Advances in direct neutrino mass experiments

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

Outline

- neutrino properties and experiments to assess the neutrino mass
- direct neutrino mass measurements
- tritium-based experiments
 - KATRIN, Project8, PTOLEMY
- calorimetric measurements with low temperature detectors
 - low *Q* beta decay experiments
 - ¹⁶³Ho EC decay calorimetric experiments
 - decay spectrum
 - statistical sensitivity
 - HOLMES
 - other holmiun-based experiments: ECHo
- future of holmium-based experiments

Why care of neutrinos?

• $\approx 10^{11}$ neutrinos/cm² hit us every second (from the sun), but we know little about them

Standard Model assumes that neutrinos are massless, but it is not true

- ► the neutrino mass requires modifications/extensions to the Standard Model
- there are about 300 neutrinos per cm³ in the universe
 - ▶ the neutrino mass influences the universe dynamics and evolution
- for neutrinos particle and anti-particle may be the same
 - ▶ the neutrino nature could explain the matter anti-matter asymmetry in the universe

D. Castelvecchi, "How heavy is a neutrino? Race to weigh mysterious particle heats up," Nature, Mar. 2024

Neutrino properties

neutrinos are massive fermions

Neutrino open questions

- \blacksquare mass scale: i.e. mass of the lightest v
- degenerate $(m_1 \approx m_2 \approx m_3)$ or hierarchical masses
 - ▶ mass hierarchy: $m_1 < m_2 \ll m_3$ or $m_3 \ll m_1 \approx m_2$?
- $v = \overline{v}$? i.e. Dirac or Majorana particle?
- CP violation in the lepton sector

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

Direct v mass measurements: the status

three complementary	n p ve reutrino		
			3H B-decay B-d
tool	Cosmology CMB+LSS+	Neutrinoless Double Beta decay	Beta decay end-point
observable	m Σ=Σ _k m νk	$\boldsymbol{m}_{\beta\beta} = \sum_{k} \boldsymbol{m}_{\nu_{k}} \boldsymbol{U}_{ek}^{2} $	$m_{\beta} = (\sum_{k} m_{\nu_{k}}^{2} U_{ek} ^{2})^{1/2}$
present sensitivity	≈0.1 eV	≈0.03 eV	≈1 eV
≈10y future sensitivity	≈0,01 eV	≈0,01 eV	≈0,1 eV
model dependency	yes 🕲	yes 🙁	no 😊
systematics	large 😕	some 😑	large 😕

Direct neutrino mass measurements

model independent approach: study the kinematics of weak decays

- in beta and electron capture decays where $\overline{\mathbf{v}}_{e}$ or \mathbf{v}_{e} are emitted $|\mathbf{v}_{e}\rangle = \sum_{k} \boldsymbol{U}_{ek} |\mathbf{v}_{k}\rangle$
- non zero neutrino masses m_{ν_k} modify the decay phase space
- for nuclear β decay $N(E_{\beta}) \propto p_{\beta} E_{\beta} (Q E_{\beta}) \sum_{k} |U_{ek}|^2 \sqrt{(Q E_{\beta})^2 m_{\nu_{k}}^2} F(Z, E_{\beta}) S(E_{\beta})$

for **degenerate masses** (i.e. $m_{\text{lightest}} > \approx 0.1 \text{ eV} \rightarrow m_{\nu 1} \approx m_{\nu 2} \approx m_{\nu 3}$)

 $N(E_{\beta}) \approx p_{\beta} E_{\beta} (Q - E_{\beta}) \sqrt{(Q - E_{\beta})^2 - m_{\beta}^2 F(Z, E_{\beta}) S(E_{\beta})} \quad \text{with} \quad m_{\beta} = \sqrt{\sum_{k} m_{\nu_{k}}^2 |U_{ek}|^2}$ Normal Hierarchy **Inverted Hierarchy** 2×10 5×10⁶ 1×10¹⁰ 0.1L *N*(*E*_β) [a. u.] m [eV] fraction of T decays -0.205 -0.2 5×10 0.01 $\mathbf{f} \propto (\mathbf{m}_{\beta}/\mathbf{Q})^3$ $f \approx 10^{-15}$ 0.001⊾ 0.001 for $m_{\beta} = 0.2 \text{ eV}$ 0└--0.4 -0.3 -0.2 -0.1 0.01 0.1 1 0.001 0.01 0.1 $E_{\rm g}$ -Q[eV] O = 18.6 keV*m*₁ [eV] m_{g} [eV] A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

Spectrometric experiments with Tritium

- neutrino mass measurement from beta decay end-point
 - suggested by F. Perrin in 1933 and by E. Fermi in 1934
- exploited since 1970 with Tritium and spectrometric approach

atomic/molecular

 β analyzer

differential or

integral spectrometer

excitations

- low endpoint: Q = 18.6 keV
- super-allowed transition with high rate $\tau_{\mbox{\tiny 1/2}}$ = 12.3 y
- various Tritium source types: solid and gaseuos

Ve

- issues with systematics
 - T_2 final excited states

tritium source

- spectrometer and source effects
- background

-100

Best-fit m² (eV²)

0

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

-200

β counter

MAC-E filter: KATRIN

Magnetic Adiabatic Collimation and Electrostatic Filter → **integrating spectrometer**

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

10

new data in 2024 \rightarrow 0.5 eV sensitivity expected

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

11

100

50

Retarding energy - 18574 (eV)

Project8: phase II results

CRES with atomic Tritium

- long term sensitivity goal: 40 meV 90% CL
- 4 different experimental phases: phase III now starting
- energy resolution \approx 2 eV @18 keV
- phase II with T₂:
 - $\Delta E_{\text{FWHM}} = 54 \text{ eV}$ (shallow trap configuration)
 - $m_{\nu} < 152 \text{ eV} 90\%$ CL Project 8 Collaboration, PRL 131 (2023) 102502

first T decay electron

A. Ashtari Esfahani et al. Phys. Rev. C 109, 035503

Direct v mass measurements: 2022+ status

Direct v mass measurements: role of kinematic exp.

Direct v mass measurements: next generation exp. 10^{0}

Preliminary

 10^{-1}

T2, integral ($\Delta E = 1 \text{ eV}$, bg = 0.01 cps)

Stat only 10 eV region

1000 days

16

Goal $m_{\rm v} < 0.05 \, {\rm eV}$

KATRIN++

- at TLK exploiting KATRIN spectrometer

PTOLEMY

• project to measure the Cosmic Neutrino Background via neutrino capture on tritium

M.G. Betti et al., Prog. Part. Nucl. Phys, 106 (2019) A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024 17

Calorimetric experiments

ideal calorimetric experiment

- radioactive source embedded in the detector(s)
- only the neutrino energy escapes detection
- $\rightarrow \boldsymbol{E}_{c} = \boldsymbol{Q} \boldsymbol{E}_{v}$
- no backscattering
- no energy losses in source
- no decay final state effects
- no solid state excitation
- low activity \rightarrow limited statistics
- pile-up background

ideal isotope has

- low *Q*
 - \rightarrow larger fraction *f* of decays in ROI
 - → easier calorimetry
- for EC: capture peak close to end-point
- fast decay time

isotope	Q [eV]	τ _{1/2} [y]	decay	B.R.	experiments
³ Н	18592.01(7)	12	β-	1	Simpsons's
¹⁸⁷ Re	2470.9(13)	4.3×10 ¹⁰	β-	1	MANU, MIBETA
¹⁶³ Ho	2863.2(6)	4570	EC	1	Holmes, ECHo
¹³⁵ Cs	440	8.0×10 ¹¹	β-	1.6×10 ⁻⁶	-
¹¹⁵ In	155	4.3×10 ²⁰	β-	1.1×10 ⁻⁶	-

A. de Roubin et al. PRL. 124, 222503 (2020)

Low temperature detector principles

$$C(T_{ph})\frac{dT_{ph}}{dt} + G(T_{ph'}T_0) = P(t)$$

$$P(t) = \Delta E \delta(t) \rightarrow T_{ph}(t) = T_0 + \frac{\Delta E}{C} e^{-t/\tau}$$
for $t > 0$ and with $\tau = C/G$

energy resolution limited by thermodynamic fluctuation noise TFN

$$V_{ph} = \frac{\langle U \rangle}{\langle E_{ph} \rangle} = \frac{CT}{k_B T}$$

$$\sigma_E = \Delta U_{rms} = \sqrt{N_{ph}} \langle E_{ph} \rangle = \sqrt{k_B T^2 C}$$

- detectors used for calorimetric neutrino mass experiments are more complex
- \bullet in metallic calorimeters energy is transferred to electronic system with $\mathcal{T}_{\rm e}$
- thermodinamycs and statistical mechanics still provide for TFN $\sigma_E = \sqrt{k_B T^2 C}$

200×200×2 μm³ (1.5 μg) Au absorber @ 100 mK

 $C \approx C_{\rm e} \propto T_{\rm e} \rightarrow C \approx 5 \times 10^{-13} \, \text{J/K}$

 $\sigma_{E} \approx 3.4 \text{ eV}$ (better estimate for TES detectors gives $\sigma_{E} \approx 0.4 \text{ eV}$)

Electron capture calorimetric experiments

¹⁶³Ho → ¹⁶³Dy[H] + ν_e ¹⁶³Dy[H] → ¹⁶³Dy + E_c

shell binding energy: $E_b(M1)=2.05 \text{ keV}$ \rightarrow electron capture from shell $\geq M1$ \rightarrow H=M1, M2, N1, N2, O1, O2, P1 $\Gamma_{M1}\approx 13 \text{ eV}$

- calorimetric measurement of Dy atomic de-excitations (E_c)
 - ▷ mostly Auger and Coster-Kronig ($\omega_{M1,2} \approx 10^{-3}$, $\omega_{N1,2} \approx 10^{-5}$)
- *Q*=2863.2±0.6 eV Ch. Schweiger et al. Nat. Phys. (2024)
 - end-point rate and v mass sensitivity depend on $Q-E_{_{\rm M1}}$

• $\tau_{\frac{1}{2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

EC

Н

Но

Pile-up in low temperature detectors

- calorimeters detect all β/EC source decays
- simple pulse model $A(t) = A(e^{-t/\tau_{decay}} e^{-t/\tau_{rise}})$
 - for microcalorimeters: $\tau_{\text{rise}} \thickapprox 0.1\text{--}10~\mu\text{s}$ and $\tau_{\text{decay}} \thickapprox 0.1\text{--}10~\text{ms}$

 $\Delta t \gg \tau_{rise} \rightarrow pile-up$ on the decay time \rightarrow dead time

 $\Delta t \leq \tau_{rise} \rightarrow pile-up$ on the rise time \rightarrow spectral distortions and background

Pile-up in ¹⁶³Ho EC calorimetric experiments

- accidental coincidences \rightarrow complex pile-up spectrum
- calorimetric measurement → **detector speed is critical**

 A_{EC} EC activity per detector T_{R} time resolution (\approx rise time)

 $\blacktriangleright N_{pp}(E) = \mathbf{f}_{pp} N_{EC}(E) \otimes N_{EC}(E) \text{ with } \mathbf{f}_{pp} \approx \mathbf{A}_{EC} \mathbf{\tau}_{R}$

Statistical sensitivity: pile-up and energy resolution

- Montecarlo simulations for statistical sensitivity with single-hole spectrum
- simulations confirm that sensitivity Σ scales as $1/(N_{ev})^{0.25}$

A. Nucciotti, Eur. Phys. J. C 74.11 (2014)

The HOLMES experiment

- Transition Edge Sensors (TES) microcalorimeters with ion-implanted ¹⁶³Ho
- 6.5×10^{13} atom/det $\rightarrow A_{\rm EC} = 300$ c/s/det
- $\Delta E \approx 1 \text{ eV}$ and $\tau_{R} \approx 1 \text{ } \mu \text{s}$
- 1000 TES microcalorimeters
 - → 16 × 64-pixel arrays with microwave multiplexed read-out
- 6.5×10^{16 163}Ho nuclei → ≈18 µg
 - \rightarrow 3×10¹³ events in 3 years
 - $\rightarrow m_{\nu}$ statistical sensitivity $\approx 1 \text{ eV}$

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

exposure $N_{det}t_{M} = 1000 det \times 3 y$

The HOLMES experiment

- Transition Edge Sensors (TES) microcalorimeters with ion-implanted ¹⁶³Ho
- 6.5×10^{13} atom/det $\rightarrow A_{\rm EC} = 300$ c/s/det
- $\Delta E \approx 1 \text{ eV}$ and $\tau_{_R} \approx 1 \text{ } \mu \text{s}$
- 1000 TES microcalorimeters
 - \rightarrow 16 × 64-pixel arrays with microwave multiplexed read-out
- $6.5 \times 10^{16} \, {}^{163}$ Ho nuclei $\rightarrow \approx 18 \, \mu g$
 - \rightarrow 3×10¹³ events in 3 years
 - $\rightarrow m_{\nu}$ statistical sensitivity $\approx 1 \text{ eV}$

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

realistic rescaled intermediate target

- $\Delta E \approx 1 \text{ eV}$ and $\tau_{_R} \approx 1 \text{ } \mu \text{s}$
- 64-pixel array
 - \rightarrow 2×10⁹ events in 1 year
 - $\rightarrow m_{\nu}$ statistical sensitivity O(10 eV)

Superconducting transition edge sensors (TES)

HOLMES microcalorimeters arrays

Detector absorbers for calorimetry

- Au absorber must stop all radiation from atomic de-excitations with $E_c \approx Q$
 - for $H=M1 \rightarrow 3-4$ Auger/C-K electrons carry most of E_c (the most energetic with $\langle E_e \rangle \approx 2$ keV)
 - for H=M1 \rightarrow rarely ($\omega_M \approx 10^{-3}$) one X with $\langle E_X \rangle \approx 2.5$ keV and low energy electrons
 - shake-off electrons have energies mostly $\leq 800 \text{ eV}$

- $T_a = 1 \mu m$ from Geant4 MC simulations for $E_{X,e} = Q$
 - fully implanted surface (no containement border)
 - electrons: 1.5×10^{-4} escaping (\rightarrow tail with same intensity)
 - X-rays: 4×10^{-3} escaping (\rightarrow tail with intensity 1.3×10^{-3})

Implanted Ho heat capacity

• optimal ΔE depends on C and T

 $\Delta E \propto T \sqrt{C}$ $C = C_a + C_{\rm Ho}$

- Ho heat capacity C_{Ho} dominated by a Schottky anomaly at $\approx 300 \text{ mK}$
 - J=8 and $I=7/2 \rightarrow$ hyperfine and crystal field splittings
- contradictory *C* measurements
 - still under investigation
- to be explored by HOLMES at 90 mK
 - bulk $C_{Ho} \approx 1.3 \times 10^{-12} \text{ J/K/Bq(}^{163}\text{Ho}\text{)}$
 - $C_{\rm a} \approx 0.8 \times 10^{-12} \, {\rm J/K}$
- high activities could be manageable
 - operating at 50 mK or below
 - $A=300 \text{ Bq} \rightarrow x_{Ho}>10 \% \rightarrow \text{closer to bulk } C_{Ho}$

Microwave multiplexing for array read-out

microwave multiplexing to read-out many detectors with one single RF line and HEMT amplifier

HOLMES heterodyne readout

Software Defined Radio generates RF tones and demodulates output RFsignals

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

31

HOLMES cryogenic set-up

for 256 pixels

HOLMES microwave mux results

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024 33

rf-SQUID

105

HOLMES detectors, readout, and analysis status

raw data from 26 multiplexed detectors

⁵⁵Fe X-rays + Al, Cl, Ca X-ray fluorescence

- fully processed TES arrays without ¹⁶³Ho implant
- set-up for 126 multiplexed pixels
- \bullet 2 μmux chips but only 32 bonded pixels
- at 5.9 keV (55Fe):
- $\rightarrow \Delta E_{FWHM} \approx 4-6 \text{ eV}$
- $\rightarrow \tau_{\text{rise}}{\approx}15~\mu\text{s}$ (R/L limited to match DAQ) $\rightarrow \tau_{\text{R}}{\approx}1.5~\mu\text{s}$
- → τ_{decay} ≈ 300 µs
 - M. Borghesi et al., EPJ. C 81.5 (2021)

Isotope production

¹⁶²Er (n, γ) ¹⁶³Er $\sigma_{thermal} \approx 20 \text{ b}$ ¹⁶³Er \rightarrow ¹⁶³Ho + ν $\tau_{1/2}^{EC} \approx$ 75 min

- In 162 Er irradiation at ILL nuclear reactor (Grenoble, France)
 - ▶ thermal neutron flux 1.3×10^{15} n/cm²/s
- Ho chemical separation with ion-exchange resins in hot-cell to remove Er matrix and and radioactive products
- separation efficiency >90 %
- HOLMES has collected ≈ 200 MBq of ¹⁶³Ho (+ ≈ 400 kBq of ^{166m}Ho)

164

Tm

S. Heinitz et al., PLoS ONE 13(8): e0200910

Background: ^{166m}**Ho**

- pile-up in ROI (single-hole) b_{pp}≈0.35 f_{pp} A c/eV/day
- environmental γ and $\gamma/X/\beta$ from close materials
- cosmic rays
 - ▷ GEANT4 (HOLMES) $\rightarrow b_{CR} \approx 10^{-5} \text{ c/eV/day/det} (0 4 \text{ keV})$
- internal radionuclides
- internal radionuclides(a)> ^{166m}Ho (β⁻, Q=1.8 MeV, $\tau_{\frac{1}{2}}$ =1200 y)> HOLMES ¹⁶³Ho sample: A(¹⁶³Ho)/A(^{166m}Ho)>500> GEANT4 (HOLMES) → b_{166m}≈0.3 c/eV/day/det/Bq(^{166m}Ho)
- impact of background depends on pixel activity A(¹⁶³Ho)

A(¹⁶³ Ho) [Bq]	f _{pp}	b _{pp} [c/eV/day]	max b ‡ [c/eV/day]	max A(^{166m} Ho)	A(¹⁶³ Ho)/ A(^{166m} Ho)	N(¹⁶³ Ho)/ N(^{166m} Ho)
3	3×10 ⁻⁶	3.2×10 ⁻⁶	10-5	3×10 ⁻⁵	10 ⁵	4×10 ⁵
300	3×10-4	3.2×10 ⁻²	10-1	0.3	1000	4000

[‡] from MC simulations

HOLMES mass separation and isotope embedding

- System requirements:
 - high beam current, low holmium losses
 - high ^{166m}Ho magnetic separation
- Hot-running cold plasma sputter ion source
- now running w/o triplet/XY-scan and target chamber
 - Target chamber presently at UNIMIB for Au deposition
 - XY-scan stage and electrostatic triplet ready for installation

HOLMES co-deposition system

Sintered sputter target optimization with ^{nat}Ho

sintered target recipe

- Molibenum support
- Zr/Bi (98/2) + Al powder compression at 200 bar
- sintering: 2h at 950°C
- micropipette dripping of Ho(No₃)₃
- drying at 70°C

HOLMES ion implanter characterization

- sintered sputter target reproducibility and stability
- Mass vs. B field calibration
- Mass separation at slit
- Ho ion current control, stability and reproducibility (also with low Ho content)
- Holmium extraction efficiency (also with low Ho content)

TES array holder for ion implantation

functionalized array holder

- movable to behind slit (TES-slit 100 mm)
- interlocked with FC DF

Faraday cup DF

- acting as FC with secondary electron suppression
- ion current on array measured independently

¹⁶³Ho ion implantation runs

2 runs with ¹⁶³Ho

June 2023

Array A: 1 spot with \approx 4 Bq peak nominal activity

- beam profile and detector response studies
- from simulations $\rightarrow 8.6 \times 10^{11} / 0.0032 = 2.7 \times 10^{14} \, ^{163}$ Ho ions

Array B: 3 spots with \approx 2 Bq peak nominal activity

- uniform activity test
- from simulations $\rightarrow 4.3 \times 10^{11} / 0.0012 = 3.6 \times 10^{14} \, ^{163}$ Ho ions

October 2023

Array A: 4 spots with \approx 2 Bq peak nominal activity

- uniform activity for high statistics EC decay measurement
- from rescaling of first run $\rightarrow 5.4 \times 10^{14} \, {}^{163}$ Ho ions
- **Array B**: 1 spot with \approx 4 Bq peak nominal activity
 - beam profile (array rotated 90°)
 - same as first run $\rightarrow 2.7 \times 10^{14}$ ¹⁶³Ho ions

$\approx 14.4 \times 10^{14} \, {}^{163}$ Ho ions

- \rightarrow with 0.2% extraction efficiency \rightarrow 7.2×10¹⁷ ions
- $\rightarrow \approx$ 3.5MBq of ¹⁶³Ho in the source target

First ¹⁶³Ho ion implantation / 1

target preparation with radioactive material

- procedure reviewed with Radio-protection Expert
 - radioactive sources storage room at Genova Physics Department
 - disposable glove box with active ventilation
 - dosimeters
 - operators classified as radio-exposed
- sintered target loaded with **12MBq of ^{163}Ho** (2.6×10¹⁸ 163 Ho atoms, 1.6mL of Ho(No₃)₃)

Zr/Bi 98/2 + Al on Mo

First ¹⁶³Ho ion implantation / single spot

 ^{163}Ho beam current stable at about \approx 5 nA for 3 h

<u>×1</u>0⁻⁹

integrated current corresponds to $\approx 3 \times 10^{14}$ ¹⁶³Ho ions

Implanted array finalization

 $1\,\mu m$ Au deposited on implanted absorber by sputtering at \approx 40 nm/h (\approx 27 h) in the Target Chamber

Au

Implanted array finalization / 2

Acetone bath at 50°C for Au layer lift-off (\approx 2 h)

photoresist lift-off and SiN membrane release

Hot KOH bath (80°C) for silicon anisotropic etching and SiN membrane release (\approx 5 h)

detector holder mounted on MC connected to RF lines

2× ⁵⁵Fe + Al fluorescence X-ray source

Run 1: implanted activity map

Run 1: Effect of implanted activity on detector response

Second ¹⁶³**Ho ion implantation: array preparation**

Second ¹⁶³Ho ion implantation: activity map

52 active pixels

average activity $\langle A \rangle = 0.325 \text{ Bq}$ total activity $A_{tot} = 16.9 \text{ Bq}$ peak activity $A_{max} \approx 0.6 \text{ Bq}$ ion implantation: **non-uniform and too low activity** to be understood/improved

- beam profile and position
- nominal vs. actual activity (saturation activity)
- beam current measurement?

Run 2: EC peak and detector characterization

- run with fluorescence X-ray source
- 50 pixels

 $\Delta E_{\rm FWHM} = 5.4 \sim 8.0 \text{ eV}$

- 2^{nd} order polynomial calibration $E(A) = a_1 A + a_2 A^2$
- find EC peak energies
 - \rightarrow energy calibration for physics runs

Peak	Position [eV]	Gamma [eV]	Asymmetry
M1	2040.8 ± 0.3	14.49 ± 0.05	1.306 ± 0.006
M2	1836.4 ± 0.8	8.2 ± 0.3	1.03 ± 0.05
N?	454.5 ± 0.1	22.3 ± 0.4	0.62 ± 0.02
N1	411.72 ± 0.1	5.57 ± 0.03	1.270 ± 0.008
N2	329.0 ± 0.1	16.4 ± 0.2	0.69 ± 0.01

Run 2: high statistics measurement without source

High statistics measurement without source

 4.0×10^4 detector×hour 33×10⁶ events in spectrum ≈37×10⁶ ¹⁶³Ho decays

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024 54

High statistics measurement without source

 4.0×10^{4} detector×hour 33×10⁶ events in spectrum ≈37×10⁶ ¹⁶³Ho decays

A. Nucciotti, *Advancement in direct neutrino mass experiments*, Roma, 18 Aprile. 2024 **55**

Higher order excitations in EC / 1

EC after EC H₄ H₃ X₁ H₀ V_e H₂

Single hole

the Dy atom is left by EC with **one** hole H_1 in a shell (M1, M2, N1, N2, O...)

 \rightarrow for H₁ in shell X₁ with binding energy $E_{b}(X_{1}) \rightarrow$ resonance at $E_{c}=E_{b}(X_{1})$

Double hole excitations

the perturbation due to the nuclues charge change (Ho \rightarrow Dy) "shakens" one or more additional atomic electron to an upper bound state (shake-up) or to the continuum (shake-off or Auger)

- \rightarrow shake-up: additional hole H₂ in X₂ \rightarrow resonance at $E_c = E_b(X_1) + E_b(X_2)$
- \rightarrow shake-off: additional hole H₂ in X₂ \rightarrow tail to peaks from $E_c = E_b(X_1) + E_b(X_2)$ up to $E_c = Q$

High statistics measurement without source

 4.0×10^{4} detector×hour 33×10⁶ events in spectrum ≈37×10⁶ ¹⁶³Ho decays

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024 57

Higher order excitations in EC / 2

- several attempts to include double hole processes H. Robertson et al., A. Faessler et al., A. De Rújula and M. Lusignoli, ...
- recent work from M. Haverkort and collaborators:
 ab-initio approach with Coulomb interactions between multi core bound and unbound states (work in progress)
 - missing because of computational limits: linewidths, full shake-off contributions, radiative transitions, ...

A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

10

10

10

 10^{3}

 10^{2}

10

10⁰

 10^{-1}

 $\Gamma = 6 eV$

500

Γ = 13 eV

1000

1500

ehergy [eV]

2000

2500

3000

еV

counts / 1

¹⁶³Ho EC calorimetric spectrum

experimental EC spectrum deviates from all theoretical predictions

→ **phenomenological description** of the EC spectrum

- shake-up peaks and shake-off spectra
- strongly asymmetric Lorentzians (Fano-like interference?)

needed for assessing sensitivity of future ¹⁶³Ho experiments

end-point region is smooth and featureless

End-point spectral shape

- "bare" spectra (without phase space)
- *ab-initio* with additional Lorentzian broadening
- spectra are normalized to unity
 - end-point region is smooth and featureless
 - phase space factor leaves unmistakable imprint
 - → possibly small systematic uncertainties

 \rightarrow to be proved

ab-initio spectrum has higher rate at endpoint!

HOLMES sensitivity evolution vs. pixel activity

now **upgrading ion implanter** with focusing stage and co-deposition \rightarrow better uniformity and higher pixel activity (starting with $3 \sim 5$ Bq)

HOLMES sensitivity evolution vs. pixel activity

need to work at **lower temperatures** to reduce the impact of C_{Ho} \rightarrow R&D on lower T_c TESs and/or other LTD techniques

The ECHo experiment

Arrays of Magnetic Metallic Calorimeters with ion-implanted ¹⁶³Ho

ECHo-1k (data analysis in progress)

- number of detectors: 60~100 pixels
- activity: 1~5 Bq/pixel
- read-out: two-stage dc-SQUID
- energy resolution: $\Delta E_{\text{FWHM}} < 10 \text{ eV}$

ECHo-100k (components in preparation)

L. Gastaldo et al. Eur. Phys. J.

Special Topics 226, 1623 (2017)

ECHo

- number of detectors: 12000 pixels
- activity: 10 Bq/pixel
- read-out: microwave multiplexing
- energy resolution: $\Delta E_{\text{FWHM}} < 5 \text{ eV}$

$\rightarrow m_{\nu}$ statistical sensitivity <1.5 eV

ECHo-1k status: detectors

2 detector modules with ¹⁶³Ho in Au and Ag host material parallel dc-SQUID readout

ECHo-1k status: 10⁷ events spectrum

Beyond ECHo and HOLMES: a sub-eV experiment

A/det [Bq]30300 $\tau_R [\mu s]$ 1.00.1 f_{pp} 3.0E-053.0E-05 N_{det} 3.6E+065.8E+06	Σ <i>m</i> _ν [meV]	200	100
τ_R [µS]1.00.1 f_{pp} 3.0E-053.0E-05 N_{det} 3.6E+065.8E+06	Aldet [Bq]	30	300
fpp 3.0E-05 3.0E-05 Ndet 3.6E+06 5.8E+06	τ _R [μs]	1.0	0.1
N _{det} 3.6E+06 5.8E+06	f _{pp}	3.0E-05	3.0E-05
	N _{det}	3.6E+06	5.8E+06
A total [Bq] 1.1E+08 1.7E+09	A total [Bq]	1.1E+08	1.7E+09
¹⁶² Er [mg] * 820 13200	¹⁶² Er [mg] *	820	13200

10 years measuring time

* 162 Er/A(163 Ho) = 3790 mg/GBq + 50% usage efficiency

- pixel activity $\approx 100 \text{ Bq/det} \leftrightarrow {}^{163}\text{Ho}$ heat capacity
- total ¹⁶³Ho activity $> \approx 10^8$ Bq \leftrightarrow ion implantation efficiency
- time resolution below 1 μ s \leftrightarrow multiplexing and DAQ bandwidth \leftrightarrow cost/channel
- about 1M pixels ↔ multiplexing and DAQ bandwidth ↔ cost/channel
- preliminary total cost estimate: *O*(10M€)
- actual EC spectrum could have a factor ~2 higher end-point rate \rightarrow ~2 reduction of $t_M \times N_{det}$ A. Nucciotti, Advancement in direct neutrino mass experiments, Roma, 18 Aprile. 2024

Conclusions

¹⁶³Ho-based experiments can reach statistical sensitivities of order of 1 eV in few years

- many technical challenges faced successfully (separately by HOLMES and ECHo)
 - production of large amounts of clean ¹⁶³Ho samples
 - efficient ion implantation
 - high resolution detectors with multiplexed read-out
 - sophisticated analysis tools
- some efforts are still required to fully assess the potential of holmium experiments
 - understanding the holmium decay spectrum
 - effect of high activities on detector performances
 - investigating systematic effects

longer term plans for next generation experiments with sub-eV sensitivities

- larger international collaboration: HOLMES and ECHo will merge
- increased single pixel activity
- cost reduction (isotope production and efficient usage, readout electronics)

Collaborations

Università di Milano-Bicocca, Italy

INFN Milano-Bicocca, Italy

INFN Genova, Italy

INFN Roma, Italy

INFN LNGS, Italy

NIST, Boulder, USA

PSI, Villigen, Switzerland

ILL, Grenoble, France

