The Ghost Story: $\Lambda_{\bar{MS}}$ and α_s

Konstantin Petrov for France/Spain alliance

October 13, 2011

B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, X. Du,V. Morenas, O. Pène, J. Rodríguez-Quintero

Basics

The Goal is to determine $\Lambda_{\overline{\rm MS}}$ from lattice simulations with 2+1+1 twisted-mass dynamical flavours.

$$\alpha_T(\mu^2) \equiv \frac{g_T^2(\mu^2)}{4\pi} = \lim_{\Lambda \to \infty} \frac{g_0^2(\Lambda^2)}{4\pi} G(\mu^2, \Lambda^2) F^2(\mu^2, \Lambda^2) ,$$

where F and G stand for the ghost and gluon dressing functions

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta *p* such that
- $\frac{p^{[4]}}{(p^2)^2} < 0.3$ where
- $p^{[n]} = \sum_{\mu} p^n$, and $a^2 p^2 < 3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta *p* such that
- $\frac{p^{[4]}}{(p^2)^2} < 0.3$ where
- $p^{[n]} = \sum_{\mu} p^n$, and $a^2 p^2 < 3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta
- Also, democracy is mathematically impossible (Arrow'50)

$$\alpha_T^{\text{Latt}}\left(a^2p^2, a^2\frac{p^{[4]}}{p^2}, \dots\right) = \left.\widehat{\alpha}_T(a^2p^2) + \left.\frac{\partial\alpha_T^{\text{Latt}}}{\partial\left(a^2\frac{p^{[4]}}{p^2}\right)}\right|_{a^2\frac{p^{[4]}}{p^2}=0} a^2\frac{p^{[4]}}{p^2} + \dots$$

where $p^{[4]} = \sum_i p_i^4$ is the first H(4)-invariant (and the only one indeed relevant in our analysis).

H4

- average over any combination of momenta being invariant under H(4) (H(4) orbit)
- extrapolate then to the "continuum case"
- the effect of $a^2 p^{[4]}$ must vanish, by applying H4 for all the orbits sharing the same value of p^2
- with the only assumption that the slope depends smoothly on a^2p^2
- H(4)-artefact-free lattice coupling, α
 _T(a²p²) might differ from the continuum coupling by some O(4)-invariants artefacts,

$$\widehat{\alpha}_{T}(a^{2}p^{2}) = \alpha_{T}(p^{2}) + c_{a2p2} a^{2}p^{2} + \mathcal{O}(a^{4}), \qquad (1)$$

Ghost Dressing Function

Running with the Coupling

Figure: $\beta = 1.95$ with $a\mu_l = 0.0035$ at $48^3 \times 96$ (red) and $32^3 \times 64$ lattices (blue), $a\mu_l = 0.0055$ at $32^3 \times 64$ (violet) and $\beta = 2.1$ with $a\mu_l = 0.0020$ at $48^3 \times 96$ (green).

superimposing

zooming

Very Long Formula

$$\alpha_{\mathcal{T}}(\mu^2) = \alpha_{\mathcal{T}}^{\text{pert}}(\mu^2) \left(1 + \frac{9}{\mu^2} R\left(\alpha_{\mathcal{T}}^{\text{pert}}(\mu^2), \alpha_{\mathcal{T}}^{\text{pert}}(q_0^2)\right) \left(\frac{\alpha_{\mathcal{T}}^{\text{pert}}(\mu^2)}{\alpha_{\mathcal{T}}^{\text{pert}}(q_0^2)}\right)^{1 - \gamma_0^{\alpha^2}/\beta_0} \right)^{1 - \gamma_0^{\alpha^2}/\beta_0}$$

where $\gamma_0^{A^2}$ can be taken from Gracey, Chetyrkin to give for $N_f=4$

1

$$-\gamma_0^{A^2}/\beta_0 = \frac{27}{132 - 8N_f} = \frac{27}{100};$$
$$\frac{\Lambda_{\overline{\text{MS}}}}{\Lambda_T} = e^{-\frac{507 - 40N_f}{792 - 48N_f}}.$$
(2)

Checking the Wilson Coefficient

zooming

Correcting

Numbers

$$a(2.1) = 0.0607(2) \text{ fm}$$

 $\Lambda_{\overline{\text{MS}}}^{N_f=4} = 298 \pm 13 \text{ MeV}$

$$\alpha_{S}(M_{Z^{0}}) = 0.1187(9);$$

Delusions and Hope

- CINES SGI ICE Jade 6.5M (source smearing and dilution study)
- IDRIS IBM SP Vargas 2.75M (nucleon and 48 propagators)
- IBM BG/P Babel 24M (gauge fixing and contractions)
- TGCC Bull Curie noeuds hybrides GPU 72k $B \longrightarrow D^{**}$
- Some PetaQCD time dedicated to multiGPU tests/development
- which will be wasted on inverting $64^3 imes 128$