatović⁵³, T. Mishenina⁵⁴, K. Mizuyama⁵⁵, A. Monetti¹, G. Montagnoli^{5,6}, L. Morselli^{1,15}, L. Moschini⁵⁶, E. Musacchio Gonzalez¹, A. Nannini²³, Y. F. Niu⁵⁷, S. Ota⁵⁸, A. Paccagnella⁵⁹, S. Palmerini^{8,60}, L. Pellegri⁶¹, A. Perego⁶², S. Piantelli²³, D. Piatti^{5,6}, F. Picollo⁴⁰, M. Pignatari^{63,64} F. Pinna³⁰, S. Pirrone³⁷, R. G. Pizzone¹⁰, M. Polettini^{2,3}, G. Politi^{36,37}, L. Popescu⁶⁵, G. Prete¹, A. Quaranta^{66,67} R. Raabe²⁹, J. P. Ramos⁶⁵, W. Raniero¹, G. G. Rapisarda^{10,36}, F. Recchia^{5,6}, V. Rigato¹, X. Roca Maza^{2,3}, M. Rocchini²³, T. Rodriguez⁴⁴, C. Roncolato¹, D. Rudolph⁶⁸, P. Russotto¹⁰, Á. M. Sánchez-Benítez⁶⁹, D. Savran⁷⁰, D. Scarpa¹, M. Scheck⁷¹, K. Sekizawa^{72,73}, M. L. Sergi^{10,36}, F. Sgarbossa^{1,5}, L. Silvestrin^{5,6}, O. Singh Khwairakpam^{1,2} J. Skowronski^{5,6}, V. Somà⁴², R. Spartà¹⁰, M. Spieker⁷⁴, A. M. Stefanini¹, H. Steiger^{75,76}, L. Stevanato⁶, M. R. Stock⁷⁶, E. Vardaci^{38,39}, D. Verney²¹, D. Vescovi^{7,8,77}, E. Vittone⁴⁰, V. Werner⁴⁷, C. Wheldon⁷⁸, O. Wieland³, K. Wimmer⁷⁰, J. Wyss^{6,79}, L. Zago^{1,5}, A. Zenoni^{31,41}

Nuclear Structure

Nuclear			
nuclear	time 🕰		
Structure	Α	B	С
Light and	γ decay from near-threshold states		γ decay from near-threshold states
medium mass exotic nuclei		Particle decays from cluster states	Nucleon correlations and molecular orbitals
			Isoscalar Giant Monopole Resonance in light deformed nuclei
			Proton excitations and 0+ states in Ar isotopes
N~Z nuclei	Isospin symmetry breaking, shape coexistence – lifetime measurements	Fundamental interactions (precision measurement of mirror beta decay branching ratios)	
		T=0 vs T=	1 p-n pairing
Shell		New theory developments for shell structu	ire
Evolution	Shell-evolution	n around N=50: shape coexistence and gap re	duction towards 78Ni
		Shape coexistence and type II shell evolution around N=60 in Zr, Sr	Lifetimes after transfer reactions for interplay of deformation and single particle
Defermetion			Shell-evolution at N=82 around 132Sn
and Collective modes	GDR/GQR gamma+particle decay, Jacobi shape	PDR (alpha scattering inv. kin. with c beams) and PDR Beta Decay	lifferent stable nuclei and SPES

Richness of phenomena and perfect ground for *pn* interaction:

- Short term opportunities with stable beams (quadrupole collectivity); MED+TED
- Short and mid term (T=0 and quartetting)
- Longer term SiC+TiC beam development (FI)

INFN

Nuclear Physics

Opportunities at LNL

Measure the B(E2) in isobaric triplets

Reactions with stable beams:

- Fusion-evaporation reactions (-2n evaporation channels)
- Reactions with solid ³He targets (³He,n)
- Selected cases may be done in multinucleon transfer with N=Z beam/target combinations utilizing PRISMA

AGATA: High-efficiency, gamma-gamma capability, position sensitivity (essential for high-velocity reactions and line-shapes) NEDA: High-efficiency neutron detection

Doppler-shift methods: Lineshape analysis and Plunger-methods

Shell evolution

- Shell evolution around 78Ni
- Deformation and shape coexistence
- Shell evolution around 132Sn

Limit of observability

Stable beams (fission): corecoupled states and intruders 1+ SPES beams q+ SPES beams : lifetime (plunger or DSAM) after transfer (d,p) , (d,t), coulex on intruder states

Similar approaches for the the regions around 132Sn (~2 order of magn. more intense than currently available at ISOL facilities) key nucleus for physics and astrophysics purposes

Also with higher-I transfer \rightarrow alpha transfer

Transfer reactions – F. Flavigny

Nuclear Physics Mid Term Plan in Italy – LNL Session

11

PRISMA

heavy ions

AGATA

γ-rays

charged particles

Nuclear Reactions and Dynamics. Summary.

12

WG1. Fusion-evaporation and pre-equilibrium emission.

WG2. Direct processes, transfer and particle spectroscopy.

WG3. Fission and sub barrier fusion.

Fission and sub barrier fusion

Fission

- With the upcoming ²³⁸U beam and the increase of beam energy, **transferinduced fission is at hand** for a good set of beam especies.

- Transfer-induced fission can produce **a number of systems with a wide distribution of excitation energy** with a single target and beam combination.

Actinides region: shell effects and dynamics at low excitation energy (transfer-induced-fission, inelastic, etc.).

U beams and dedicated particle detectors are needed

B

C. Rodríguez. Tajes et al., PRC 89 (2014) 024614

INFN

Nuclear Physics Mid Term Plan in Italy/

Gamma-ray detectors at PRISMA focal plane would allow to study long-lived isomeric states.

Summary on Nuclear Astrophysics

Nuclear Physics Mid Term Plan in Italy – LNL Session

Nuclear Physics

- ➔ collaboration with INFN Pg and INAF Teramo
- ➔ 2 LoIs presented at the 3rd SPES workshop in 2016
- ➔ Tests proposed at LNL

- Collaboration with ORNL/Rutgers Univ. (exp) and NSCL (theory)
- ➔ 2 Lols presented at the 3rd SPES workshop in 2016
- Commissioning tests needed with stable beam

Teresa Kurtukian-Nieto, Nuclear Physics Mid Term Plan in Italy – LNL Session

LNF session (1-2 December 2022):

https://agenda.infn.it/event/32709/

• **223 researchers attended the meeting**, 80 in presence

Working group (Chair)	Торіс	
Future possibilities for nuclear physics at DAFNE	 Nuclear physics at DAFNE Femtoscopy at SIDDHARTA and ALICE 	
Charged particle detectors (G. Pasquali, F. Galtarossa, L. Servoli)	 Pulse shape discrimination, silicon carbide detectors, active targets Segmented silicon detectors, heavy ion detection and spectrometers Diamond detectors, emulsions and other techniques 	
Neutron detectors (C. Massimi, A. Gottardo)	 Organic scintillators for neutron detection Detectors for neutron beams and applications Innovative neutron detectors 	
Detectors for medical applications (R. Catalano, P. Cardarelli, M. Lunardon)	 Treatment monitoring and optimisation Dosimetry, quality assurance and radiotherapy X-ray and gamma imaging 	
Targets development for nuclear physics (M. Cavallaro, S. Corradetti)	 Innovative targets for nuclear physics experiments Innovative targets for new production facilities 	
Detectors for gamma/X-radiation (A. Scordo, W. Raniero)	 X-ray detectors Gamma detectors 	
New facilities at LNF, LNL and LNS (A. Di Pietro, A. Gottardo)	 New facilities at Laboratori Nazionali di Legnaro New facilities at Laboratori Nazionali del Secreensho 	

NFŇ

Nuclear Physics Mid Term Plan in Italy/

New experimental setups – Low energy

PHASE A : for definition of the item PHASE B : development of a proposal document.

	Sigla	Description	Timeline
LNL-Low01	MR-TOF-MS	MR-TOF trap for mass measurements	A:2025 B:2026
LNL-Low02	Laser	Collinear laser spectroscopy	A:2025 B: 2026 synergy with ALTO @IJCLab
LNL-Low03	NMR	β-NMR e β-NQR	A:2026
LNL-Low04	β-neutron	Resident neutron array for neutron spectroscopy	A:2023 B:2024-25
LNL-Low05	b-DS	upgrade of b-DS and SLICES	A:2023 B:2024

New experimental setups – Low energy

- Setups for determination of ground-state properties
 - Collinear Laser Spectroscopy
 - New equipment for mass measurement (and beam study): MR-TOF-MS
- Setups for β-decay :
 - New equipment for β-decay studies: neutron detection arrays;
 - TAS;
 - Trap-assisted spectroscopy: b-DS after MR-TOF-MS

Multi-Reflection Time-Of-Flight Mass-Separator

Courtesy of T. Dickel

+ Pure beams

+ Better determination of mother

nuclei spin and parities

+ Better spin-parity assignment using

GT selection rules

- Lower transmission
- Pulsed beam

E. Leistenschneider et al., PRL 120 (2018) 062503 M.P. Reiter et al., PRC 98 (2018) 024310

New experimental setups – Accelerated beams

PHASE A : for definition of the item PHASE B : development of a proposal document

	Sigla	Description	Timeline
LNL-Acc01	GammaRIB	New resident γ -ray array	A:2023/24 B:2024/25
LNL-Acc02	PRISMA gas filled	Gas-filled spectrometer	A:2024 B:2025
LNL-Acc03	Solenoid	Solenoid for light particles after transfer reactions	A:2027 B:2028
LNL-Acc04	SCHIR	SC Heavy ion recoil spectrometer	A:2028 B:2029
LNL-Acc06	Ring	Accumulation ring for exotic nuclei	A:2028 B:long range

New experimental setups – Accelerated beams

- Resident γ-ray array
 Galileo Phase III
- Setups for heavy ions
 - Prisma Gas-Filled
 - Heavy-ion SC separator ring
- Setup for light ions
 - SC solenoid
- Setup for exotic ion storage :
 - Storage ring

Upgrade of the LNL resident γ-ray array

Present Configuration (Phase II):

- 25 Compton-suppressed HPGe
- 10 triple-cluster CS
- $\epsilon_{Y} = 4.5\%$, P/T $\approx 50\%$, no position sensitivity
- Fixed geometry

Desired upgrade (Phase III):

- Variable geometry
- Position sensitivy 5-10 mm
- ε_γ ≈ 10%, P/T ≈ 40 50

How to do it? Discussion on going (new detectors, detectors from GAMMAPOOL, geometry to be carefully studied via GEANT4, founding agencies, ...)

Options to be investigated for ion detection at very forward angles

2004 52/2022 (INFN - LNL)

Heavy ion recoil separator

LONG - term

- 100 % transport efficiency
- Mass resolution > 1/300
- Large acceptance ~ 100 mrad
- Gas-filled mode

Focal plane detector:

- Position sensitivity ~ 1 mrad (scattering angle)
- Particle identification (A, Z)
- Eloss, Time of Flight, Pulse shape
- Time resolution ~ ns
- Energy resolution < 100 keV

Iengoni Nuclear Physics Mid Term Plan in Italy – LNL Session

Conclusions: Physics domain with SPES

So

SPES Low-Energy and Post-Accelerated

Physics Program, thanks to existing or short-term set-ups, is wide and has an impact in bridging towards next generation radioactive-beams facilities

Short-to-Mid Term (<2026) opportunities in enlarging the scope of the set-ups are already being developed

Mid-to-Long Term (>2026) proposed activities will complete the facility and introduce new physics to LNL (ground state properties)

Longer-term (>2030) projects to be evaluated to enrich further the physics program

However Time is running

Iengoni Nuclear Physics Mid Term Plan in Italy – LNL Session

