

SVT-IB activities update

SVT Concept

Inner Barrel (IB)

- Three layers, L0, L1, L2,
- Radii of 36, 41, 120 mm
- · Length of 27 cm
- X/X₀ ~ 0.05% per layer
- · Curved, thinned, wafer-scale sensor

Outer Barrel (OB)

- · Two layers, L3, L4
- Radii of 27 and 42 cm
- X/X₀ ~0.25% and ~0.55%
- · More conventional structure w. staves

Electron/Hadron Endcaps (EE, HE)

- · Two arrays with five disks
- X/X₀ ~0.25% per disk
- · More conventional structure

Lengths for L2—L4 increase so as to project back to z = 0; disk radii adjust accordingly

Basic assumptions:

- use the ALICE ITS3 wafer-scale sensor
- adapt ITS3 detector concept to the (larger) ePIC radii

→ mechanics, services and cooling of the SVT IB need specific development

ALICE ITS3 concept:

- half-layer is the basic building block
- 3 half-layers will be assembled in a half-barrel

key ingredients:

- Wafer-scale chips (up to ~27x10 cm, ≤ 50 µm thick)
- Chips bent in cylindrical shape at target radii
- Ultra-light carbon foam structures

SVT IB interested institutions

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - develop bending procedure, eg L0 (similar for L1)

- extend to L2 considering additional issues
- design L0/L1 and L2 support structures
- integration of the cooling needs
- development of the edge FPC(s)
- choice of the cooling:

simulation studies with ANSYS Physics

thermo-mechanical prototypes:

- support structure within the subsystem to keep everything together
 - connection of L0/L1 to L2

Mit

Physics

explore needs for a (light) supporting external shell (to L2)

SVT IB interested institutions

INFN (DE for Bari, Padova, Pavia, Trieste)

- Focus on L0/L1
- Mechanics/conceptual design of the IB innermost layers:
 - ✓ definition of the bending and assembly procedure
 - ✓ development of the layer support structure
 - ✓ explore interconnection to sensors
- Cooling:
 - ✓ build dedicated prototype same as for mechanics studies (suitable for wind tunnel tests)
 - test of thermal properties for embedded silicon in a thermal chamber
- Workforce (FTE in 2024):
 - ✓ Research: ~2-3
 - ✓ Mech Eng & CAD: ~0.5
 - ✓ Mech Tech: ~0.5

Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

Main differences & challenges wrt ITS3:

- x2 larger radius (18 → 36 mm)*
- need to bend 2 sensors for each half-layer
 - * will increase to ~19/~38 mm with ITS3 ER2/3 sensors

Possible strategies:

- embedding (2 sensors): try to exploit "embedding" the two sensors in kapton foils and bend them as a single object → halflayer based assembly
- 2. independent bending: bend each of the two sensors separately and glue them on independent support structures -> quarter-of-layer based assembly

Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

Embedding (2 sensors)

Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1):

Independent (single sensor) bending strategy

- avoids complications connected to embedding
- introduces further steps and potential issues on positioning procedure and mechanical stability of the bent sensors
- implies that the full IB (or maybe L0+L1) would be built in mechanically independent quarters to be precisely positioned together in the subsequent final assembly*

^{*}This basically follows the same strategy used by ITS3 for bending the single sensors (kept on the mandrel by adhesive tape) and assemblying the detector (glueing from outermost to innermost) → the assembly of SVT IB will proceed in quarters of layers and not (as for ITS3) in half-layers

Sensor encapsulation and bending

First tests performed in clean room @INFN Bari:

- sensor encapsulation in kapton adhesive tape
- encapsulated sensor bending

Mitutoyo machine equipped with alignment vacuum tool

ePIC)

Sensor encapsulation and bending

- sensor encapsulation in kapton adhesive tape
 - ✓ available material:
 - **kapton tape** (20 mm width, 40 µm thickness)
 - ALPIDE sensors (15 mm x 30 mm, 100 µm thickness, not working samples)
 - ✓ precise positioning of the sensors on kapton:

Mitutoyo machine equipped with alignment vacuum tool

ePIC)

Sensor encapsulation and bending

- sensor encapsulation in kapton adhesive tape
 - ✓ available material:
 - **kapton tape** (20 mm width, 40 µm thickness)
 - ALPIDE sensors (15 mm x 30 mm, 100 µm thickness, not working samples)
 - ✓ precise positioning of the sensors on kapton:

Three different samples:

- S1:
 - encapsulated sensors
 - top kaption positioning by hand
- **S2**:
 - encapsulated sensors
 - top kaption by dedicated tool
- S3
 - single kapton layer (kapton on one side of the sensors only)

Sensor encapsulation and bending

- encapsulated sensor bending:
 - ✓ using the setup developed for ITS3 bending
 - ✓ the mandrel had the radius of the innermost ITS3 layer (R ~18mm)
 - ✓ main aim: (re-)excercising the procedure, checking behavious of the encapsulated samples.

ePIC)

Sensor encapsulation and bending

encapsulated sensor bending:

S1:

- encapsulated sensors
- top kaption positioning by hand

Sensor encapsulation and bending

encapsulated sensor bending:

S2:

- encapsulated sensors
- top kaption positioning by dedicated tool

Sensor encapsulation and bending

encapsulated sensor bending:

S3:

- single kapton sample

Sensor encapsulation and bending

First tests performed in clean room @INFN Bari:

- sensor encapsulation in kapton adhesive tape
- encapsulated sensor bending

Conclusions:

- encapsulation:
 - ✓ excercised precise positioning of kapton and sensors (precisions ~10 µm)
 - ✓ better ideas of additional tooling needed for large sensors / kapton foils → design ongoing
- bending:
 - √ (re-)excercised bending procedure used for ITS3 superALPIDE prototypes
 - ✓ understood additional tooling needed (both for ITS3 and SVT)
 - ✓ need SVT dedicated setup (including new mandrel) → design/fabrication/procurements ongoing
 - √ 100 µm sensors too thick for bending tests (independent of the encapsulation)
 - → need to switch to larger and thinner sensors (and larger adhesive kapton foils)
 - → ongoing, connected to procurements for thermo-mechanical prototypes (see Georg)

Local support structures

First design and printing of a light support structure:

obtained by glueing 2 half-rings and 3 longerons

G. Feofilov et al., ITS3 WP4 10 October 2023

Local support structures

First design and printing of a light support structure:

- obtained by glueing 2 half-rings and 3 longerons
- 3-D printed in carbon addicted material
- (partially) in carbon foam for prototype assembly?

Summary activities in Bari

Finalize bending tool design/production and layer assembly procedure

- material needs for R&D
 - ✓ naked silicon (common order to DISCO for IB, OB and DISKS) → ongoing
 - ✓ adhesive polyimide kapton foils (60 x 100 cm², 13 μ m thick) → order submitted
 - ✓ 3-D printed support structures → design refinement ongoing, produced @ INFN BA
- dedicated SVT tooling and bending setup
 - ✓ tools for precise sensor/kapton positioning being modified → design ongoing
 - ✓ bending setup being duplicated → design+production @ INFN BA + procurements ongoing
 - ✓ mandrel → investigating high-quality prodution by a local agency (being tested, also for ITS3).

Summary activities in Bari

Finalize bending tool design/production and layer assembly procedure

- material needs for R&D
 - ✓ naked silicon (common order to DISCO for IB, OB and DISKS) → ongoing
 - ✓ adhesive polyimide kapton foils (60 x 100 cm², 13 µm thick) → order submitted
 - ✓ 3-D printed support structures → design refinement ongoing, produced @ INFN BA
- dedicated SVT tooling and bending setup
 - ✓ tools for precise sensor/kapton positioning being modified → design ongoing
 - ✓ bending setup being duplicated → design+production @ INFN BA + procurements ongoing
 - ✓ mandrel → investigating high-quality prodution by a local agency (being tested, also for ITS3).

Towards prototype assembly:

- final goal:
 - ✓ single layer: heaters/encapsulated silicon supported by local mechanics.
 - ✓ L0 and L1 layers connected by global mechanics.
- material needs for prototype assembly:
 - ✓ encapsulated silicon/heaters → ongoing with CERN (in common for IB, OB and DISKS)
 - ✓ machined carbon foam → to be explored

IB global mechanics/integration - Background info

IB global mechanics/integration - Basic ideas

IB global mechanics/integration - General view

IB global mechanics/integration - e-side view

IB global mechanics/integration - h-side view

- fpc bending radius 5 mm
- overall extension from support edge: 36 mm

ePIC)

 \emptyset 7,3

IB global mechanics/integration - Air collector

- Designed to flow air between BP and L0
 - not the main plan, but easier to implement and... "who knows"
 - collector between L0 and L1 w.i.p. (need to fit among fpc, cables)
- Designed with a 3D print procedure in mind
 - if the case a first mock-up in e.g. PLA doable in Padova carbon fiber 3d printing also available (Bari)
- Separate lines matching holes on the support for better uniformity

Summary activities in Padova

- Update on the different designs of cables e-side/h-side
 - the routing details significantly depending on the size of cables
 - In our hypothesis L2 has 80 lines to be routed, 40 each side, need probably a dedicated modification of the support maybe easier-to-handle cables, like flat ones?
- First design hypothesis for the air flow collector
 - Could be needed between BP and L0?
 - L0-L1 in progress L2-external shell?
- A feedback on air distribution effectiveness could come from ANSYS simulation – started a discussion on a simplified simulation to be updated concurrently with the design updates
 - · clearly to be validated with measurements on a mock-up

SVT IB Timeline

- Sensor development:
 - ITS3 wafer scale sensor development (ER2, ER3) for IB 2024 – 2026,
 - EIC-LAS development for OB and Disks complete and ready for production start in calendar Q4 2026,
 - Ancillary IC development for EIC-LAS complete and ready for production start in calendar Q2 2026.

SVT IB Timeline

· Construction:

- Engineering test articles following R&D in 2025—2026,
- Pre-production phase of about 1 year for IB; 2 years for OB,
- Production and QA through calendar Q2 2029 followed by assembly,
- Current plan is shipment of surveyed and assembled half barrels and disks to BNL in calendar Q4 2029,
- Final assembly and testing at BNL through calendar Q1 and Q2 2030, prior to installation in ePIC.
- SVT schedule is compatible with Project requirements, being finalized.

Backup

Backup

Towards SVT IB concept:

- integrated design of the 3 innermost layers including mechanics, cooling, readout and powering, up to the electrical/optical interface:
 - ✓ develop bending procedure, eg L0 (similar for L1)...
 - ✓ extend to L2 considering additional issues:

Bending procedure:

- 4 sensors for each half-layer
- embedding all 4 or just 2 sensors, as well as independent (single sensor) bending, to be evaluated in connection with the next point

L2 specific issues and required development:

- L2 radius quite large (~120 mm) and far away from L1 (~70 mm, compared to L1-L0 ~6 mm)
- need to define mechanical connection to L1
- also aspects connected to cooling (in a much larger volume) will be completely different wrt L0/L1 (and to ITS3) and will require dedicated solutions

Further activities/plans

Ongoing @ LBNL

- working on beam pipe bake out studies
- plan to start some general cooling studies

Ongoing @ MIT

- plan to start simulation studies for IB mechanical properties, focus on L2
- contribute to the design of the IB geometry, support structure and cooling

Preliminary discussions on IB FPC with WP3 (Marcello)

→ Updates for the next round IB report