Kaon Oscillations from tmLQCD using $N_f = 2 + 1 + 1$ dynamical sea quarks

Nuria Carrasco Vela on behalf of Vicent Gimenez, Federico Mescia, Francesco SanFilippo, Silvano Simula, Roberto Frezzotti, David Palao, Petros Dimopoulos, Mauro Papinutto, Vittorio Lubicz, Giancarlo Rossi

IFIC - Universitat de Valencia

Rome, October 2011

Intr	du	io	

Lattice Setup

Outline

1 Introduction

• CP Violation in $\overline{K}^0 - K^0$ Mixing

2 Lattice Setup

- Bare parameter
- Renormalization Constants

3 Analysis

- Lattice estimator for the B-parameter
- 4-Fermion Renormalization Constants
- Renormalized B₁

4 Conclusions

possible through a

weak interaction of

second order.

w

d

u.c.t

w

5

$$Q_{1} = \frac{1}{4} [\overline{s} \gamma_{\mu} (1 - \gamma_{5}) d] [\overline{s} \gamma_{\mu} (1 - \gamma_{5}) d]$$

$$\langle \overline{K}^{0} | \mathcal{H}_{eff}^{\Delta S=2} | K^{0} \rangle = \frac{G_{F}^{2} M_{W}^{2}}{16 \pi^{2}} \underbrace{\left[\sum_{l,m=u,c,t} C_{1}^{(l,m)}(\mu) V_{ls}^{*} V_{ld} V_{ms}^{*} V_{md} \right]}_{\text{perturbative}} \underbrace{\langle \overline{K}^{0} | \hat{Q}_{1}(\mu) | K^{0} \rangle}_{\text{non perturbartive}} \left(\frac{\langle \overline{K}^{0} | \hat{Q}_{1}(\mu) | K^{0} \rangle}{8/3 f_{K}^{2} M_{K}^{2}} \hat{B}_{1}(\mu) \right)$$

 $\begin{array}{c|c} Introduction \\ \bullet \end{array} & \begin{array}{c} Lattice \ Setup \\ \circ \end{array} & \begin{array}{c} Analysis \\ \circ \circ \end{array} & \begin{array}{c} Conclusions \end{array} \\ \hline \\ \hline \\ CP \ Violation \ in \ \overline{K}^0 - K^0 \ Mixing \end{array}$

 $\epsilon_{\mathcal{K}}$ is a measurement of the indirect CP violation

$$\epsilon_{K} = \frac{G_{F}^{2} M_{W}^{2} f_{K}^{2} M_{K}^{2}}{6\sqrt{2}\Delta M_{K}} \hat{B}_{1}(\mu) \operatorname{Im} \left[\sum_{l,m=u,c,t} C_{1}^{(l,m)}(\mu) V_{ls}^{*} V_{ld} V_{ms}^{*} V_{md} \right]$$

Since ϵ_{κ} can be measured experimentally and $\hat{B}_1(\mu)$ extracted from the lattice simulations one can constrain the vertex of the unitary triangle

$$ar\eta(1-ar
ho)={\sf constant}$$

Introduction	Lattice Setup	Analysis	Conclusions
00	00	000000000000000000000	
Lattice action			

Bare Operators:

- Iwasaki Gauge Action
- Wilson Twisted Mass Action at maximal twist with $N_f = 2 + 1 + 1$ dynamical sea quarks & Osterwalder-Seiler valence quark action $S_l^{sea,Mtm}(x) = \sum_{x} \{\overline{\chi}_l(x) [D_W[U] + m_{0,l} + i\mu_l\gamma_5\tau_3] \chi_l(x)\}$ $S_h^{sea,Mtm}(x) = \sum_{x} \overline{\chi}_h(x) [D_W[U] + m_{0,h} + i\mu_\sigma\gamma_5\tau_1 + \mu_\delta\tau_3] \chi_h(x)$ $S^{val,OS} = \sum_{x} \sum_{f=d,d'} \overline{q}_f(x) [D_W[U] + m_{0,f} + i\mu_f\gamma_5r_f] q_f(x)$

Chiral improved Wilson fermions

 $\mathit{r_s} = \mathit{r_s'} = \mathit{r_d} = -\mathit{r_d'}$

- O(a) improvement
- Continuum like renormalization pattern

R.Frezzotti and G.C. Rossi. JHEP, 10:070, 2004

Renormalization Constants:

• Dedicated runs with Nf=4 degenerate sea quarks

Introduction	Lattice Setup	Analysis	Conclusions	
	0			

Simulation for the bare parameter

	μ_{sea}	$M^{I\!I}_{PS}({\sf MeV})$	$L^3 \times T$	#confs
	0.0030	~ 280	$32^3 imes 64$	144
β=1.90	0.0040	\sim 320	$32^{\textbf{3}}\times64$	96
$($ a ~ 0.087 fm $)$	0.0040	\sim 320	$24^3 imes 48$	150+26=176
$\mu_\sigma=$ 0.15 $\mu_\delta=$ 0.19	0.0050	\sim 360	$32^{\textbf{3}}\times64$	144
$\mu_{\textit{val}} = \mu_{\textit{sea}}, 0.0151, 0.0185, 0.0225$	0.0060	$\sim\!400$	$\mathbf{24^3}\times48$	144
	0.0080	${\sim}450$	$\mathbf{24^3}\times48$	150+58=208
	0.0100	\sim 500	$24^3 imes 48$	150+58=208
	0.0025	~ 270	$32^{\textbf{3}}\times 64$	144
β=1.95	0.0035	\sim 320	$32^{\textbf{3}}\times 64$	144
$($ a ~ 0.077 fm $)$	0.0055	$\sim\!400$	$32^{\textbf{3}}\times 64$	144
$\mu_\sigma=$ 0.135 $\mu_\delta=$ 0.17	0.0075	$\sim\!460$	$32^{\textbf{3}}\times 64$	80
$\mu_{\it val}=\mu_{\it sea}$,0.0141,0.0180,0.0219	0.0085	\sim 490	$\mathbf{24^3}\times48$	150+94=244
β=2.10	0.0015	~220	$48^3 imes 96$	96
$(a\sim 0.062{ m fm})$	0.0020	~ 250	$48^3 imes 96$	96
$\mu_\sigma=$ 0.12 $\mu_\delta=$ 0.1385	0.0030	\sim 310	$48^3 imes 96$	96

Introduction 00	C●	Analysis 00000000000000000000	Conclusions
Simulation details	for the RC		
 Dedicated runs v Working out of O(a)-improvement 	with $N_f=4$ degen maximal Twist: avent in the RCs (ar	erate quarks erage over p & m ensembles to a Xiv:1101.1877)	ichieve

$\beta = 1.95$	$a^{-4}(L^3 \times T) = 24^3 \times 48$		
$a\mu_{ m sea}$	ensemble	$a\mu_{ m val}$	$N_{ m meas}$
0.0085	B4[1p**]	0 0085 0 0150 0 0203 0 0252 0 0298	304
0.0085	B4[1m**]	$0.0085 \ 0.0150 \ 0.0203 \ 0.0252 \ 0.0298$	304
0.0085	B6[2p]	$0.0085 \ 0.0150 \ 0.0203 \ 0.0252 \ 0.0298$	352
0.0085	B7 [2m]	$0.0085 \ 0.0150 \ 0.0203 \ 0.0252 \ 0.0298$	352
0.0180	B[3p]	0.0060, 0.0085 0.0120 0.0150 0.0180	352
		0.0203 0.0252 0.0298	
0.0180	B[3m]	0.0060, 0.0085 0.0120 0.0150 0.1080	352
		0.0203 0.0252 0.0298	
0.0085	B[4p]	0.0060, 0.0085 0.0120 0.0150 0.0180	224
	-	0.0203 0.0252 0.0298	
0.0085	B[4m]	0.0060, 0.0085 0.0120 0.0150 0.1080	224
		0.0203 0.0252 0.0298	
0.0085	B[7m]	0.0085 0.0150 0.0203 0.0252 0.0298	400
0.0085	B[7p]	0.0085 0.0150 0.0203 0.0252 0.0298	400
0.0020	B[8m]	0.0085 0.0150 0.0203 0.0252 0.0298	400
0.0020	B[8p]	0.0085 0.0150 0.0203 0.0252 0.0298	400

Introduction Lattice Setup Analysis Conclusions

Lattice estimator for the bare B-parameter

B-parameters mesure the deviation of the VIA value of the matrix elements which contribute to kaon oscillation from its physical value

$$\langle \overline{K^{0}} | Q_{i} | K^{0} \rangle = B_{i} \langle \overline{K^{0}} | Q_{i} | K^{0} \rangle_{VIA} = B_{i} F_{i} f_{K}^{2} M_{K}^{2}$$

$$\begin{split} F_{1} &= \frac{8}{3} \\ F_{i} &= C_{i} \left[\frac{M_{K}}{m_{s} + m_{d}} \right]^{2} \ i = 2, \dots, 5 \ C_{i} &= \{-5/3, 1/3, 2, 2/3\} \\ Q_{2} &= \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} (1 - \gamma_{5}) d^{b}] \\ Q_{3} &= \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} (1 - \gamma_{5}) d^{a}] \\ Q_{4} &= \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} (1 - \gamma_{5}) d^{a}] \\ Q_{5} &= \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{b}] [\bar{s}^{b} (1 + \gamma_{5}) d^{b}] \\ \end{array}$$

Since (in the CoM system)

$$\langle \overline{K^0} | A_0 | 0 \rangle \langle 0 | A_0 | K^0 \rangle = f_K^2 M_K^2$$

The bare B_1 estimator can be obtained from the ratio

$$B_{1} = \frac{\langle \overline{K^{0}} | Q_{1} | K^{0} \rangle}{F_{1} \langle \overline{K^{0}} | A_{0} | 0 \rangle \langle 0 | A_{0} | K^{0} \rangle} = \frac{\langle P^{34} | Q_{1} | P^{21} \rangle}{F_{1} \langle P^{34} | A_{0}^{43} | 0 \rangle \langle 0 | A_{0}^{12} | P^{21} \rangle}$$
$$|K^{0} \rangle = \overline{d} \gamma_{5} s \equiv |P^{21} \rangle = \overline{q}_{2} \gamma_{5} q_{1} \quad |\overline{K^{0}} \rangle = \overline{d} \gamma_{5} s \equiv |P^{43} \rangle = \overline{q}_{4} \gamma_{5} q_{2}$$

Introduction	Lattice Setup	Analysis	Conclusions
00	00	0●0000000000000000000000000000000000	
Lattice estimator	for the bare B-parar	neter	

We define two "K-meson walls" at y_0 and $y_0 + T/2$

$$W^{21}(y_0) = \sum_{\vec{y}} \bar{q}_2(\vec{y}, y_0) \gamma_5 q_1(\vec{y}, y_0)$$
$$W^{43}(y_0 + T/2) = \sum_{\vec{y}} \bar{q}_4(\vec{y}, y_0 + T/2) \gamma_5 q_3(\vec{y}, y_0 + T/2)$$

Introducing the 4-fermion operators at $x = (\vec{x}, x_0)$ we construct the 2- and 3-point correlation functions

$$C_{3}(x_{0}) = \sum_{\vec{x}} \langle W^{43}(y_{0} + T/2)Q_{i}(x)W^{21}(y_{0}) \rangle$$

$$C_{2}(x_{0}) = \sum_{\vec{x}} \langle A_{0}^{12}(x) W^{21}(y_{0}) \rangle$$

$$C_{2}'(x_{0}) = \sum_{\vec{x}} \langle W^{43}(y_{0} + T/2)A_{0}^{34}(x) \rangle$$

The B_1 parameter can be estimated from the ratio

$$R_{1}(x_{0}) = \frac{C_{3}(x_{0})}{C_{2}(x_{0})C_{2}'(x_{0})} \xrightarrow{y_{0} << x_{0} << y_{0} + T/2} \frac{\langle P^{34}|Q_{1}|P^{21}\rangle}{\langle P^{34}|A_{0}^{43}|0\rangle\langle 0|A_{0}^{12}|P^{21}\rangle} = F_{1}B_{1}$$

Introduction	Lattice Setup	Analysis	Conclusions
00	00	00000000000000000000000000000000000	
Lattice estimator	for the bare B-parar	neter	

Each one of the five B-parameters comes from a particular

$$C_{3}(x_{0},\vec{x}) = \sum_{\vec{x}\vec{x}_{L}\vec{x}_{R}} \langle (\bar{d}'\gamma_{5}s')(y_{0}+T/2,\vec{x}_{R})2Q^{\Delta S=2}(x_{0},\vec{x})(\bar{d}\gamma_{5}s)(y_{0},\vec{x}_{L}) \rangle$$
$$Q^{\Delta S=2} = (\bar{s}\Gamma d)(\bar{s}'\Gamma d') + (\bar{s}\Gamma d')(\bar{s}'\Gamma d)$$

$$C_{3}(x_{0},\vec{x}) = 2 \sum_{\vec{x}\vec{x}_{L}\vec{x}_{R}} \operatorname{Tr}[S'_{d}(y_{0} + T/2, x) \Gamma S_{s}(x, y_{0}) \gamma_{5} S_{d}(y_{0}, x) \Gamma S_{5}(x, y_{0} + T/2) \gamma_{5}] - \operatorname{Tr}[S'_{d}(y_{0} + T/2, x) \Gamma S_{s}(x, y_{0} + T/2) \gamma_{5}] \cdot \operatorname{Tr}[S_{d}(x, y_{0}) \gamma_{5} S_{5}(y_{0}, x) \Gamma]$$

Introduction	Lattice Setup	Analysis	Conclusions	
00	00	000●00000000000000000000000000000000		
Analysis Steps				

- Compute the bare B-parameters $B_i(\beta; \mu_{sea}, \mu_{val})$ by performing a fit of the correlation functions
- 2 Extrapolations to the physical quark masses
 - Chiral extrapolation in the $\mu_l
 ightarrow \mu_{u/d}$
 - Interpolation in $\mu_h \rightarrow \mu_s$
- 8 Renormalization

Standard model contribution

We focus on B_1

Computation of the RCs is still in progress

Only $\beta = 1.95$ is analyzed No continuum limit extrapolation has been done yet

	000000000000000000000000000000000000000	
Ratio Fits		

 ${\cal B}_1(\beta;\mu_{\it sea},\mu_{\it val})$ have been computed by performing a constant fit of the ratio

$$R_1(t) = \frac{C_1^{(3)}(t)}{C_{AP}^{(2)}(t)C_{AP}^{(2)}(t)}$$

over the range where this function reaches a plateau.

Physical quark mass Extrapolation ($\beta = 1.95$)

- For each value of M_{II} (i.e m_I) we obtain the value of B_K^{bare} at three values of M_{hh} (i.e m_s).
- Three chiral fits for each strange value are performed based on **SU2 @NLO**: $B_{K}^{bare}(M_{II}, M_{hh}) = B'_{K}(M_{hh}) \left[1 + b'(M_{hh}) \frac{(M_{II})^{2}}{f_{0}^{2}} - \frac{(M_{II})^{2}}{32\pi^{2}f_{0}^{2}} \log \frac{(M_{II})^{2}}{16\pi^{2}f_{0}^{2}} \right]$ or a polynomial fit: $B_{K}^{bare}(M_{II}, M_{hh}) = B'_{K}(M_{hh}) \left[1 + b'(M_{hh})(M_{II})^{2} \right]$

SU(2) @ NLO β = 1.95

E 0.014 m = 0.0141 m = 0.0180 m = 0.0210 m = 0.021 SU(2) @ NLO

^{am} h	$\chi^2/d.o.f$	$B_{K}^{bare}(M_{\pi}, M_{hh})$		
0.0141	2.38	0.552(16)		
0.0180	2.62	0.57(2)		
0.0219	2.60	0.58(3)		
	Polynomial fit			
^{am} h	$\chi^2/d.o.f$	$B_{K}^{bare}(M_{\pi}, M_{hh})$		
0.0141	2.04	0.56(2)		
0.0180	2.21	0.58(2)		
0.0219	2.14	0.59(2)		

• Interpolation in $(M_{hh})^2$ to the physical kaon mass : $(M_{hh})^2 = 2M_K^2 - M_\pi^2$

SU(2) @ NLO Chiral fit + Linear strange interpolation β =1.95

Introduction 00	Lattice Setup 00	Analysis	Conclusions
1 Earmion	Ponormalization Con	ctanto	

In the formalism of OPE

$$\langle \overline{K}^{0} | \mathcal{O} | K^{0} \rangle = c_{w}(\mu) \langle \overline{K}^{0} | \mathcal{O}(\mu) | K^{0} \rangle = c_{w}(\mu) Z_{\mathcal{O}}(a\mu) \langle \overline{K}^{0} | \mathcal{O}(a) | K^{0} \rangle$$

 $\mathcal{O}^{\Gamma_1\Gamma_2}$ can mix with any dimension-six operator provided they have the same quantum numbers.

Mixing

The Wilson term induces explicit chiral symmetry breaking. That implies mixing with operators of the same dimensionality but with the wrong naive chirality.

OS fermions

The four-fermion operators are renormalizable as in the continuum once the Wilson parameters appearing in the action of the OS fermions of the valence satisfy

 $r_s=r_{s'}=r_d=-r_d'$ R.Frezzotti and G.C. Rossi. JHEP, 10:070, 2004

Introduction	Lattice Setup	Analysis	Conclusions
00	00	00000000000000000000000000000000000	
4-Fermion	Mixing		

Classification in terms of their discrete simmetries:

Parity

$$\begin{array}{lll} PC & PV \\ Q_{1}^{\pm} \equiv & O_{[VV+AA]}^{\pm} & Q_{1}^{\pm} \equiv & O_{[VA+AV]}^{\pm} \\ Q_{2}^{\pm} \equiv & O_{[VV-AA]}^{\pm} & Q_{2}^{\pm} \equiv & O_{[VA-AV]}^{\pm} \\ Q_{3}^{\pm} \equiv & O_{[SS-PP]}^{\pm} & Q_{3}^{\pm} \equiv & -O_{[SP-PS]}^{\pm} \\ Q_{4}^{\pm} \equiv & O_{[SS+PP]}^{\pm} & Q_{4}^{\pm} \equiv & O_{[SP+PS]}^{\pm} \\ Q_{5}^{\pm} \equiv & O_{[TT]}^{\pm} & Q_{5}^{\pm} \equiv & O_{[T\tilde{T}]}^{\pm} \end{array} \right. \qquad O^{\pm} = \frac{1}{2} [O \pm O^{F}] \\ O_{\Gamma_{1}\Gamma_{2}} = (\bar{\psi}_{1}\Gamma_{1}\psi_{2})(\bar{\psi}_{3}\Gamma_{2}\psi_{4}) \\ O_{\Gamma_{3}\Gamma_{2}} = (\bar{\psi}_{1}\Gamma_{1}\psi_{2})(\bar{\psi}_{3}\Gamma_{2}\psi_{4}) \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} = O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{\Gamma_{3}\Gamma_{3}}^{\pm} \\ O_{$$

• Charge Conjugation + Flavour exchange symmetries

$$\begin{split} \hat{Q}^{\pm} &= Z_{\chi}^{\pm} [I + \Lambda^{\pm}] Q^{\pm} \quad \hat{Q} = \mathcal{Z}^{\pm} \mathcal{Q} \\ Z_{\chi}^{\pm} &= \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{45} \\ 0 & 0 & 0 & Z_{44} & Z_{55} \end{pmatrix}^{\pm} \\ \mathcal{X}^{\pm} &= \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & Z_{32} & Z_{33} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{55} \end{pmatrix}^{\pm} \\ \Lambda^{\pm} &= \begin{pmatrix} 0 & \Lambda_{12} & \Lambda_{13} & \Lambda_{14} & \Lambda_{15} \\ \Lambda_{11} & 0 & 0 & \Lambda_{24} & \Lambda_{25} \\ \Lambda_{31} & \Lambda_{42} & \Lambda_{43} & 0 & 0 \\ \Lambda_{51} & \Lambda_{52} & \Lambda_{53} & 0 & 0 \end{pmatrix}^{\pm} \underbrace{\text{Chiral limit}}_{\bullet} 0 \end{split}$$

Intr	o du	ctio	n

RI-MOM method

Doing in the lattice what we do in the continuum

RI/MOM consists in imposing renormalization conditions non-perturbatively directly on quark and gluon Green functions, in a fixed gauge, with given off-shell external states

RI/MOM 4-fermion RC

$$Z^{\pm} = Z_{\psi}^{-2} [D^{\pm T}]^{-1}$$

Introduction

Lattice Setup

Steps for the computation of the RCs

B_K Renormalization in the SM

Note that:

$$Q_{1}^{+} \equiv O_{[VV+AA]}^{+} = [\bar{\psi}_{d_{1}}\gamma_{\mu}(1-\gamma_{5})\psi_{s_{1}}][\bar{\psi}_{d_{2}}\gamma_{\mu}(1-\gamma_{5})\psi_{s_{2}}]$$

 $(Z_{11})_{PC}^+$ is the only 4-fermion operator relevant for the computation of \hat{B}_K

θ -av

$$\begin{array}{l} D_{ij}(p,\,M_{vol},\,M_{sea})=0.5\{D_{ij}(p,\,M_{vol},\,M_{sea},\,p)+D_{ij}(p,\,M_{vol},\,M_{sea},\,m)\}\\ D_{ij}(p,\,0,\,M_{sea})=0.5\{D_{ij}(p,\,0,\,M_{sea},\,e=p)+D_{ij}(p,\,0,\,M_{sea},\,e=m)\}\\ Z_{ij}(p,\,0,\,M_{sea})=0.5\{Z_{ij}(p,\,0,\,M_{sea},\,e=p)+Z_{ij}(p,\,0,\,M_{sea},\,e=m)\}\\ Z_{ij}(p,\,0,\,0)=0.5\{Z_{ij}(p,\,0,\,0,\,e=p)+Z_{ij}(p,\,0,\,0,\,e=m)\}\end{array}$$

Or Computation of $D_{ij}(p, M_{val}, \text{ensemble})$: $D^{\pm} = P^{\pm} \Lambda^{\pm}$

- **3** Valence Chiral limit with substraction of the Goldstone Pole $\rightarrow D_{ij}(p, M_{val} = 0, \text{ensemble})$ and θ -average
- **3** Computation of $Z_{ij}(p, M_{val} = 0, M_{sea})$ with removal of $O(a^2g^2)$ cuttof effects: $Z^{\pm} = Z_{ab}^{-2}[D^{\pm T}]^{-1}$
- Sea Chiral Limit $\rightarrow Z_{ij}(p, M_{val} = M_{sea} = 0)$
- 5 Evolution: RI'-MOM \rightarrow RGI and p^2 fit

Introduction	Lattice Setup	Analysis	Conclusions
00	00	00000000000000000000000000000000000	
Dynamical Matrix	Valence Chiral Lim	it	

Introduction	Lattice Setup	Analysis	Conclusions
00	00	00000000000000000000000000000000000	
Absence of Wrong	Chirality Mixing in	the Dynamical	Matrix

స

б

$D_{11} \\ 0$	0 D22	0 D ₂₃	0 0	0 0)
0	D_{32}	D_{33}	0	0	
0	0	0	D44	D45	
0	0	0	D54	D_{55})

- Goldstone boson pole contributions are more significant for ensembles p
- Double pole substraction is necessary for D_{ij} with i ≠ 0

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Lattice Setup} \\ \mbox{occ} \end{array} \end{array} \\ \hline \mbox{Conclusions} \end{array} \\ \hline \mbox{Concl$

• Computation of $Z(p, M_{val} = 0, M_{sea}, \theta - av) = Z_{\psi}^{-2} [D^T]^{-1}$

Absence of wrong chirality mixings

Wrong chirality mixings can affect the renormalization of $[Q_1]_{PC}^+$

$$[\hat{Q}_1]^+_{PC} = [Z_{11}]^+_{PC} \left[[Q_1]^+_{PC} + \sum_{j=2}^5 \Delta_{1j} Q_j \right]$$

Using OS valence fermions with $r_s = r_{s'} = r_d = -r_{d'}$: $\Delta_{ij} \xrightarrow{\text{chiral limit}} 0$

Introduction 00 Lattice Setup

Analysis ○○○○○○○○○○○○○○○○○ Conclusions

RCs Sea Chiral Limit

$$\begin{split} &Z_{ij}(p^2, \mu_{val} = 0, \mu_{sea}) = A(p) + B(p)M_{POL,sea} \\ &Z_{ij}(p^2, \mu_{val} = 0, \mu_{sea}) = A(p) + B(p)(M_{POL,sea} + C(p)\cos(2\theta)) \\ &Z_{ij}(p^2, \mu_{val} = 0, \mu_{sea}) = A(p) + B(p)M_{POL,sea}^2 \\ &Z_{ij}(p^2, \mu_{val} = 0, \mu_{sea}) = A(p) + B(p)(M_{POL,sea}^2 + C(p)\cos(2\theta)) \end{split}$$

Since at this point we have performed the $\theta\text{-}\mathsf{av}$: $\mathit{M_{POL,sea}} = \mu_{sea}$

Introduction 00 Lattice Setup

p^2 -fit & RI'/MOM \rightarrow RGI

•
$$Z^{RI}(\mu_{val} = 0, \mu_{sea} = 0, p^2) \xrightarrow{\text{NLO}} Z^{RI}(\mu_{val} = 0, \mu_{sea} = 0, \mu_0^2 = a^{-2}) \equiv Z^{RI}(\mu_0^2)$$

M1: p^2 linear fit method $(ap)^2 \subset [1.5, 2]$ M2: p^2 -window method $(ap)^2 \subset [1.8, 2]$

	M1	M2
$\left[(Z_{11})_{PC}^{+} ight]^{RI'/MOM}(\mu_{0}=a^{-1})$	0.597(06)	0.580(02)

$(7)^{+}$		M1	M2
$Z_{B_{K}} = \frac{(Z_{11})_{PC}}{Z_{A}Z_{V}}$	Z_A	0.738(05)(01)	0.713(02)(01)
	Z_V	0.610(02)(01)	0.614(02)(01)

where the Z2f have been computed over the same ensembles as Z4f with

- Valence chiral fit $Z_O(p, M_{sea}, M_{val}) = z_0 + z_1 M_{PS,val}^2$
- Sea chiral fit $Z_O(p, M_{sea}, 0) = z_0 + z_1(M_{PS,sea}^2)^2$

sistematic error comes from $M_{PS}^2 \rightarrow M_{POL}$

Introduction 00	Lattice Setup 00	Analysi	s	Conclusions
$\hat{B}_1^{RI'/MOM}(\mu_0)$	$a = a^{-1})$			
		M1	M2	

$\hat{B}_K = \frac{(Z_{11})_{PC}^+}{Z_A Z_V} B_K$	SU(2) @ NLO	0.744(04)(11)	0.743(07)(04)
	Polynomial Fit	0.758(04)(11)	0.757(07)(05)

FINAL RESULT

$$B_{K}^{RI'/MOM}(\mu_{0} = a^{-1}, a = 0.087 \text{ fm}) = 0.744(04)(17)$$

- 0.004 statistical error from boostrap analysis
- 0.017 sistematic error resulting from
 - 0.014 from the extrapolation of the bare parameter to the chiral point: SU(2) @ NLO or Polynomial fit
 - 0.010 from the renormalization
 - 0.001 due to the spread between M1 and M2
 - 0.007 from the variation of the p^2 interval
 - 0.003 from varying the choice of the valence chiral extrapolation variable: M_{PS}^2 or M_{POL}
 - 0.004 due to the election of simple or double goldstone pole
 - 0.005 from the difference between quadratic or linear extrapolation in M_{sea}
 - error from performing the θ -av in $D(p, M_{sea}, M_{val} = 0)$ or in $Z(p, M_{sea}, M_{val} = 0) < 0.001$

00	00	000000000000000000000000000000000000000	Conclusion
Conclusions			
EINAL RESULT			

$$B_{K}^{RI'/MOM}(\mu_{0}=a^{-1},a=0.087\,{
m fm})=0.744(04)(16)$$

RESULT $N_f = 2$ (CONTINUUM LIMIT EXTRAPOLATED)

 $B_K^{RGI} = 0.729(30)$

- We need to understand theoretically the goldstone pole contribution out of maximal twist
 - Some Δ_{ij} need double pole substraction in order to <u>Chiral limit</u> 0
 - Contributions are larger for p ensembles
- Combination of $R_i i = 2, 3, 4, 5$ with Z_{ij} in order to compute the supersymmetric contributions
- B_K bare parameters have been analysed at $\beta = 1.90$ & $\beta = 2.10 \rightarrow \text{We}$ need 4-Fermion RCs for these β s

BACKUP SLIDES

Stochastic Propagators

Consists in computing quark propagators by inverting the lattice Dirac operator for the relevant OS valence quark flavours on random sources of the form:

$$\delta_{\alpha\gamma}\delta_{x_{o},z_{0}}\delta_{\vec{x},\vec{z}}\eta^{(z_{0})}(k,\vec{z}) \quad ,\gamma=1,2,3,4, \quad z_{0}=y_{0},y_{0}+T/2$$

with free indices

- lpha: spin
- x₀: time
- i: colour
- \vec{x} : space

The Z_2 -valued η vectors carry only colour and three-space indices (colour and space "dilution") and are normalized according to:

$$\langle \eta^{(z_0)}(k,\vec{z})\eta^{(z_0)}(k',\vec{z}')\rangle = \delta_{k,k'}\delta_{\vec{z},\vec{z}'}$$

Supersymmetric Contributions

Supersymmetric box diagrams contributing to $K^0 - \overline{K}^0$ oscillations at LO with h, k, l, m = L, R

 $\widetilde{Q}_{1,2,3}$ are obtained from $Q_{1,2,3}$ by exchanging the sign in both helicities.

From Lattice to Supersymmetric basis

- Each B-parameter comes directly from an operator of the supersymmetric basis
- The lattice basis is easier to implement

Supersymmetric Basis	Lattice Basis
$Q_{1} = \frac{1}{4} [\bar{s}^{a} \gamma^{\mu} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} \gamma_{\mu} (1 - \gamma_{5}) d^{b}]$ $Q_{2} = \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} (1 - \gamma_{5}) d^{b}]$ $Q_{3} = \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{b}] [\bar{s}^{b} (1 - \gamma_{5}) d^{a}]$ $Q_{4} = \frac{1}{4} [\bar{s}^{a} (1 - \gamma_{5}) d^{a}] [\bar{s}^{b} (1 + \gamma_{5}) d^{b}]$	$O^{SS} = \frac{1}{4} (\bar{s}d) (\bar{s}d)$ $O^{VV} = \frac{1}{4} (\bar{s}\gamma_{\mu}d) (\bar{s}\gamma^{\mu}d)$ $O^{TT} = \frac{1}{4} (\bar{s}\sigma^{\mu\nu}d) (\bar{s}\sigma_{\mu\nu}d)$ $O^{AA} = \frac{1}{4} (\bar{s}\gamma^{\mu}\gamma_{5}d) (\bar{s}\gamma_{\mu}\gamma^{5}d)$ $O^{PP} = \frac{1}{4} (\bar{s}\gamma^{\mu}\gamma_{5}d) (\bar{s}\gamma_{\mu}\gamma^{5}d)$
$Q_5=rac{1}{4}[ar{s}^{s}(1-\gamma_5)d^{b}][ar{s}^{b}(1+\gamma_5)d^{s}]$	$O^{\mu\nu} = \frac{1}{4}(\bar{s}\gamma_5 d)(\bar{s}\gamma_5 d)$

Both basis are related by a Fierz Matrix

$$\begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} O^{VV} + O^{AA} \\ O^{VV} - O^{AA} \\ O^{SS} - O^{PP} \\ O^{SS} + O^{PP} \\ O^{TT} \end{pmatrix} \rightarrow \begin{array}{c} \text{Only parity even} \\ \text{operators are relevant} \\ \end{array}$$

Supersymmetric ratios

Q5=-1/2(OVV-OAA) L=24 T=48 b=1.95 k=0.1612312 musea=ml=0.0085

4-Fermion RCs

4-Fermion RCs

