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@ HRPPDs are baseline photosensors in
PfRICH (also hadron ToF),

@ HRPPDs are alternative photosensors
in hpDIRC,

@ LAPPDs were considered as backup
option for dRICH.

Requirements to validate:
@ good SPE timing (<100 ps).
@ operation in B<1.5T field,
@ low aeging (>10 C/cm?).

Pros:

@ cost: 26 k$/400 cm?=65 $/cm? (10 times less than
SiPM),
@ low DRC: few kHz/cm? (10 times less than SiPM),
@ capable to high rates MHz/cm? (HRPPD),
radiation hord,‘n‘o cooling.

Why studying LAPPDs/HRPPDs?

M. Osipen
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Experimental hall at T10 beamline Oct. 2022

CERN PS, Hall Tio
LAPPD installed downstream of dRICH prototype




Timing

Measurement setup

IHustrative Schematic:  NOT TO SCALE
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Timing

Geant4: direct vs. backward reflection

@ direct configuration gives broad ring (11 p.e./pad),
@ backward reflection gives narrow ring (12 p.e./pad),
@ beam spot is larger for backward reflection,

@ LAPPD 124 geometrical open area ratio 64%, but at
800 V PE collection efficiency of <50 % is expected.
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Trigger SciFi+SiPM and reference MCP

Hamamatsu MPPC SiPM (513360-60250°5)
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LAPPD readout

Custom made preamplificrs by INFN, Genova
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Measured LAPPD signals w.r.t. Haomamatsu MCP

@ LAPPD risetime (20-80%) was about 0.75 ns,

@ Hamamatsu MCP had (intrinsic 0.16 ns),

@ V1742 digitizer has BW=0.5 GHz —0.45 ns is its intrinsic
limit on risetime (20-80%).

@ LAPPD 1 inch pad has large capacitance 5 pF,
assuming 509 load we expected (coplanar
parasitic capacitance 10 pF).

LAPPD

Hamamatsu MCP
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Lens Cherenkov ring in UV

@ in UV lens Cherenkov ring was observed at expected
radius (60 mm), with expected shape,

@ 3 p.e./pad were measured, Geant4: 12 p.e./pad,

@ beam spot was suppressed by a factor of >100
(grease+black tape on the window),

@ 32 channels were barely sufficient fo cover entire ring.
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Lens Cherenkov ring in Visible

@ in visible narrower lens Cherenkov ring was observed,
@ 0.5 p.e./pad were measured, Geant4: 2 p.e./pad,

@ beam spot suppression degraded by a factor of 10
(next day, after few opening of the box).

@ signal delay in ring w.r.t. beam 0.5 ns, as expected.

‘Hil Y [mm]
o

Geant4

(p.e)

80 60 40 -2 40 60 80

OHil Xo[mm] 2
beam spot 180 p.e.

M. Osipenko NFN

CERN PST10 h* 8 GeV
]

5 4
Column

beam spot 6 p.e.

March 2024 estbeam 22, magne



LAPPD SPE chorge calibrations

@ Laser SPE calibrations agree with beam-on spectrain
Cherenkov ring pads,

@ LAPPD N.124 at 800/900 V should have gain of 4x10°,
expected SPE at 1.28 pC,

@ the observed SPE peak at 1.15 pC, in agreement,

@ using laser calibration data estimated CERN Ny ¢ =0.5
(80% at 1 p.e., 2 p.e. timing RMS broadening of 1.5%).

Laser SPE Collbro’nons vs. testbeam data

——— CERN PS beam
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Events

Timing

SPE fiming results

@ fime difference distributions mostly appeared as a
Gaussian-like peak,

@ Gaussian fit was used to determine timing resolution,
@ some pads showed significant background,
@ pads on ch> 7 received additional 11 ps (TR0)/33 ps
(TR1) jitter between different DRS4 chips,
@ best SPE timing was 75 ps (pad F6, ch2), mean 87 ps.
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Bias voltage dependence

@ fiming resolufion was insensitive to Anode voltage
increase from 200 V to 300 V.,

@ increasing Photocatode voltage from 50 V to 100 V
leads to improvement at high PH,

@ there is no significant gain dependence of timing
resolution (gain change by factor 10).
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MNP-17 magnet, CERN Nov 2023

@ 0.5 T dipole magnet with 30 cm gap height,
@ current-to-magnetic field calibration, water cooling,
@ 1D Hall-probe available.
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g Magnetic field *
Measurement setup

@ PicoQuant 405 nm laser connected by optical fiber,
@ laser synch signal used as the start fime,

@ 10 um pore LAPPD N.1583 in inclinable dark box,

@ LAPPD signals amplified by custom amplifiers,

@ 3D Hall-probe for precise monitoring.

M. Osipenko estbeam 22, magne



Magnetic field

LAPPD N.1583 (small pores, small gaps)

@ Gen ll, 10 um capillary, short stack, Multi-Alkali,

@ ROP 50/875/200/875/200, gain 7.45x 10°, TTS SPE 68 ps,

@ MCP maximum bias 900 V, 5.5 MQ/MCR

@ Dark Count Rate (th. 4 mV) 2.1 kHz/cm? over 373 cm?,
means 0.76 kHz/6 mm pad,

@ QE(405 nm)~18% (max. at 365 nm 25%).

5 mm Fused Silica

Na,KSb
1.4 mm Photo-Cathode

A2 mm Eatry MERTTT
ol

12 mm

Resistive
Anode

2 mm ceramic plate

M. Osipenko NEN March 2024 estbeam 22, magne:



Developed LAPPD reodou’r (traceless)

@ LAPPD is capacitively coupled to PCB pads,
@ PCB pads are directly connected to amplifiers,

@ 1 GHz ampilifiers have 20 dB gain, 0.22 mV noise and
<0.2% cross-talk.

LAPPD side

Side view FR4 FR4

t
Sensitive pad  Metalizdd hole
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Magnetic field

LAPPD gain and efficiency at 0.5 T

in 0.5 T field the gain was reduced by factor 0.25,

in 0.5 T af +40 deg. & -15 deg. gain drops by -40%,
gain recovery is limited by LAPPD insulation,
efficiency: ratio of data or fit: B=0.5 T/B=0 with pC or
PE thresholds,

@ all efficiency estimates are similar: factor 3 drop at
+40°, high at -15° (in B-filed better PE collection).
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Charge fraction collected on the spot pad

ot pac! Qror(6,B)

qQ,,

@ at B=0 spot pad collects about 0.55 of total charge;

@ at B=0.5T this fraction increases up to 0.7 (smaller
width), but varies with angle;
@ af +40 deg. the extrapolation intfo missing pad

indicates that we are loosing about 5-7% of charge,
insufficient to recover -40% gain loss;

@ instead the peak position from the fixed width fit

comes on the expected tan §-line.
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g Conclusion *
Summary

= measured timing of 20 um pore LAPPD N.124,
capacitively coupled to the Incom readout board
with 1 inch pads, published in:

Nucl. Instrum. Methods A1058, 168937 (2024). ,

@ observed SPE timing RMS of about 80 ps

= 10 um pore LAPPD N.183, capacitively coupled to
custom readout board with 6 mm pads, tested in
magnetic field of 0.5T,

@ in 0.5 T field gain was reduced by factor 0.25,

@ gain reduction in 0.5 T field can be compensated by
about 60 V increase of MCP bias voltage, but LAPPD
dark current might become unstable

e efficiency loss up to factor 3 observed at +40° field
inclination X,

@ festin 1.5T field are running right now at CERN.

= LAPPD aeging seTup in developmen’r at TS.

M. Osipen


https://doi.org/10.1016/j.nima.2023.168937
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Known fiming uncertainties

Sources of timing uncertainties related to the
experimental setup, which should appear as a
contribution to the constant term pg:

Source Estimate

Hamamatsu MCP-PMT 10 ps
Geant4 detector geometry | 8.3 ps
and chromatic dispersion
Readout pad size 12 ps
Total 18 ps

Best resolution at very large Np e ~ 23 measured in this
test was 27 ps, fairly close to expected.
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PH-dependence of timing resolution

@ the resolution is po + V/F\’Q/ function of LAPPD PH,

@ constant term was 50 ps, expected 18 ps,

@ Npe termis approximately = 40 ps/\/Np.e..
@ no significant dependence on Hamamatsu MCP PH.
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LAPPD bias voltages

How we used it: An example set of voltages
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DAQ system

FRONT BANE|

WEINER VME crate: |
CAEN V1718 controller board
CAEN V1742 Digitizer board with 32 readout channels
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Number of Cherenkov phoTons

ond Oc = 48.4° in fused silica (n= 1 51 at 250 nm)

@ the number of Cherenkov photons (in range of LAPPD
photocathode sensitivity) produced in 1 mm of
quartz:

1 1 photons

Ny = 0.0256 « { 160nm 560nm} ==

@ thus in 5 mm thick LAPPD window we produce
570 photons,

@ in 14 mm thick aspheric lens we produce
1600 photons,

@ assuming 30% mean QE of Na,KSb photocathode we
estimate: 170 p.e. fromm LAPPD window and 480 p.e.
from aspheric lens,

@ Geant4 simulation gives 180 p.e. from LAPPD window

and 300 p.e. from aspheric lens.

M. Osipen NFN
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DRS4 timing calibrations

@ we used fiming calibration procedure developed by
Vincenzo Vagnoni (INFN Bologna),

@ validation of calibration gave 4 ps residual resolution,

@ cadlibrated delays between cells are around
160/250 ps for even/odd cells,

@ timing corrections are significant: 50 ps broadening.
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LAPPD and MCP time measurements

@ acquired raw waveforms (no CAEN on-line
corrections) were converted in TGraphs with variable
delays between samples (using Bologna calibrations),

@ to measure time we fitted pulse rising edge in the
region of 50% height with a linear function,

@ time was determined as the crossing point of 50%
height by the linear fit function.
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LAPPD and MCP PH-corrections on time

@ linear function approximation in the fit leads to
systematic effects on the time difference,

@ time difference depends on signal Pulse Heights,

@ in LAPPD time drift is about 0.1 ps/mV,

@ in Haomamatsu MCP fime drift is about 0.2 ps/mV,

@ after correction the residual PH-dependence is <5 ps.

po [MV]

ADC,p,
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SPE fiming background

most common background - .h.s. tail or a peak

anficipated by about 0.3 ns,

@ background is higher in pads near horizontal and
vertical beam spot pads,

@ perhaps due to Cherenkov in LAPPD window followed
by multiple internal reflections,

@ in affected pads 20% improvement fitting Gaus+pol,

@ best SPE timing 68 ps (pad F5, ch0), mean 86 ps.
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SPE fiming consistency

@ we took four different runs with acrylic filter,
@ the results from these four runs agree within statistical
uncertainties,

@ run taken with UV photons gives better resolution
because of 3 times larger mean number of p.e., but
also limited to about 75 ps.

140 + 140~ +
£ C + -» ‘\‘
120 i it T 120+ i+
T L $ $ T r -+ -+ i
=100 Ty i %F S0l . Jr
2 i -+ J» + J«F £ r - . ‘ ++ I
‘g0l - iﬂ‘T‘ ‘ e[ _— T
éj 60— éj 60—
o C o C
40— ——— Aunet 40— i~ il
r ——— Rune2 F Run.63.Acrylic Filter
20 s 201 Run.58 Direct
0 (W | L 1 Ly P 1 0 0 | L 1 1 L. 1 ‘
0 5 wJV 15 20 25 30 0 5 10 15 20 25 30




Backup slides  *

LAPPD signal risetfime variations

@ 15% variations of risetime channel-to-channel, not
seen during the calibrations,

@ some correlation with timing resolution observed,
@ large risetime in nearby pads: B6+C6 and F3+G3,
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Resistive anode cross-talk in LAPPD

@ strong cross-talk between pads was observed at
testbeam and in the lab,

@ cross-talk appears as a dumped oscillator,

@ the amplitude of oscillation is about 5+10% of the
primary signal,

@ cross-talk amplitude seems to be independent from

the pad location.
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SPE fiming results chip.0

@ best resolution is achieved on chip0, where
Hamamatsu MCP-PMT is connected to ch?,

@ best SPE timing was 68 ps (pad F5, ch0), mean
7840.4 ps,

@ ch4 (pad C6) and especially ché (pad G3) deviate
from the mean, these pads have larger risetime.
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2D maps of collected charge at B=0

@ 55% of charge is collected on the pad under fiber,

@ different LAPPD inclinations at B=0 preserve the same
charge map,

@ after fiber movement the charge collection in alll
pads increased on 34%, 0.2 mm gap area fraction is
just 6.35%, requiring main peak to be located at the
edge of central pad, but the observed distribution is

symmetric,
normal inclination -40 deg.
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2D maps of collected charge at B=0.5T

@ at normal field the peak is still in central pad, but it
collects 79%,

@ inclination of field shifts the peak by about one pad
and increases peak pad fraction to 85%.

inclination -40 deg. inclination +40 deg.

chl

M. Osipenko NEN March 2024 estbeam 22, magne:
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LAPPD hit multiplicity

@ at B=0 charge distribution is 2 times broader and pad
hit multiplicity is larger (mean 2.8),

@ at B=0.5T all multiplicities are similar and the mean
varies from 1.1 to 1.7.

Standard bias voltages
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LAPPD cross shadow

@ LAPPD pads are
large: 25x25
mm2,

@ MCP
cross-shaped
support shadow
affects 4 central
pads,

@ but their
geometrical
efficiency remains
> 50%.
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LAPPD.87 with Na,KSb photocathode
A=365nm
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LAPPD Quantum Efficiency

WAVEISTIY LAPPD. 12 with Na,KSb photocathode
range 180-400 nm 0%
QE of LAPPD is 35%
> 30%, 30%
. 25%
@ numerical £ 0%
convolution Y 15%
dN/dX(\) and 10%
QE(\): 33.6 Z;

p.e./mm. 160 260 30 460 se0 660 760

@ analytic estimate Wavelength [nm]

of Cherenkov p.e.
yield assuming
average QE=30%:

1 1
160nm  560nm

N, = 0.0256*{ }*0.30 —34 2%
mm

NEN
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60 mm backward, chromatic dispersion - ring

@ Cherenkov ring is wide even without chromatic
dispersion,

@ chromatic dispersion adds more width to the ring.
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60 mm backward, chromatic dispersion - radius

dispersion,

@ the width is related to emission point uncertainty: it
varies from 4.3 mm fo 13.8 mm (from lens face - first
4.3 mm is blind).

@ chromatic dispersion doubles the width of the ring.
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60 mm backward, chromatic dispersion - time

@ without chromatic dispersion total width of
Cherenkov photon timing distribution is 17 ps,

@ chromatic dispersion delay fraction of photons
increasing the width by 5 times.
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Backup slides

 Setup for testbeam

Q@ beam - protons
5-12 GeV/c,

@ aspheric lens
radiator,

© LAPPD with 32
ch readout by
V1742 digitizer.




Backup slides

60 mm Direct vs. backward reflection - time

and 0.07 ns offset from proton impact,

@ backward reflection gives photon timing RMS of 12 ps,
and 0.31 ns offset from proton impact,

900 M2/ ndf 3.658e+05/127 | '

TOOFTT I TTTT T e indf 3.547e405 / 112 3
F Constant  400.6+0.2 gop | Constant  832.9:0.3 E

600 — Mean 602.6 + 0.0 Mean 618.1£0.0 7
C ) e 700 Sigma 11.71+ 0.00 =

F Sigma 2418+ 0.02 F E

500 - 7 600 =
.:E)ROO ; ? ?00 E E
E - > E 3
B30 £ 3 E
F ] 300 E
200 = F E
£ ] 200 E

100 - E 100 L -3
F v ok 1 ] e

0

WD B RVIHGREBASETION 7 R

M. Osipen NFN




Backup slides

AF éO mm Direct vs. bockword reflection - ring

° bockword reflection gives narrow ring (3 p.e./pad),
@ why?

@ beam spot is larger for backward reflection.

°
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Backup slides

AF 60 mm Direct vs. backward reflection - time

10-13 ps, and 0.07 ns offset from proton impact,

@ backward reflection gives photon
,and 0.31 ns offset from proton impact,
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Backup slides

AF 60 mm bockword reerCTlon BS 1 cm? - ring

@ beam spot 1 cm2 (3 p.e./pad),

@ LAPPD beam spot is larger for BS 1 cm?, entering in
nearby pads (5 p.e./pad).
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Backup slides

AF 60 mm backward reflection BS 1 cm? - time

@ beam spot 0 ,
@ beam spot 1 cm? timing RMS of 14-15 ps,
@ beam spot 1 cm? is too large.
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