

SiPMs proton energy scan

Luisa Occhiuto, University of Calabria & INFN Cosenza

locchiuto@cs.infn.it

INTRODUCTION

THE ELECTRON-ION COLLIDER AND THE <u>ePIC EXPERIMENT</u>

locchiuto@cs.infn.it

Silicon Photomultiplier Sensors (SiPM)

HAMA \$13360-3050

HAMA \$13360-3075

HAMA \$14160-3050

Sensors: 3x3 mm² pixel

PRO

- \checkmark Single photon detection;
- ✓ High Photon Detection Efficiency;
- \checkmark Good time resolution;
- $\checkmark \quad \text{Insensitive to magnetic field.}$
- ✓ Cheap

CONS:

- ✓ Large Dark Count Rate (DCR)
- \checkmark Prone to radiation damage

locchiuto@cs.infn.it

PRO:

- ✓ Single photon detection;
- ✓ High Photon Detection Effi
- ✓ Good time resolution;
- ✓ Insensitive to magnetic fie
- ✓ Cheap

CONS:

- ✓ Large **Dark Count Rate**
- ✓ Prone to radiation damage

- ✤ The Dark Dount Rate (signal per unit of time observed in absence of a photon beam) can be reduced by operating at low temperatures (~[-20, -30] °C).
- ✤ Effect of radiation on SiPMs depends of various factor:
- 1. Type of radiation
- 2. Energy of the particles
- 3. Radiation dose
- 4. Duration of exposure
- Radiation damage by Non-Ionizing Energy Loss (NIEL) leads to displacement damages and build up of crystal defects that results basically in increased DCR <u>http://rd50.web.cern.ch/NIEL/default.html.</u>
- ♦ Different particles \rightarrow different interaction \rightarrow different damage.

PRO:

- ✓ Single photon detection;
- ✓ High Photon Detection Eff.
- ✓ Good time resolution;
- ✓ Insensitive to magnetic fiel

✓ Cheap

CONS:

- ✓ Large **Dark Count Rate**
- ✓ Prone to radiation damage

The hardness factor k is used to normalize the damage caused by different incident particles relative to a reference particle, in this case a 1 MeV neutron.

This allows us to compare the damage caused by particles with different energies on a common scale.

Where D is the displacement damage cross section.

CONS:

- Large **Dark Count Rate**
- Prone to radiation damage

The hardness factor k is used to normalize the damage caused by different incident particles relative to a reference particle, in this case a 1 MeV neutron.

This allows us to compare the damage caused by particles with different energies on a common scale.

A. Vasielescu & G. Lindstroem

Where D is the displacement damage cross section.

EIC NET

<u>02</u>

I-V CHARACTERIZATION

Characterization setup for I-V characteristic installed in Cosenza, University of Calabria.

I-V CHARACTERIZATION

- Custom made portable Peltier box
- Ultra pure air tanks
- ✤ Multiplexer
- ✤ Source Meter
- Power supplies
- ✤ Adapter board
- ✤ SiPM boards

<u>1° step of measurements</u>

- ✓ 5 boards analyzed.
- ✓ Data acquisition of I-V characteristic
 @ 253 K.

- * Irradiation with different energies @ fixed fluence, 10^9 p/cm^2 .
- To lower energy: IBA Solid Plate Phantom (RW3).

#Board	Energy scan (MeV)	RW3 thickness (mm)
1	138	0
2	73	88
3	41	116
4	20	127
5	13	131

- Custom made portable Peltier box
- Ultra pure air tanks
- Multiplexer
- Source Meter
- Power supplies
- ✤ Adapter board
- ✤ SiPM boards

<u>2° step of measurements</u>

- ✓ 5 boards analyzed.
- ✓ Data acquisition of I-V characteristic
 @ 253 K.

- * Irradiation with different energies @ fixed fluence, 10^9 p/cm^2 .
- To lower energy: IBA Solid Plate Phantom (PW3)

#Board 1	Oven anne	Oven annealing: 150 h @ 150 °C Heter upplies board ards		
2		88	3° stop of mossurements	
3	41	116	 ✓ 5 boards analyzed. ✓ Data acquisition of I-V characteristic @ 253 K. 	
4	20	127		
5	13	131		

RESULTS

- 253K-notirradiated
- 253K-annealed
- 253K-irradiated

I-V CHARACTERISTIC

Overvoltage = Dark current - Vbd

ENERGY SCAN

- ✓ Evaluation of breakdown voltage (Vbd).
- ✓ Evaluation of current at 3 Overvoltage.
- ✓ Evaluation of difference between current post and pre irradiation.
- ✓ Normalization at 138 MeV.

$$\frac{(I_{irr}-I_{noirr})}{(I_{irr}-I_{noirr})(138\,MeV)}\,\frac{1}{\epsilon}$$

ϵ =efficiency of degrader.

ENERGY SCAN

Overvoltage = Dark current - Vbd

- ✓ Displacement damage for each sensor.
- ✓ A proton at 13 MeV is more harmful than a proton at 138 MeV.

$$\frac{(I_{irr} - I_{noirr})}{(I_{irr} - I_{noirr})(138 \, MeV)} \, \frac{1}{\epsilon}$$

 ϵ =efficiency of degrader.

- ► HAMA \$13360-3075 == B
- ➢ HAMA \$14160-3050 == C

locchiuto@cs.infn.it

CONCLUSION AND OUTLOOK

CONCLUSION AND OUTLOOK

- \checkmark Radiation damage is in agreement with the NIEL.
- ✓ With annealing there is a recovery of the performance of the sensors independent of the energy used to irradiate them.
- ✓ Next step: paper being written.

 Irradiation of the sensors with gamma rays in order to study surface damages.

locchiuto@cs.infn.it