

A simultaneous analysis of $B \to D\ell\nu$ and $B \to D^*\ell\nu$ decays

M. Dorigo and M. Mantovano (University and INFN Trieste)

TS Analysis Meeting July 8, 2024

Recap

Last time:

- Study of $X\ell\nu$ sample composition. Find a sideband enriched of these decays. Split the gap modes into $D^{(*)}\pi\pi\ell\nu$ and $D^{(*)}\eta\ell\nu$ templates.
- Split the "real D" background to constrain better the sub-components in the sideband region (inclusive D decays, fake leptons, secondary...).
- ullet Test a simultaneous fit between the electron and muon samples in the sideband region to constrain the $X\ell
 u$ and real D components.

Presented these results at the last SL meeting [talk@SLmeeting].

Sideband region

Found a $cos\theta_{BY}$ sideband region [-12,-3] to validate these decays.

Divided the $X\ell\nu$ component in different sub-components:

- 1. $D_1 \ell \nu$
- $2. D_1' \ell \nu$
- 3. $D_0^*\ell\nu$
- $4. D_2^* \ell \nu$

- 5. $D^{(*)}\pi\pi\ell\nu$ gap modes 6. $D^{(*)}\eta\ell\nu$

7. $X\ell\nu(rest) \mid D^{(**)}\tau\nu, D^{(*)}\ell\nu, \ell$ = misID lepton

Real D → divided in three sub-components

fake D continuum

Take from off-res data and InvM(D) sideband

signal

enriched $X\ell\nu$ decays in the $cos\theta_{RY}$ sideband

Fit results

The simultaneous fit returns the following results:

$$\chi^2 = 103.6$$
, $dof = 388$

Fit parameters	Constraints	Fit results	Pulls	Fitted/Expected
$\mathcal{B}(B\to D_1\ell\nu)$	(0.64 +- 0.10)%	(0.73 +- 0.08)%	-0.9	1.15
$\mathscr{B}(B o D_{1}^{'}\mathscr{C} u)$	(0.28 +- 0.04)%	(0.29 +- 0.04)%	-0.25	1.03
$\mathscr{B}(B\to D_0^*\mathscr{E}\nu)$	(0.13 +- 0.03)%	(0.13 +- 0.03)%	0	1.05
$\mathscr{B}(B \to D_2 \ell \nu)$	(0.32 +- 0.03)%	(0.33 +- 0.03)%	-0.33	1.03
$\mathscr{B}(B\to D^{(*)}\pi\pi\ell\nu)$	(0.30 +- 0.13)%	(0.25 +- 0.08)%	0.38	0.85
$\mathscr{B}(B o D^{(*)}\eta\mathscr{E} u)$	(1.80 +- 1.80)%	(0.19 +- 0.12)%	0.89	0.11

Data returns a smaller BR values for the gap modes, in particular for $D^{(*)}\eta\ell\nu$ decays. Use the fit results to scale the D^{**} and real D components.

Data/MC agreement: $D^0e \nu$ sample

Next steps from last time

- Rescale $X\ell\nu$ and real D background using these sideband-fit results and check the data-MC agreement of several distributions (but fit variables) in the signal region (done).
- Consider either to make a simultaneous fit of the signal and sideband regions (ongoing) or to use sideband-fit results in the signal-region fit. (done: it works but the data/MC disagreement in $(p_D^*, p_\ell^*, cos\theta_{BY})$ is still there \rightarrow focus on this).
- Redo simulation/toys studies with new sample composition (following latest improvements) to confirm all previous results (e.g. unbiased estimates) for form-factors, V_{cb} , BR, f_{+-}/f_{00} .
 (To do)
- Start working on systematic uncertainties. (To do)

Data/MC agreement

Data/MC agreement: fit variables

The greatest data/MC disagreement is observed for the $D^0e
u$ sample.

Last month, I investigated a lot the possible causes of this disagreement w/o finding any solution. Since all these variables are correlated each others, I focus on $cos\theta_{BY}$ in which the disagreement is more evident.

$$cos\theta_{BY} = \frac{2E_B^* E_{D\ell}^* - m_B^2 - m_{D\ell}^2}{2|\vec{p}_B^*||p_{D\ell}^*|}$$

$$E_B^* = E_{CMS}(beam)/2$$

Data/MC agreement: E_{CMS}

Observed a large data/MC disagreement.

Reweight the fit variables according to the weights from $E_{CMS}(beam)$ distribution.

Data/MC agreement: fit variables

Data/MC agreement: fit variables

Data/MC agreement: $D^0e\nu$ sample

Data/MC agreement: sideband region

Observed a large data/MC disagreement. It has an impact on the previous D** BR determinations.

Summary

- ullet Found a data/MC disagreement in the $E_{\it CMS}(beam)$ distribution.
- ullet Reweight the fit variables according to the weights evaluated by using the $E_{CMS}(beam)$ distribution. Observed an improvement of data/MC agreement in my signal region.

Next steps

- ullet Repeat the simultaneous fit in the sideband region to validate in data the D^{**} modelling and real D after reweighting also the p_D^*, p_ℓ^* distributions.
- ullet Rescale $X\ell\nu$ and real D background using the sideband-fit results and check again the data/MC agreement in my signal region.

Backup

Data/MC agreement: $D^-e \nu$ sample

Data/MC agreement: $D^0\mu\nu$ sample

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement: $D^-\mu\nu$ sample

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement

Observed a large data/MC disagreement.