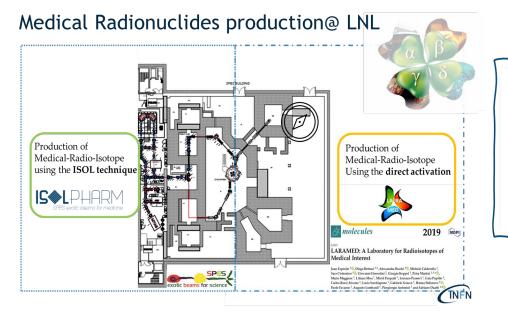

Nuclear Physics Mid Term Plan in Italy

LNL – Session Legnaro, April 11th-12th 2022

Applications @ the LNL Summary

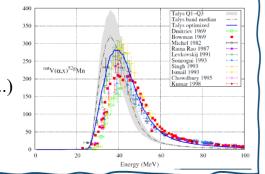
Gaia Pupillo

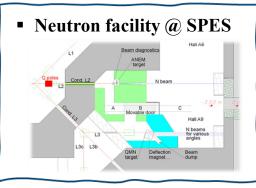
Laboratori Nazionali di Legnaro, INFN-LNL, Padova, Italy



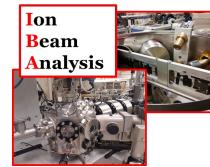
• Nuclear cross sections measurements and modelling for direct radionuclide production and neutron beam lines at SPES (*L. Mou*)

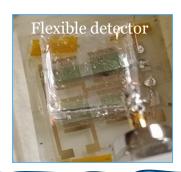
Gaia Pupillo


- ISOL and laser applications at the SPES facility (*M. Ballan*)
- Development, characterization and modifications of materials for applied nuclear physics (*M. Campostrini*)


The SPES facility plays a key-role but also the AN2000 and CN accelerators are essential

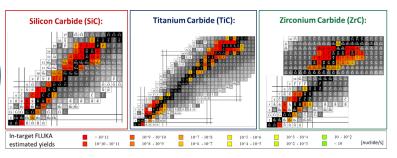
WG1. Nuclear cross sections measurements and modelling for direct radionuclide production and neutron beam lines at SPES.

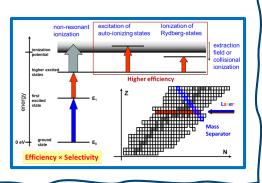

- Development of emerging RNs in Nuclear Medicine (⁶⁷Cu, ⁴⁷Sc, ^{xx}Tb and future RNs: ^{117m}Sn, ¹¹⁹Sb, ^{133,135}La..)
- Modeling of nuclear xs



WG3. Development, characterization and modifications of materials for applied nuclear physics.

- Ion beam micro-analysis for nuclear targets development and cross section measurements for applied nuclear physics
- Ion-solid interaction and radiation damage of materials, detectors and devices
- Novel detectors development and test





WG2. ISOL and laser applications at the SPES facility.

- Laser spectroscopy and applications
- Nuclide production with ISOL for medicine and nuclear physics
- Decay spectroscopy of nuclides of medical interest

Gaia Pupillo

	Phase A	Phase B	Phase C
SPES_	Benchmark-exp_p_30-70MeV		Deuterons_Alpha_beams
direct- activation&	Medical RNs xs_p_30-70MeV		Noutrong hooms
modeling <i>L.Mou</i>	Modeling xs_medical RNs		Neutrons_beams
	Off-line_ exp	On-line _exp	
SPES_			
ISOL&laser M. Ballan	ISOL targets	development Decay spe on ISOL-pro	
IBA&ion- solid-	1 5	Detector lid int & development trons & test	
interaction M. Campostrini	10 - 5 MeV Ion 8	k damage _ Single Large area Irr.	
-1			

Phase A: Activities ready to be performed

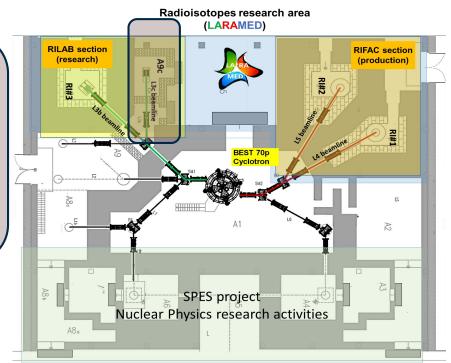
Phase B: Activities still requiring test and feasibility study **Phase C: Activities** requiring R&D and/or infrastructures construction

INFN

Nuclear Physics Mid Term Plan in Italy

1951 2021 infn

Thanks Liliana, Michele, Matteo and our collaborative network..


Consiglio Nazionale delle Ricerche

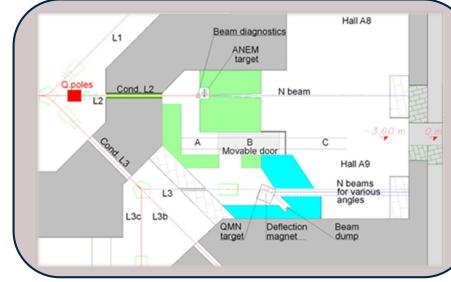
Nuclear cross sections measurements and modelling for direct radionuclide production and neutron beam lines at SPES (L. Mou)

- **Proton-induced nuclear cross sections** measurements for medical RNs:
- **Benchmark experiments** for beam-line characterization with IAEA recommended xs
- **Development of emerging RNs in** Nuclear Medicine (⁶⁷Cu, ⁴⁷Sc, ^{xx}Tb and future RNs: ^{117m}Sn, ¹¹⁹Sb, ^{133,135}La, etc.)
- Possible future use of **deuterons & alpha beams!**

..Importance of co-produced RNs..

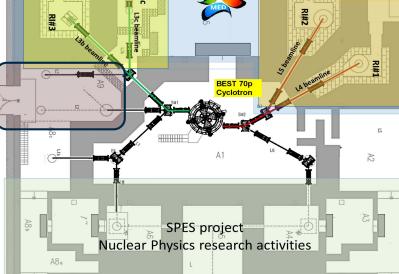
> Modelling of charged particle-induced nuclear cross sections for medical RNs

Nuclear Physics

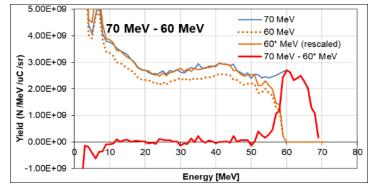


Gaia Pupillo

Nuclear cross sections measurements and modelling for direct radionuclide production and neutron beam lines at SPES (L. Mou)


Neutron facility at SPES \succ

- NEPIR-1 facility:
- > ANEM
 - SEE
- \geq QMN
 - SPARE
 - JUNO
 - SEE
 - n-XS



RIFAC section (production) BEST 70

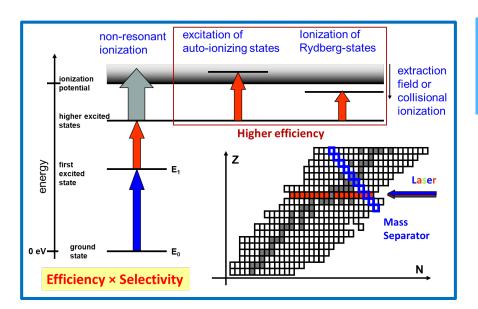
Radioisotopes research area (LARAMED)

NEPIR-0: Pseudo monochromatic *n*-beam

Large & various communities are interested in *n*-induced nuclear physics experiments & applications

INFN

Nuclear Physics Mid Term Plan in Italy

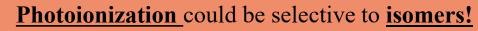

RILAB section

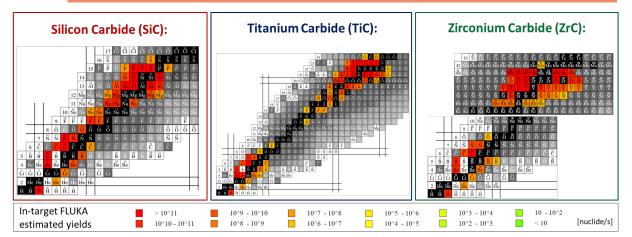
(research)

Gaia Pupillo

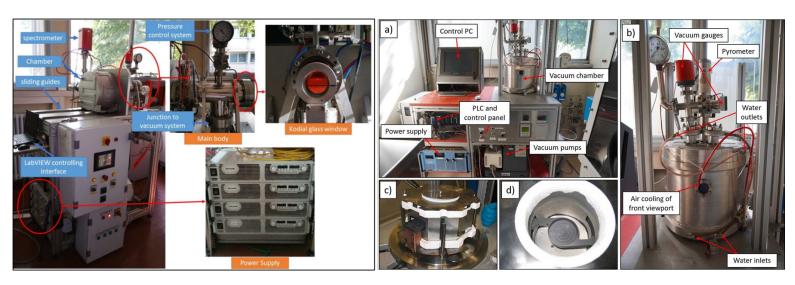
ISOL and laser applications at the SPES facility (*M. Ballan*)

Laser spectroscopy and applications:


<u>Photoionization</u> combined with <u>mass separation</u> could provide <u>isotopically pure RIBs</u>


Several photoionization schemes are unknown, but can be studied with the available set-ups at SPES (and collaborating institutes)

Nuclide production with ISOL for medicine and nuclear physics:


<u>Different solid target materials</u> could be used at SPES ensuring the availability of a <u>wide set of RIBs</u> for both nuclear physics studies and nuclear medicine applications, following to the <u>users' community</u> requests

Gaia Pupillo

ISOL targets development:

The target development process re several competences and technologies, available at LNL and at the ISOL facility community.

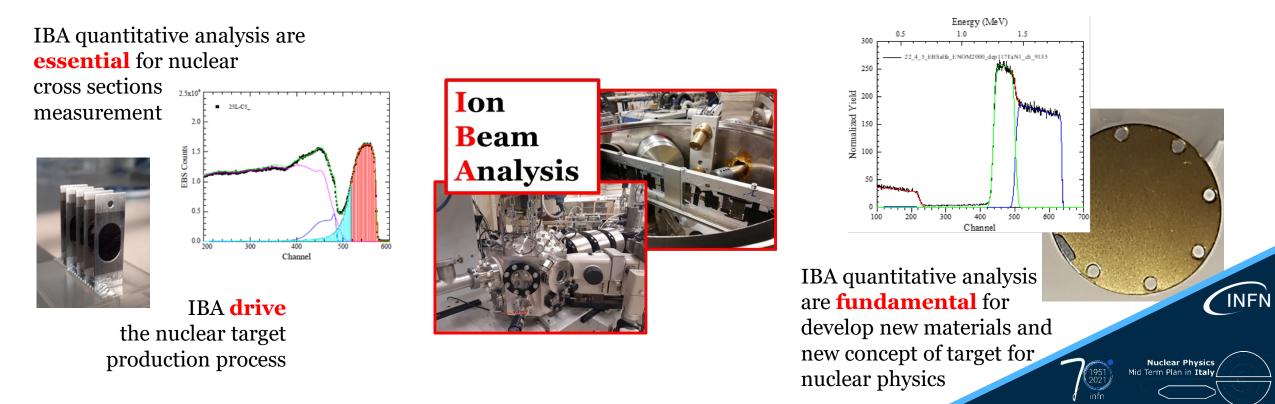
Cooperation with other new facilities (i.e. SCK CEN) can boost the target development process

Decay spectroscopy of nuclides of medical interest:

The IRIS system will allow:

- Collection of RNs on appropriate substrates
- Quality control and characterization of the collected RNs

It could also be used to produce extremely pure radioactive sources


Gaia Pupillo

Development, characterization and modifications of materials for applied nuclear physics (*M. Campostrini*)

Several researcher communities interact with same purpose

<u>Ion beam micro-analysis for nuclear targets development and cross section measurements for applied nuclear</u> <u>physics</u>

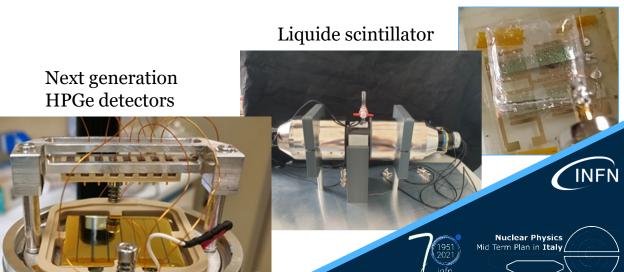
Gaia Pupillo

Ion-solid interaction and radiation damage of materials, detectors and devices:

Specific irradiation facilities are now or will available soon @ LNL

High quality Neutron Beam Source are available @ LNL

All these facilities are involved in several physic experiments:


- Devices Radiation damage
- Material modification
- Detector tests
- Quantum technology
- Materials study

Flexible detector

Novel detectors development and test:

The technological research in new detector development and test is part of LNL background and will be carry on in next years.

The detector developed and tested at LNL are a cuttingedge technology in of X-ray, γ -rays, charge particles and neutrons detection

