The Ghost Story: $\Lambda_{\bar{M} S}$ and α_{s}

Konstantin Petrov for France/Spain alliance

October 13, 2011
B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, X. Du, V. Morenas, O. Pène, J. Rodríguez-Quintero

Basics

The Goal is to determine $\Lambda_{\overline{\mathrm{MS}}}$ from lattice simulations with $2+1+1$ twisted-mass dynamical flavours.

$$
\alpha_{T}\left(\mu^{2}\right) \equiv \frac{g_{T}^{2}\left(\mu^{2}\right)}{4 \pi}=\lim _{\Lambda \rightarrow \infty} \frac{g_{0}^{2}\left(\Lambda^{2}\right)}{4 \pi} G\left(\mu^{2}, \Lambda^{2}\right) F^{2}\left(\mu^{2}, \Lambda^{2}\right),
$$

where F and G stand for the ghost and gluon dressing functions

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta p such that
- $\frac{p^{[4]}}{\left(p^{2}\right)^{2}}<0.3$ where
- $p^{[n]}=\sum_{\mu} p^{n}$, and $a^{2} p^{2}<3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta p such that
- $\frac{p^{[4]}}{\left(p^{2}\right)^{2}}<0.3$ where
- $p^{[n]}=\sum_{\mu} p^{n}$, and $a^{2} p^{2}<3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta
- Also, democracy is mathematically impossible (Arrow'50)

H4

$$
\alpha_{T}^{\text {Latt }}\left(a^{2} p^{2}, a^{2} \frac{p^{[4]}}{p^{2}}, \ldots\right)=\widehat{\alpha}_{T}\left(a^{2} p^{2}\right)+\left.\frac{\partial \alpha_{T}^{\text {Latt }}}{\partial\left(a^{2} \frac{p^{44]}}{p^{2}}\right)}\right|_{a^{2} \frac{2^{2}(4]}{p^{2}}=0} a^{2} \frac{p^{[4]}}{p^{2}}+. .
$$

where $p^{[4]}=\sum_{i} p_{i}^{4}$ is the first $H(4)$-invariant (and the only one indeed relevant in our analysis).

H4

- average over any combination of momenta being invariant under $H(4)(H(4)$ orbit $)$
- extrapolate then to the "continuum case"
- the effect of $a^{2} p^{[4]}$ must vanish, by applying H 4 for all the orbits sharing the same value of p^{2}
- with the only assumption that the slope depends smoothly on $a^{2} p^{2}$
- $H(4)$-artefact-free lattice coupling, $\widehat{\alpha}_{T}\left(a^{2} p^{2}\right)$ might differ from the continuum coupling by some $O(4)$-invariants artefacts,

$$
\begin{equation*}
\widehat{\alpha}_{T}\left(a^{2} p^{2}\right)=\alpha_{T}\left(p^{2}\right)+c_{a 2 p 2} a^{2} p^{2}+\mathcal{O}\left(a^{4}\right), \tag{1}
\end{equation*}
$$

Ghost Dressing Function

Running with the Coupling

Figure: $\beta=1.95$ with $a \mu_{I}=0.0035$ at $48^{3} \times 96($ red $)$ and $32^{3} \times 64$ lattices (blue), a $\mu_{I}=0.0055$ at $32^{3} \times 64$ (violet) and $\beta=2.1$ with $a \mu_{I}=0.0020$ at $48^{3} \times 96$ (green).

superimposing

zooming

Very Long Formula

$$
\alpha_{T}\left(\mu^{2}\right)=\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)\left(1+\frac{9}{\mu^{2}} R\left(\alpha_{T}^{\text {pert }}\left(\mu^{2}\right), \alpha_{T}^{\text {pert }}\left(q_{0}^{2}\right)\right)\left(\frac{\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)}{\alpha_{T}^{\text {pert }}\left(q_{0}^{2}\right)}\right)^{1-\gamma_{0}^{\gamma^{2}} / \beta_{0}}\right)
$$ where $\gamma_{0}^{A^{2}}$ can be taken from Gracey, Chetyrkin to give for $N_{f}=4$

$$
\begin{gather*}
1-\gamma_{0}^{A^{2}} / \beta_{0}=\frac{27}{132-8 N_{f}}=\frac{27}{100} ; \\
\frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{T}}=e^{-\frac{507-40 N_{f}}{792-48 N_{f}}} . \tag{2}
\end{gather*}
$$

Checking the Wilson Coefficient

zooming

Correcting

Numbers

$$
\begin{gathered}
a(2.1)=0.0607(2) \mathrm{fm} \\
\Lambda_{\frac{N_{f}=4}{N_{S}}}=298 \pm 13 \mathrm{MeV} \\
\alpha_{S}\left(M_{Z^{0}}\right)=0.1187(9) ;
\end{gathered}
$$

Delusions and Hope

- CINES SGI ICE - Jade 6.5M (source smearing and dilution study)
- IDRIS IBM SP Vargas 2.75M (nucleon and 48 propagators)
- IBM BG/P - Babel 24M (gauge fixing and contractions)
- TGCC Bull - Curie noeuds hybrides GPU 72k $B \longrightarrow D^{* *}$
- Some PetaQCD time dedicated to multiGPU tests/development
- which will be wasted on inverting $64^{3} \times 128$

