LAPPD studies for ePIC Testbeam 22, magnet 23

Jinky Agarwala¹, Deb Sankar Bhattacharya¹, Chandradoy Chatterjee¹, Silvia Dalla Torre¹, Mauro Gregori¹, Alexander Kiselev², Saverio Minutoli³, Mikhail Osipenko³, Richa Rai¹, Fulvio Tessarotto¹

¹INFN Trieste ²BNL ³INFN Genova

remote

INFN

22 March 2024

Testbeam 22, magnet 23

Why studying LAPPDs/HRPPDs?

- HRPPDs are baseline photosensors in pfRICH (also hadron ToF),
- HRPPDs are alternative photosensors in hpDIRC,
- LAPPDs were considered as backup option for dRICH.
- Requirements to validate:
 - good SPE timing (<100 ps),</p>
 - 2 operation in B < 1.5 T field,
 - \bigcirc low aeging (>10 C/cm²).

Pros:

- cost: 26 k\$/400 cm²=65 \$/cm² (10 times less than SiPM).
- low DRC: few kHz/cm² (10 times less than SiPM),
- capable to high rates MHz/cm² (HRPPD), radiation hard, no cooling. M. Osipenko

Magnetic field

Conclusion

Backup slides

Experimental hall at T10 beamline Oct. 2022

CERN PS, Hall T10

LAPPD installed downstream of dRICH prototype

Magnetic field

Conclusio

Backup slides

Measurement setup

Geant4: direct vs. backward reflection

- direct configuration gives broad ring (11 p.e./pad),
- backward reflection gives narrow ring (12 p.e./pad),
- beam spot is larger for backward reflection,
- LAPPD 124 geometrical open area ratio 64%, but at 800 V PE collection efficiency of <50 % is expected.

Conclusion

Backup slides

Trigger SciFi+SiPM and reference MCP

Timing

Magnetic field

Conclusio

Backup slides

LAPPD readout

Introduction Timing Magnetic field Conclusion Backup slides Measured LAPPD signals w.r.t. Hamamatsu MCP

- LAPPD risetime (20-80%) was about 0.75 ns,
- Hamamatsu MCP had 0.4 ns (intrinsic 0.16 ns),
- V1742 digitizer has BW=0.5 GHz →0.45 ns is its intrinsic limit on risetime (20-80%),
- LAPPD 1 inch pad has large capacitance 5 pF, assuming 50Ω load we expected 0.26 ns (coplanar parasitic capacitance 10 pF).

Introduction Timing Magnetic field C Lens Cherenkov ring in UV

- in UV lens Cherenkov ring was observed at expected radius (60 mm), with expected shape,
- 3 p.e./pad were measured, Geant4: 12 p.e./pad,
- beam spot was suppressed by a factor of >100 (grease+black tape on the window),
- 32 channels were barely sufficient to cover entire ring.

Introduction Timing Magnetic field Lens Cherenkov ring in Visible

- in visible narrower lens Cherenkov ring was observed,
- 0.5 p.e./pad were measured, Geant4: 2 p.e./pad,
- beam spot suppression degraded by a factor of 10 (next day, after few opening of the box).
- signal delay in ring w.r.t. beam 0.5 ns, as expected.

LAPPD SPE charge calibrations

Timina

 Laser SPE calibrations agree with beam-on spectra in Cherenkov ring pads,

Maanetic field

- LAPPD N.124 at 800/900 V should have gain of $4\times10^6,$ expected SPE at 1.28 pC,
- the observed SPE peak at 1.15 pC, in agreement,
- using laser calibration data estimated CERN $N_{p.e.}$ =0.5 (80% at 1 p.e., 2 p.e. timing RMS broadening of 1.5%).

Laser SPE calibrations vs. testbeam data

Backup slides

Introduction Timing Magnetic field Conclusion Backup slides SPE timing results

- time difference distributions mostly appeared as a Gaussian-like peak,
- Gaussian fit was used to determine timing resolution,
- some pads showed significant background,
- pads on ch> 7 received additional 11 ps (TR0)/33 ps (TR1) jitter between different DRS4 chips,
- best SPE timing was 75 ps (pad F6, ch2), mean 87 ps.

Bias voltage dependence

- timing resolution was insensitive to Anode voltage increase from 200 V to 300 V,
- increasing Photocatode voltage from 50 V to 100 V leads to improvement at high PH,
- there is no significant gain dependence of timing resolution (gain change by factor 10).

Introduction Timing Magnetic field Ca MNP-17 magnet, CERN Nov. 2023

- 0.5 T dipole magnet with 30 cm gap height,
- current-to-magnetic field calibration, water cooling,
- 1D Hall-probe available.

Introduction Timing Magnetic field Conclusion Backup slides Measurement setup

- PicoQuant 405 nm laser connected by optical fiber,
- laser synch signal used as the start time,
- 10 μ m pore LAPPD N.153 in inclinable dark box,
- LAPPD signals amplified by custom amplifiers,
- 3D Hall-probe for precise monitoring.

IntroductionTimingMagnetic fieldConclusionLAPPD N.153 (small pores, small gaps)

- Gen II, 10 μ m capillary, short stack, Multi-Alkali,
- ROP 50/875/200/875/200, gain 7.45×10⁶, TTS SPE 68 ps,
- MCP maximum bias 900 V, 5.5 MΩ/MCP,
- Dark Count Rate (th. 4 mV) 2.1 kHz/cm² over 373 cm², means 0.76 kHz/6 mm pad,
- QE(405 nm)~18% (max. at 365 nm 25%).

Osipenko

Developed LAPPD readout (traceless)

- LAPPD is capacitively coupled to PCB pads,
- PCB pads are directly connected to amplifiers,

Magnetic field

• 1 GHz amplifiers have 20 dB gain, 0.22 mV noise and <0.2% cross-talk.

Introduction Timing Magnetic field Conclu LAPPD gain and efficiency at 0.5 T

- in 0.5 T field the gain was reduced by factor 0.25,
- in 0.5 T at \pm 40 deg. & -15 deg. gain drops by -40%,
- gain recovery is limited by LAPPD insulation,
- efficiency: ratio of data or fit: B=0.5 T/B=0 with pC or PE thresholds,
- all efficiency estimates are similar: factor 3 drop at +40°, high at -15° (in B-filed better PE collection).

- at B=0.5 T this fraction increases up to 0.7 (smaller width), but varies with angle;
- at \pm 40 deg. the extrapolation into missing pad indicates that we are loosing about 5-7% of charge, insufficient to recover -40% gain loss;
- instead the peak position from the fixed width fit comes on the expected $\tan \theta$ -line.

- measured timing of 20 μm pore LAPPD N.124, capacitively coupled to the Incom readout board with 1 inch pads, published in: Nucl. Instrum. Methods A1058, 168937 (2024).
 - observed SPE timing RMS of about 80 ps ✓,
- $\stackrel{\scriptstyle \hbox{\tiny IS}}{=} 10~\mu{\rm m}$ pore LAPPD N.153, capacitively coupled to custom readout board with 6 mm pads, tested in magnetic field of 0.5 T,
 - in 0.5 T field gain was reduced by factor 0.25,
 - gain reduction in 0.5 T field can be compensated by about 60 V increase of MCP bias voltage, but LAPPD dark current might become unstable ✓,
 - efficiency loss up to factor 3 observed at +40° field inclination X,
 - test in 1.5 T field are running right now at CERN.
- 🖙 LAPPD aeging setup in development at TS.

*

Backup slides

Sources of timing uncertainties related to the experimental setup, which should appear as a contribution to the constant term p_0 :

Source	Estimate
Hamamatsu MCP-PMT	10 ps
Geant4 detector geometry	8.3 ps
and chromatic dispersion	
Readout pad size	12 ps
Total	18 ps

Best resolution at very large $N_{p.e.} \simeq 23$ measured in this test was 27 ps, fairly close to expected.

PH-dependence of timing resolution

• the resolution is $\sqrt{p_0^2 + \frac{p_1^2}{V/V_{SPE}}}$ function of LAPPD PH,

Maanetic field

Conclusion

- constant term was 50 ps, expected 18 ps,
- $N_{p.e.}$ term is approximately = 40 $ps/\sqrt{N_{p.e.}}$,
- no significant dependence on Hamamatsu MCP PH.

Backup slides

Introductior

Timing

Magnetic field

Conclusio

Backup slides

LAPPD bias voltages

OUTD OUTD OUTD OUTD OUTD OUTD OUTD O

25

DAQ system

Number of Cherenkov photons

and $\theta_C = 48.4^{\circ}$ in fused silica (n=1.51 at 250 nm),

Maanetic field

 the number of Cherenkov photons (in range of LAPPD photocathode sensitivity) produced in 1 mm of quartz:

$$N_{\gamma} = 0.0256 * \left\{ \frac{1}{160 nm} - \frac{1}{560 nm} \right\} = 114 \frac{\text{photons}}{mm} ,$$

- thus in 5 mm thick LAPPD window we produce 570 photons,
- in 14 mm thick aspheric lens we produce 1600 photons,
- assuming 30% mean QE of Na₂KSb photocathode we estimate: 170 p.e. from LAPPD window and 480 p.e. from aspheric lens,
- Geant4 simulation gives 180 p.e. from LAPPD window and 300 p.e. from aspheric lens.

M. Osipenko

Introduction

Timing

Magnetic field

Conclusic

DRS4 timing calibrations

- we used timing calibration procedure developed by Vincenzo Vagnoni (INFN Bologna),
- validation of calibration gave 4 ps residual resolution,
- calibrated delays between cells are around 150/250 ps for even/odd cells,
- timing corrections are significant: 50 ps broadening.

Introduction Timing Magnetic field Conclusion LAPPD and MCP time measurements

 acquired raw waveforms (no CAEN on-line corrections) were converted in TGraphs with variable delays between samples (using Bologna calibrations),

Backup slides

- to measure time we fitted pulse rising edge in the region of 50% height with a linear function,
- time was determined as the crossing point of 50% height by the linear fit function.

LAPPD and MCP PH-corrections on time

 linear function approximation in the fit leads to systematic effects on the time difference,

Maanetic field

Backup slides

Testbeam 22, maanet 23

- time difference depends on signal Pulse Heights,
- in LAPPD time drift is about 0.1 ps/mV,
- in Hamamatsu MCP time drift is about 0.2 ps/mV,
- after correction the residual PH-dependence is <5 ps.

22 March 2024

M. Osipenko

22 March 2024

Testbeam 22, maanet 23

INFN

M. Osipenko

Introduction Timing Magnetic field Conclusion Backup slides SPE timing consistency

- we took four different runs with acrylic filter,
- the results from these four runs agree within statistical uncertainties,
- run taken with UV photons gives better resolution because of 3 times larger mean number of p.e., but also limited to about 75 ps.

LAPPD signal risetime variations

- 15% variations of risetime channel-to-channel, not seen during the calibrations,
- some correlation with timing resolution observed,
- large risetime in nearby pads: B6+C6 and F3+G3,

Backup slides

Introduction Timing Magnetic field Cc

Resistive anode cross-talk in LAPPD

- strong cross-talk between pads was observed at testbeam and in the lab,
- cross-talk appears as a dumped oscillator,
- the amplitude of oscillation is about 5÷10% of the primary signal,
- cross-talk amplitude seems to be independent from the pad location.

Testbeam 22, magnet 23

Maanetic field Backup slides SPE timing results chip.0

- - best resolution is achieved on chip0, where Hamamatsu MCP-PMT is connected to ch7.
 - best SPE timing was 68 ps (pad F5, ch0), mean 78±0.4 ps,
 - ch4 (pad C6) and especially ch6 (pad G3) deviate from the mean, these pads have larger risetime.

M. Osipenko

INFN

22 March 2024

IntroductionTimingMagnetic fieldConclusion2D maps of collected chargeat B=0

- 55% of charge is collected on the pad under fiber,
- different LAPPD inclinations at B=0 preserve the same charge map,

Backup slides

• after fiber movement the charge collection in all pads increased on 34%, 0.2 mm gap area fraction is just 6.35%, requiring main peak to be located at the edge of central pad, but the observed distribution is symmetric.

2D maps of collected charge at B=0.5 T

- at normal field the peak is still in central pad, but it collects 79%,
- inclination of field shifts the peak by about one pad and increases peak pad fraction to 85%.

inclination -40 deg.

inclination +40 deg.

Backup slides LAPPD hit multiplicity

- at B=0 charge distribution is 2 times broader and pad hit multiplicity is larger (mean 2.8),
- at B=0.5 T all multiplicities are similar and the mean varies from 1.1 to 1.7.

Standard bias voltages

Introduction

Timing

Magnetic field

Conclusio

Backup slides

LAPPD cross shadow

- LAPPD pads are large: 25×25 mm²,
- MCP cross-shaped support shadow affects 4 central pads,
- but their geometrical efficiency remains > 50%.

Introduction

Magnetic field

Conclusio

LAPPD Quantum Efficiency

- In wavelength range 180-400 nm QE of LAPPD is > 30%,
- numerical convolution $dN/d\lambda(\lambda)$ and $QE(\lambda)$: 33.6 p.e./mm.
- analytic estimate of Cherenkov p.e. yield assuming average QE=30%:

$$N_{\gamma} = 0.0256 * \left\{ \frac{1}{160nm} - \frac{1}{560nm} \right\} * 0.30 = 34 \frac{p.e.}{mm},$$

60 mm backward, chromatic dispersion - ring

- Cherenkov ring is wide even without chromatic dispersion,
- chromatic dispersion adds more width to the ring.

Backup slides

INFN

60 mm backward, chromatic dispersion - radius

- dispersion,
- the width is related to emission point uncertainty: it varies from 4.3 mm to 13.8 mm (from lens face - first 4.3 mm is blind).
- chromatic dispersion doubles the width of the ring.

IntroductionTimingMagnetic fieldConclusionBackup sildes60 mm backward, chromatic dispersion - time

- without chromatic dispersion total width of Cherenkov photon timing distribution is 17 ps,
- chromatic dispersion delay fraction of photons increasing the width by 5 times.

LAPPD with 32 ch readout by V1742 digitizer.

60 mm Direct vs. backward reflection - time

- airect coningulation gives photon timing RIVIS of 24 ps, and 0.07 ns offset from proton impact,
- backward reflection gives photon timing RMS of 12 ps, and 0.31 ns offset from proton impact,
- backward reflection gives better time separations from beam hit.

Introduction Timing Magnetic field Conclusion Backup slides AF 60 mm Direct vs. backward reflection - ring

- areel configuration gives broad ring (2 p.e./pad),
- backward reflection gives narrow ring (3 p.e./pad),
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

Backup slides AF 60 mm Direct vs. backward reflection - time

- airect conliguration gives photon timing RIVIS of 10-13 ps, and 0.07 ns offset from proton impact,
- backward reflection gives photon timing RMS of 3.5-5 ps, and 0.31 ns offset from proton impact,
- backward reflection gives better time separations from beam hit.

AF 60 mm backward reflection BS 1 cm² - ring

- beam spot u (3 p.e./pad),
- beam spot 1 cm² (3 p.e./pad),
- LAPPD beam spot is larger for BS 1 cm², entering in nearby pads (5 p.e./pad).

IntroductionTimingMagnetic fieldConclusionBackup slidesAF 60 mm backward reflection BS 1 cm2 - time

- beam spot 0 timing RMS of 3.5-5 ps,
- beam spot 1 cm² timing RMS of 14-15 ps,
- beam spot 1 cm^2 is too large.

