Non-perturbative computation of renormalization constants with 4 dynamical flavours

David Palao For ETMC

INFN Sezione di Roma Tor Vergata

XIV ETMC Meeting — October 12–14, 2011 (Roma)

Outline

2 Status • $\beta = 1.95$

- β = 2.10
- β = 1.90

The problem

Computing (Rl'-MOM) RCs of various operators (e.g. P, $O_j^{\Delta F=2}$) for the action used by ETMC in the 2+1+1 project

Mass independent scheme \Leftrightarrow Extrapolation to zero quark mass

2+1+1 ensembles are not well suited

⇒ dedicated simulations with 4 degenerate light quarks are needed

The problem

Computing (Rl'-MOM) RCs of various operators (e.g. P, $O_j^{\Delta F=2}$) for the action used by ETMC in the 2+1+1 project

Mass independent scheme ⇔ Extrapolation to zero quark mass

2+1+1 ensembles are not well suited

 $\Rightarrow\,$ dedicated simulations with 4 degenerate light quarks are needed

Action

For this study we consider the action:

$$S_{L} = S_{lwa}^{\text{YM}} + a^{4} \sum_{x,f} \bar{\chi}_{f} \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} \nabla^{*} \nabla + m_{0} + i r_{f} \mu_{q} \gamma_{5} \right] \chi_{f}(x)$$

or, by passing from twisted to physical quark basis via

$$\chi_f \to q_f = \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]\chi_f, \quad \bar{\chi}_f \to \bar{q}_f = \bar{\chi}_f \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]$$

$$S_L = S_{I_{WG}}^{YM} + a^4 \sum_{x,f} \bar{q}_f \left[\gamma \cdot \widetilde{\nabla} - i\gamma_5 e^{i\theta_{0f}\gamma_5} (-\frac{a}{2} \nabla^* \nabla + m_{cr}) + M_0 \right] q_f(x) \,,$$

Action

For this study we consider the action:

$$S_{L} = S_{lwa}^{YM} + a^{4} \sum_{x,f} \bar{\chi}_{f} \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} \nabla^{*} \nabla + m_{0} + i r_{f} \mu_{q} \gamma_{5} \right] \chi_{f}(x)$$

or, by passing from twisted to physical quark basis via

$$\chi_f \to q_f = \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]\chi_f, \quad \bar{\chi}_f \to \bar{q}_f = \bar{\chi}_f \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]$$

$$S_{L} = S_{l_{WG}}^{\text{YM}} + a^{4} \sum_{x,f} \bar{q}_{f} \left[\gamma \cdot \widetilde{\nabla} - i\gamma_{5} e^{i\theta_{0f}\gamma_{5}} (-\frac{a}{2} \nabla^{*} \nabla + m_{cr}) + M_{0} \right] q_{f}(x) \,,$$

$$M_0 = \sqrt{(m_0 - m_{\rm cr})^2 + \mu_q^2}, \ \sin \theta_{0f} = \frac{m_0 - m_{\rm cr}}{M_0}, \ \cos \theta_{0f} = \frac{\mu_q r_f}{M_0}$$

Renormalized parameters conveniently chosen as

$$M = Z_P \hat{M} = \sqrt{Z_A^2 m_{PCAC}^2 + \mu_q^2}, \quad \tan \theta = \frac{Z_A m_{PCAC}}{\mu_q}$$

d = 4 term of Symanzik LEL involves only M, not θ.
Partially quenched setup (convenient for RC studies)

 $(M, \theta) \implies (M_{\text{sea}}, \theta_{\text{sea}}; M_{\text{val}}, \theta_{\text{val}})$

• $O(\alpha)$ improvement via θ -average (Frezzotti-Rossi 04)

D. Palao – INFN ToV (INFN Sezione di Roma

 $N_{\rm f} = 4 \, {\rm RCs}$

$$M_0 = \sqrt{(m_0 - m_{\rm cr})^2 + \mu_q^2}, \ \sin \theta_{0f} = \frac{m_0 - m_{\rm cr}}{M_0}, \ \cos \theta_{0f} = \frac{\mu_q r_f}{M_0}$$

Renormalized parameters conveniently chosen as

$$M = Z_P \hat{M} = \sqrt{Z_A^2 m_{PCAC}^2 + \mu_q^2}, \quad \tan \theta = \frac{Z_A m_{PCAC}}{\mu_q}$$

d = 4 term of Symanzik LEL involves only M, not θ.
Partially quenched setup (convenient for RC studies)

 $(M, \theta) \implies (M_{\text{sea}}, \theta_{\text{sea}}; M_{\text{val}}, \theta_{\text{val}})$

• $O(\alpha)$ improvement via θ -average (Frezzotti-Rossi 04)

D. Palao – INFN ToV (INFN Sezione di Roma

 $N_{\rm f} = 4 \, {\rm RCs}$

$$M_0 = \sqrt{(m_0 - m_{\rm cr})^2 + \mu_q^2}, \ \sin \theta_{0f} = \frac{m_0 - m_{\rm cr}}{M_0}, \ \cos \theta_{0f} = \frac{\mu_q r_f}{M_0}$$

Renormalized parameters conveniently chosen as

$$M = Z_P \hat{M} = \sqrt{Z_A^2 m_{PCAC}^2 + \mu_q^2}, \quad \tan \theta = \frac{Z_A m_{PCAC}}{\mu_q}$$

• d = 4 term of Symanzik LEL involves only M, not θ .

Partially quenched setup (convenient for RC studies)

 $(M, \theta) \implies (M_{\text{sea}}, \theta_{\text{sea}}; M_{\text{val}}, \theta_{\text{val}})$

• O(a) improvement via θ -average (Frezzotti-Rossi 04)

D. Palao – INFN ToV (INFN Sezione di Romo

 $N_f = 4 \text{ RCs}$

$$M_0 = \sqrt{(m_0 - m_{\rm cr})^2 + \mu_q^2}, \ \sin \theta_{0f} = \frac{m_0 - m_{\rm cr}}{M_0}, \ \cos \theta_{0f} = \frac{\mu_q r_f}{M_0}$$

Renormalized parameters conveniently chosen as

$$M = Z_P \hat{M} = \sqrt{Z_A^2 m_{PCAC}^2 + \mu_q^2}, \quad \tan \theta = \frac{Z_A m_{PCAC}}{\mu_q}$$

• d = 4 term of Symanzik LEL involves only M, not θ .

Partially quenched setup (convenient for RC studies)

 $(M, \theta) \implies (M_{\text{sea}}, \theta_{\text{sea}}; M_{\text{val}}, \theta_{\text{val}})$

• O(a) improvement via θ -average (Frezzotti-Rossi 04)

 $N_f = 4 \text{ RCs}$

- Tune the κ -value in order to obtain opposite values for m_{PCAC} (safely determined from smooth simulations far from κ_c)
- Hence, double the number of necessary $n_f = 4$ ensembles (positive and negative m_{PCAC})
- ullet still keep the same μ in the twin ensembles o same M
- Since we are interested in relatively small values of $M_{\rm PS}$ for subtracting carefully the Goldstone boson pole, we may need to re-tune the κ -value in the valence sector. In those cases

 $m_{ ext{PCAC}}^{ ext{sea}}
eq m_{ ext{PCAC}}^{ ext{val}}$

But

 $|m_{\text{PCAC}}^{\text{sea},\text{p}}| = |m_{\text{PCAC}}^{\text{sea},\text{m}}|; |m_{\text{PCAC}}^{\text{val},\text{p}}| = |m_{\text{PCAC}}^{\text{val},\text{m}}|$

- Tune the κ -value in order to obtain opposite values for m_{PCAC} (safely determined from smooth simulations far from κ_c)
- Hence, double the number of necessary $n_f = 4$ ensembles (positive and negative m_{PCAC})
- still keep the same μ in the twin ensembles o same M
- Since we are interested in relatively small values of $M_{\rm PS}$ for subtracting carefully the Goldstone boson pole, we may need to re-tune the κ -value in the valence sector. In those cases

 $m_{ ext{PCAC}}^{ ext{sea}}
eq m_{ ext{PCAC}}^{ ext{val}}$

But

 $|m_{\text{PCAC}}^{\text{sea},\text{p}}| = |m_{\text{PCAC}}^{\text{sea},\text{m}}|; |m_{\text{PCAC}}^{\text{val},\text{p}}| = |m_{\text{PCAC}}^{\text{val},\text{m}}|$

- Tune the κ -value in order to obtain opposite values for m_{PCAC} (safely determined from smooth simulations far from κ_c)
- Hence, double the number of necessary $n_f = 4$ ensembles (positive and negative m_{PCAC})
- still keep the same μ in the twin ensembles o same M
- Since we are interested in relatively small values of $M_{\rm PS}$ for subtracting carefully the Goldstone boson pole, we may need to re-tune the κ -value in the valence sector. In those cases

 $m_{ ext{PCAC}}^{ ext{sea}}
eq m_{ ext{PCAC}}^{ ext{val}}$

But

 $|m_{\text{PCAC}}^{\text{sea},\text{p}}| = |m_{\text{PCAC}}^{\text{sea},\text{m}}|; \ |m_{\text{PCAC}}^{\text{val},\text{p}}| = |m_{\text{PCAC}}^{\text{val},\text{m}}|$

- Tune the κ -value in order to obtain opposite values for m_{PCAC} (safely determined from smooth simulations far from κ_c)
- Hence, double the number of necessary $n_f = 4$ ensembles (positive and negative m_{PCAC})
- still keep the same μ in the twin ensembles ightarrow same M
- Since we are interested in relatively small values of $M_{\rm PS}$ for subtracting carefully the Goldstone boson pole, we may need to re-tune the κ -value in the valence sector. In those cases

 $m_{\mathrm{PCAC}}^{\mathrm{sea}} \neq m_{\mathrm{PCAC}}^{\mathrm{val}}$

But

$$|m_{PCAC}^{\text{sea},p}| = |m_{PCAC}^{\text{sea},m}|; \ |m_{PCAC}^{\text{val},p}| = |m_{PCAC}^{\text{val},m}|$$

Analysis strategy

On the ensembles Ep/m (E=1,2,...) with $(M_{\text{sea}}^{\text{E}}, \theta_{\text{sea}}^{\text{Ep/m}})$ we compute RC-estimators for several $(M_{\text{val}}, \theta_{\text{val}})$'s and $\tilde{\rho}^2$'s

- remove O(a) artifacts in RCs via θ -average
- **2** valence chiral limit: via linear fit to the RC-estimator dependence on $M_{\rm val}$, with term $\sim (M_{\rm val})^{-1}$ for $\Gamma = P$ (ignoring $\theta^{\rm val}$ -depend; good χ^2)
- **(3)** sea chiral limit: $(M_{sea})^2 \rightarrow 0$ taking θ -dependence into account
- (a) remove $O(g^2a^2)$ artifacts in RCs via perturbative computation
- (M1) build (with PT-evolution in E_{Γ}) RC-estimators at ren. scale 1/a, i.e. $Z_{\Gamma}((a\Lambda)^{-2}; (a\tilde{p})^2) = Z_{\Gamma}(\tilde{p}^2/\Lambda^2; (a\tilde{p})^2) E_{\Gamma}^{PT}(\tilde{p}^2 \rightarrow a^{-2})$ and get $Z_{\Gamma}((a\Lambda)^{-2}; 0)$ by extrapolation in $(a\tilde{p})^2$)

(M2) build RC-estimator at ren. scale $\tilde{p}_{M2}^2 \sim 12.2 \text{ GeV}^2$ i.e. $Z_{\Gamma}((a\Lambda)^{-2}; (a\tilde{p}_{M2})^2) = Z_{\Gamma}(\tilde{p}_{M2}^2/\Lambda^2; (a\tilde{p}_{M2})^2) E_{\Gamma}^{PT}(\tilde{p}_{M2}^2 \to a^{-2})$ and get $Z_{\Gamma}((a\Lambda)^{-2}; 0)$ by averaging around \tilde{p}_{M2}^2 Status $\beta = 1.95$

Sea Runs ($\beta = 1.95 \leftrightarrow a = 0.078 \text{ fm}; L = 24a; T = 48a$)

ensemble	$a \mu_{ m sea}$	am_{PCAC}^{sea}	aM_0^{sea}	θ^{sea}
1m	0.0085	-0.04125(13)	0.03308(10)	-1.3109(08)
1p	0.0085	+0.04249(13)	0.03286(09)	1.3091(08)
7m	0.0085	-0.03530(13)	0.02851(10)	-1.2681(10)
7p	0.0085	+0.03608(11)	0.02854(08)	1.2683(09)
8m	0.0020	-0.03627(11)	0.02804(08)	-1.4994(02)
8p	0.0020	+0.03624(13)	0.02743(10)	1.4978(03)
3m	0.0180	-0.0160(2)	0.02191(09)	-0.6068(59)
Зp	0.0180	+0.0163(2)	0.02183(09)	0.6015(57)
2m	0.0085	-0.02091(16)	0.01815(11)	-1.0834(32)
2p	0.0085	+0.0191(2)	0.01692(13)	1.0445(45)
4m	0.0085	-0.01459(13)	0.01404(08)	-0.9206(43)
4p	0.0085	+0.0151(2)	0.01420(12)	0.9289(64)
5m	0.0085	-0.008(5?)	?	?
5p	0.0085	+0.008(5?)	?	?
бm	0.0085	~ 0	?	?
бр	0.0085	~ 0	?	?

• stats =
$$O(4k - 5k)$$

Reaching κ_c

• Tuning done using L = 16a ensembles

MC histories of ensembles with smallest masses used @ $\beta = 1.95$

$\beta = 1.95$

Valence Runs ($\beta = 1.95$)

ensemble	κ^{sea}	κ^{val}	$\mathcal{O}\mu^{\mathrm{sea}}$	$\mathcal{O}\mu^{\mathrm{val}}$	am_{PCAC}^{sea}	$am_{ m PCAC}^{ m val}$	stats
lm**	0.161739	0.160754	0.0085	set1	-0.0413(01)	-0.0216(02)	304
1p**	0.160389	0.162145	0.0085	set1	+0.0425(01)	+0.0195(02)	304
2m	0.161229	0.161229	0.0085	set1	-0.0209(02)	-0.0213(02)	352
2p	0.160826	0.160826	0.0085	set1	+0.0191(02)	+0.0191(02)	352
3m	0.161229	0.161229	0.0180	set1	-0.0160(02)	-0.0160(02)	352
3p	0.160826	0.160826	0.0180	set1	0.0163(02)	+0.0162(02)	352
4m	0.161095	0.161095	0.0085	set2	-0.0146(01)	-0.0146(02)	224
4p	0.160870	0.160870	0.0085	set2	+0.0151(01)	+0.0154(02)	224
7m*	0.161585	0.160681	0.0085	set1	-0.0353(01)	-0.0179(02)	736
7p*	0.160524	0.161925	0.0085	set1	+0.0361(01)	+0.0178(02)	736
8m*	0.161585	0.160681	0.0020	set2	-0.0363(01)	-0.0193(02)	624
8p*	0.160524	0.161925	0.0020	set2	+0.0362(01)	+0.0181(02)	624

set1 $\rightarrow a\mu^{val} \in \{0.0085, 0.0150, 0.0203, 0.0252, 0.0298\}$

set2 $\rightarrow a\mu^{val} \in \{0.0060, 0.0085, 0.0120, 0.0150, 0.0180, 0.0203, 0.0252, 0.0298\}$

Status $\beta = 1.95$

The $(M^{val})^2$ -dependence of RC-estimators @ $(a\tilde{\rho})^2 = 1.5$

 $N_f = 4 \text{ RCs}$

The $\tilde{\rho}^2$ -dependence of RC-estimators @ $M^{val} = 0$

Figure: ensembles 1m and 2p

M1: intercept at $\tilde{p}^2 = 0$ of the shown best fit lines M2: values at $\tilde{p}^2 = 12.2 \text{ GeV}^2$, here corresponding to $a^2 \tilde{p}^2 = 1.9$

The M^{sea} -dependence ($M^{\text{val}} = 0$)

Results for RCs of bilinears (M1/M2 @ $M^{sea} = M^{val} = 0$)

 $\beta = 1.95$ (Iwasaki)

	Uncor/ed		$-O(a^2 g_b^2)$		$-O(a^2g_0^2)$	
RC	M1	M2	M1	M2	M1	M2
Z _A	0.763(03)	0.774(01)	0.739(03)	0.712(01)	0.748(03)	0.738(01)
<i>slope</i> ($\times 10^{-3}$)	06(02)	-	-14(02)	-	-06(02)	-
Z _V	0.629(03)	0.678(02)	0.609(03)	0.613(02)	0.616(03)	0.639(02)
<i>slope</i> ($\times 10^{-3}$)	26(02)	-	03(02)	-	12(02)	-
$Z_P(1/a)$	0.439(06)	0.501(02)	0.427(06)	0.471(02)	0.431(06)	0.483(02)
<i>slope</i> ($\times 10^{-3}$)	33(02)	-	23(02)	-	28(02)	-
$Z_{S}(1/a)$	0.626(08)	0.659(01)	0.602(08)	0.704(01)	0.618(08)	0.684(01)
<i>slope</i> ($\times 10^{-3}$)	17(03)	-	54(04)	-	35(04)	-
Z _{P/S}	0.697(07)	0.760(03)	0.709(07)	0.669(043)	0.697(07)	0.706(03)
slope ($\times 10^{-3}$)	33(03)	-	-14(3)	-	08(03)	-
$Z_{I}(1/a)$	0.751(03)	0.776(01)	0.719(03)	0.706(01)	0.733(03)	0.734(01)
slope ($\times 10^{-3}$)	13(02)	-	-07(02)	-	01(02)	-
$Z_q(1/a)$	0.766(04)	0.814(01)	0.740(04)	0.738(01)	0.751(04)	0.769(01)
slope ($\times 10^{-3}$)	26(02)	-	00(02)	-	10(02)	-

Status B

$\beta = 2.10$

Sea Runs ($\beta = 2.10 \leftrightarrow a = 0.06 \text{ fm}; L = 32a; T = 64a$)

ensemble	$a \mu_{ m sea}$	$am_{ m PCAC}^{ m sea}$	aM_0^{sea}	θ^{sea}
5m	0.0078	-0.00823(9)	0.01018(8)	-0.6981(9)
5p	0.0078	+0.00829(7)	0.01021(4)	0.7011(5)
4m	0.0064	-0.00682(13)	0.00841(7)	-0.7059(9)
4p	0.0064	?		
3am	0.0046	-0.00585(8)	0.00656(5)	0.794(7)
Зар	0.0046	+0.00559(14)	0.00642(8)	0.7713(13)
3bm	-	-	"	$-\pi/10$
3bp	-	-	"	$\pi/10$
2am	0.0030	-0.00403(14)	0.00440(8)	-0.8214(17)
2ap	0.0030	+0.00421(13)	0.00451(8)	0.8431(15)

• stats = O(2.5k - 3k)

• $a\mu$ and am_{PCAC} chosen such that $\theta \sim \pi/4$

am_{PCAC} MC histories @ $\beta = 2.10$

Valence Runs ($\beta = 2, 10$)

κ_{sea}	μ_{sea}	$\mu_{\it Val}$			index	Stats
0.156042	0.0030	{0.0013,	0.0030,	0.0080,	0500-0700	50
		0.0143,0.0	0195, 0.0247	' <i>,</i> 0.0298}		
0.156157	0.0030	{0.0013,	0.0030,	0.0080,	0716-0896	50
		0.0143,0.0	0195 <i>,</i> 0.0247	7,0.0298}		
0.156017	0.0046	{0.0025,	0.0046,	0.0090,	0220-1240	250
		0.0152,0.0	0201,0.0249	<i>,</i> 0.0297}		
0.156209	0.0046	{0.0025,	0.0046,	0.0090,	0114-1522	350
		0.0152,0.0	0201,0.0249	<i>,</i> 0.0297}		
0.155983	0.0064	{0.0039,	0.0064,	0.0112,		
		0.0184, 0.0	0240, 0.0295	5}		
0.156250	0.0064	{0.0039,	0.0064,	0.0112,	0500-0716	55
		0.0184, 0.0	0240, 0.0295	5}		
0.155949	0.0078	{0.0048,	0.0078,	0.0119,	0512-1424	230
		0.0190, 0.0	0242,0.0293	5}		
0.156291	0.0078	{0.0048,	0.0078,	0.0119,	0500-1704	300
		0.0190, 0.0	0242,0.0293	5}		
	κsea 0.156042 0.156157 0.156017 0.156209 0.155983 0.156250 0.155949 0.156291	κ_{sea} μ_{sea} 0.156042 0.0030 0.156157 0.0030 0.156017 0.0046 0.156209 0.0046 0.155983 0.0064 0.156250 0.0064 0.155949 0.0078 0.156291 0.0078	$\begin{array}{c cccccc} \kappa_{sea} & \mu_{sea} & \mu_{val} \\ \hline 0.156042 & 0.0030 & \{0.0013, \\ 0.0143, 0.1 \\ 0.156157 & 0.0030 & \{0.0013, \\ 0.0143, 0.1 \\ 0.0143, 0.1 \\ 0.0156017 & 0.0046 & \{0.0025, \\ 0.0152, 0.1 \\ 0.156209 & 0.0046 & \{0.0025, \\ 0.0152, 0.1 \\ 0.0025, \\ 0.0152, 0.1 \\ 0.0039, \\ 0.0184, 0.1 \\ 0.155949 & 0.0078 & \{0.0048, \\ 0.0190, 0.1 \\ 0.156291 & 0.0078 & \{0.0048, \\ 0.0190, 0.1 \\ 0$	κ _{sea} μ _{sea} μ _{val} 0.156042 0.0030 {0.0013, 0.0030, 0.0143, 0.0195, 0.0247 0.156157 0.0030 {0.0013, 0.0030, 0.0143, 0.0195, 0.0247 0.156157 0.0030 {0.013, 0.0195, 0.0247 0.156017 0.0046 {0.0025, 0.0046, 0.0152, 0.0201, 0.0249 0.156209 0.0046 {0.0025, 0.0046, 0.0152, 0.0201, 0.0249 0.155983 0.0064 {0.0039, 0.0064, 0.0184, 0.0240, 0.0295 0.156250 0.0064 {0.0039, 0.0064, 0.0184, 0.0240, 0.0295 0.155949 0.0078 {0.0048, 0.0078, 0.0190, 0.0242, 0.0293 0.156291 0.0078 {0.0048, 0.0078, 0.0190, 0.0242, 0.0293	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

First analysis results for RCs (No sea chiral limit)

Only 2 ensembles (2am, 2ap), 50 confs each. VERY PRELIMINARY!

RC(RI')	M1
Z_A	0.773(13)
Z_V	0.669(10)
$Z_{P}(1/a)$	0.498(08)
$Z_{S}(1/a)$	0.687(11)
$Z_T(1/a)$	0.756(12)
$Z_q(1/a)$	0.793(13)

Status $\beta = 1.90$

Sea Runs ($\beta = 1.90 \leftrightarrow a = 0.086 \text{ fm}; L = 24a; T = 48a$)

ensemble	$a \mu_{ m sea}$	am_{PCAC}^{sea}	$aM_0^{\rm sea}$	θ^{sea}
1m	0.0080	-0.0274(2)	0.02078(13)	-1.176(3)
1p	0.0080	+0.0276(2)	0.02091(13)	1.178(3)
2m	0.0080	-0.03182(14)	0.02367(09)	-1.2260(14)
2p	0.0080	+0.0311(2)	0.02319(13)	1.219(2)
Зm	0.0080	-0.0358(4)	0.0263(3)	-1.262(3)
Зp	?	?	?	?
4m	?	?	?	?
4p	?	?	?	?
5m ?	?	?	?	?
5p ?	?	?	?	?

• aiming at stats = O(4k - 5k)

Status $\beta = 1.90$

Around κ_c

• Tuning done using L = 16a ensembles

• Completing chain of programs for valence sector

- β = 1.95 was done using apeNEXT ⇒ apeNEXT died
 Mariane and Xining are working hard to invert β = 2.10 (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - ightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

• Completing chain of programs for valence sector

- β = 1.95 was done using apeNEXT ⇒ apeNEXT died
 Mariane and Xining are working hard to invert β = 2.10 (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - ightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- $\beta = 1.95$
 - complete statistics in sea (ensemble 4m is corrupted!)
 - ightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program

β = 1.95

- complete statistics in sea (ensemble 4m is corrupted!)
- ightarrow complete statistics in valence

β = 2.10

- finish ensemble 4p
- 3bp/3bm (different θ)?
- check 2am (how corrupted is it?)
- .. or redo it?
- complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - → complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - .. or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - ... or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - ... or redo it?
 - complete inversions

- Completing chain of programs for valence sector
 - $\beta = 1.95$ was done using apeNEXT \Rightarrow apeNEXT died
 - Mariane and Xining are working hard to invert $\beta = 2.10$ (Thanks a lot!)
- Cross-checking some parts of analysis program
- β = 1.95
 - complete statistics in sea (ensemble 4m is corrupted!)
 - \rightarrow complete statistics in valence
- β = 2.10
 - finish ensemble 4p
 - 3bp/3bm (different θ)?
 - check 2am (how corrupted is it?)
 - ... or redo it?
 - complete inversions

- β = 1.90
 - conclude production (4-6 ensembles more)
 - start inversions asap!
- Put all together: global analysis

- *β* = 1.90
 - conclude production (4-6 ensembles more)
 - start inversions asap!

• Put all together: global analysis

- *β* = 1.90
 - conclude production (4-6 ensembles more)
 - start inversions asap!
- Put all together: global analysis

Bonus tracks

"Democratic" momenta

$$\Delta_4(
ho)\equiv rac{\sum_
ho ilde{
ho}_
ho^4}{(\sum_
ho ilde{
ho}_
ho^2)^2}\,<\,0.28$$

with

$$ilde{p}_{
u}\equiv rac{1}{a}\sin(ap_{
u})$$

D. Palao – INFN ToV (INFN Sezione di Rom

Within the yellow world

continue

$$\mathcal{D}_{\mathcal{C}} = \left\{ egin{array}{ccc} U_{\mu}(x) &
ightarrow & U^{\dagger}_{\mu}(-x- lpha \hat{\mu}) \ \psi(x) &
ightarrow & e^{i3\pi/2}\psi(-x) \ ar{\psi}(x) &
ightarrow & e^{j3\pi/2}ar{\psi}(-x) \end{array}
ight.$$

Action and quark mass parameters*

The lattice action before allows to compute RCs relevant for...

• operators made out of quark fields with ETMC 2 + 1 + 1 action, which in the twisted basis reads

$$S_{lwa}^{\text{YM}} + \sigma^{4} \sum_{x} (\bar{\chi}_{\ell 1}, \bar{\chi}_{\ell 2}) \left[\gamma \cdot \widetilde{\nabla} - \frac{\sigma}{2} \nabla^{*} \nabla + m_{0} + i \mu_{\ell} \gamma_{5} \tau^{3} \right] \begin{pmatrix} \chi_{\ell 1} \\ \chi_{\ell 2} \end{pmatrix} (x) + \sigma^{4} \sum_{x} (\bar{\chi}_{h1}, \bar{\chi}_{h2}) \left[\gamma \cdot \widetilde{\nabla} - \frac{\sigma}{2} \nabla^{*} \nabla + m_{0} + i \mu_{\sigma} \gamma_{5} \tau^{3} - \mu_{\delta} \tau^{1} \right] \begin{pmatrix} \chi_{h1} \\ \chi_{h2} \end{pmatrix} (x)$$

• operators involving Osterwalder-Seiler valence quarks: S_L above with $m_0 = m_{cr}$, $\mu_q > 0$ (maximal twist)

(Frezzotti-Rossi'04)

Bilinears: $\Gamma \Leftrightarrow S, P, V, A, T$

RI'MOM scheme

•
$$Z_q^{-1} \frac{-i}{12N(p)} \sum_{\rho}' \left[\frac{\operatorname{Tr}(\gamma_{\rho} S_f(p)^{-1})}{\tilde{p}_{\rho}} \right]_{\tilde{p}^2 = \mu^2} = 1$$
, any f (and r_f)
• $Z_q^{-1} Z_O^{(ff')} \operatorname{Tr} \left[\Lambda_{\Gamma}^{(ff')}(p,p) P_{\Gamma} \right]_{\tilde{p}^2 = \mu^2} = 1$ $f \neq f'$ ($r_{f'} = -r_f$)
 $\tilde{p}^2 = \sum_{\mu} \tilde{p}_{\mu}^2; \tilde{p}_{\mu} \equiv \frac{1}{a} \sin a p_{\mu}; \sum_{\rho}' \to \forall \rho \mid p_{\rho} \neq 0; N(p) = \sum_{\rho}' 1$

We need to compute:

- The quark propagator: $S_f(p) = a^4 \sum_x e^{-ipx} \langle \chi_f(x) \bar{\chi_f}(0) \rangle$
- the Green function: $G_{\Gamma}^{(ff')}(p,p) = a^8 \sum_{x,y} e^{-ip(x-y)} \langle \chi_f(x)(\bar{\chi}_f \Gamma \chi_{f'})(0) \bar{\chi}_{f'}(y) \rangle$
- and the amputated vertex: $\Lambda_{\Gamma}^{(ff')}(\rho, p) = S_{f}^{-1}(\rho)G_{\Gamma}^{(ff')}(\rho, p)S_{f'}^{-1}(\rho)$

O(a) improvement via θ -average (Frezzotti-Rossi'04) Based on the symmetry of the lattice action S_L under

 $\mathcal{P} imes (heta_0 o - heta_0) imes \mathcal{D}_d imes (M_0 o -M_0)$

one can prove that the $O(a^{2k+1})$ artifacts occurring in the vev of (multi)local operators O that are invariant under $\mathcal{P} \times (\theta_0 \to -\theta_0)$

- are quantities that change sign upon sign change of θ_0 (or θ)
- are absent in θ -averages: $\frac{1}{2} \left[\langle O \rangle |_{\hat{M},\theta} + \langle O \rangle |_{\hat{M},-\theta} \right]$

That holds for form factors invariant under $\mathcal{P} \times (\theta_0 \to -\theta_0) \dots \text{e.g.}$ for the RC-estimators at all \hat{M} 's (and $\tilde{\rho}^2$'s in RI-MOM) In PQ setup: $(M, \theta) \Rightarrow (M^{\text{sea}}, \theta^{\text{sea}}; M^{\text{val}}, \theta^{\text{val}})$ (θ 's referred to f = 1) Numerical strategy at $N_f = 4$ "light" sea quarks

If $a\mu_q \lesssim 0.01$ at 0.08[0.09] fm $\Leftrightarrow \beta = 1.95[1.90]$

- considerable fine tuning in 1/2κ is needed to work at maximal twist
- $\sigma_{\text{stat}}[am_{\text{PCAC}}]$ difficult to evaluate when $am_{\text{PCAC}} \ll 0.01$ Various setups still possible:
- A) maximal twist, at larger M's \rightarrow need some fine tuning work,
- B) out of maximal twist, at larger M's \rightarrow remove O(a) effects by

 $\theta_{\rm val/sea}$ -average

We have chosen B)

 θ -dependence in chiral limit extrapolation of RC estimators The analysis of the Symanzik LEL of our RC estimators

- computed with $r_{f_1} = -r_{f_2}$
- ignoring terms $\mathcal{O}(M_{\text{val}}^k, M_{\text{sea}}^k), k \ge 3$
- and after θ -average is performed

implies:

- Sec: $Z = Z_0 + B(\theta_{sea})M_{sea} + C(\theta_{sea})M_{sea}^2$
 - with $B(\theta_{sea}) = B_0 + B_1 \cos(2\theta_{sea})$
 - and $C(\theta_{sea}) = C_0 + C_1 \cos(2\theta_{sea})$

continue

θ -dependence in chiral limit extrapolation of RC estimators

• Volence: $Z = Z_0 + B(\theta_{val})M_{val} + C(\theta_{val})M_{val}^2$ • Z_q, Z_s, Z_P, Z_T : • $B(\theta_{sea}) = B_0 + B_1 \cos(2\theta_{sea})$ • $C(\theta_{sea}) = C_0 + C_1 \cos(2\theta_{sea})$ • Z_A, Z_V, Z_{VA+AV} : • $B(\theta_{sea}) = B_0 + B_1 \cos(2\theta_{sea}) + B_2(\cos(2\theta_{sea}))^2$ • $C(\theta_{sea}) = C_0 + C_1 \cos(2\theta_{sea}) + C_2(\cos(2\theta_{sea}))^2$

continue