DAQ in the Outer Veto

Michela on behalf of the OV working group

DAQ Weekly call

Background in the OV dominated by 39Ar

From the vPDUs to the digitizers

Bandwidth limit for CAEN VX2745 = 100 MB/s for 1 Gbps network

- About 17 Hz from background, dominated by 39Ar
- ZLE_length = 400 sample/(125 MSample/s) = 3.2 us
- 17kHz x ZLE_length x 250 MB/second x (32 vPDUs x 4 channels) / 4 OV digitizers =

435 MB/s per digitizer (need x 5 downsampling)

- While assuming all the 12 digitizers of the IV mixed with OV
- 17 kHz x ZLE_length x 250 MB/second x (32 vPDUs x 4 channels) / 12 mixed digitizers
 - = 165 MB/s per digitizer (need x 2 downsampling)

From the digitizer to the FEP

Bandwidth limit for CAEN VX2745 = 100 MB/s for 1 Gbps network

- Assuming 165 MB/s per digitizer/2 (downsampling) = 83 MB/s
- FIFO deepness= 1024/(64 CH x 17 kHz) ~ 1 ms needed to be filled
- 64 FIFO available, so 64 ms needed in total for each FEP buffer
- Each FEP takes 1 GB/s in input, no further data reduction needed up to now

Bandwidth limit for TSP = 1000

MB/s for 10 Gbps network

From the FEP to the TSP

• 83 MB/s/ digitizer x 12 digitizer = 996 MB/s from (IV + OV)

- Need to strongly reduce the data rate at the TSP
- Solution: have multiple TS nodes, and increasing the TS width, at the cost to delay the arrival time at the TSP
- The buffer needed at the FEP from the veto system is is B = 48 * n * T^2 / 1000 M = 960 MB with n=2 digitizers going to one FEP, and T= 100MB/s as transfer rate to the TSP (1Gb/s network)
- Maximum latency from the FEP to TSP of L= 4.8s

From the TSP to Data storage

Target logging rate = 60 MB/s

- Data reduction strongly informed by the analysis expected in the veto system:
 - Background rejection (main purpose)
 - 39Ar activity, half-life, nuclear parameters
 - Multi-channel detection of SN neutrinos
 - Search for heavy, multi-scattering dark matter
- Next step: DAQ simulation in DSLab (thanks Ashlea and Zoe!)