

A simultaneous analysis

of $B \to D\ell\nu$ and $B \to D^*\ell\nu$ decays

M. Dorigo and M. Mantovano (University and INFN Trieste)

In a nutshell

- By reconstructing $D^0l\nu$ and $D^-l\nu$ final states, perform a simultaneous analysis of $B \to Dl\nu$ and $B \to D^*l\nu$ where D^* is partially reconstructed.
- ullet Use isospin symmetry to assume equal SL decay width of B^0 and B^- and reduce uncertainties. Can measure:
 - 1. $\mathscr{B}(B \to Dl\nu)$ and $\mathscr{B}(B \to D^*l\nu)$ and their ratio;
 - 2. model-independent observables: measure FF $\cdot |V_{cb}|$ in 5 bins of w. Method allows to reinterpret the measurement assuming any FF model.
 - 3. $f_{+-}/f_{00} = \mathcal{B}(\Upsilon(4S) \to B^+B^-)/\mathcal{B}(\Upsilon(4S) \to B^0\bar{B}^0)$ with 1% theoretical uncertainty.
 - → input for any measurements of BR at Belle II, current theoretical uncertainty 4%!
- First simultaneous analysis at Belle II: an alternative approach to the ongoing measurements,
 affected by different sources of systematic uncertainties.

Overview

Last talk [talk@SLmeeting]:

- Refine the selection of muon and electron channels.
- Apply missing corrections to MC: branching fractions and gap modes.
- Study of $X\ell\nu$ sample composition. Find a sideband enriched of these decays.

 Perform a 2D simultaneous fit between $D^0e\nu$ and $D^-e\nu$ to constraint the $X\ell\nu$ component.

Today:

- $^{\circ}$ Split the gap modes into $D^{(*)}\pi\pi\ell
 u$ and $D^{(*)}\eta\ell
 u$ templates.
- Split the real D to constrain better the sub-components (inclusive D decays, fake leptons, ...).
- Test a simultaneous fit between the electron and muon samples in the sideband region to constrain the $X\ell\nu$ and real D components.

Sample composition

Divide $B \to D\ell\nu$ samples in 6 components:

1.
$$B o D\ell
u;$$
 signal $2. B o D*\ell
u;$

- 3. $B \to X\ell\nu$ + gap modes, where X is D^{**} , $D^{(*)}\tau\nu$ + lepton (real or fake);
- 4. Real D: real D + lepton (real or fake);

Detailed composition study shown at talk@SLWG

Constrain using a $\cos heta_{\mathrm{BY}}$ sideband region

- 5. Fake D: a random $K\pi/K\pi\pi$ combination + lepton (real or fake);
- 6. Continuum: background from $e^+e^- \rightarrow q\bar{q}$, $q \in [u, d, c, s]$.

constrained from data: using D mass sideband + off-res

Real D validation

Detailed study of the real D composition at <u>talk@SLWG</u>. Divided the real D component in three sub-components:

Use three different templates for the real D in the simultaneous fit.

$X\ell\nu$ validation

Found a $cos\theta_{BY}$ sideband region [-12,-3] to validate these decays.

Take from off-res data and InvM(D) sideband.

enriched $X\ell\nu$ decays in the $cos\theta_{BY}$ sideband

 $realD_{fake}$, $realD_{sec}$, $realD_{rest}$

Simultaneous fit

- ullet Fit the $X\ell
 u$ and real D components in the $cos heta_{BY}$ sideband region to constrain these decays.
- ullet Perform a 2D simultaneous fit between electron and muon samples using (p_D^*,p_ℓ^*) variables.
- Free Real D components :

```
\left. \begin{array}{c} realD_{fake}(D^0\mu\nu), realD_{sec}(D^0e\nu), realD_{rest}(D^0e\nu) \\ realD_{fake}(D^-\mu\nu), realD_{sec}(D^-e\nu), realD_{rest}(D^-e\nu) \end{array} \right| \text{ The other real D sub-components are determined from these parameters}
```

- ullet Gaussian constraints on D^{**} BR with the corresponding uncertainties:
 - 1. D_1 gaussian constraint (unc. 16%)
 - 2. D_0 gaussian constraint (unc. 24%)
 - 3. $D_1^{'}$ gaussian constraint (unc. 14%)
 - 4. D_2 gaussian constraint (unc. 9%)
 - 5. $D^{(*)}\pi\pi$ gaussian constraint (unc. 43%)
 - 6. $D^{(*)}\eta$ gaussian constraint (unc. 100%)
- All the other components are fixed.
- ullet Assume isospin symmetry to link the BR on the constraints between D^0 and D^- samples.

Projections

Projections

Fit results

The simultaneous fit returns the following results:

Fit parameters	Expected values	Fit results	relative unc.	Fitted/Expected
$\mathcal{B}(B\to D_1\ell\nu)$	0.64%	(0.73 +- 0.08)%	10.9%	1.15
$\mathscr{B}(B \to D_{1}^{'}\mathscr{C}\nu)$	0.28%	(0.29 +- 0.04)%	13.8%	1.03
$\mathcal{B}(B \to D_0^* \mathcal{C} \nu)$	0.13%	(0.13 +- 0.03)%	23.1%	1.05
$\mathscr{B}(B\to D_2\mathscr{E}\nu)$	0.32%	(0.33 +- 0.03)%	9.1%	1.03
$\mathscr{B}(B \to D^{(*)}\pi\pi\ell\nu)$	0.30%	(0.25 +- 0.08)%	31.3%	0.85
$\mathscr{B}(B \to D^{(*)} \eta \mathscr{E} \nu)$	1.80%	(0.19 +- 0.12)%	63.2%	0.11
$realD_{rest}(D^0e\nu)$	2896	4607.4 +- 464.0	10.1%	1.59
$realD_{sec}(D^0e\nu)$	3815	2684.8 +- 554.5	20.7%	0.70
$realD_{rest}(D^-e\nu)$	909	1846.7 +- 244.0	13.2%	2.03
$realD_{sec}(D^-e\nu)$	566	450.5 +- 257.5	57.2%	0.80
$realD_{fake}(D^0\mu\nu)$	6673	7934.2 +- 850.9	10.7%	1.19
$realD_{fake}(D^-\mu\nu)$	879	79.6 +- 444.8	558.8%	0.09

Data/MC agreement: $D^0e\nu$ sample

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement: $D^-e \nu$ sample

Data/MC agreement: $D^0\mu\nu$ sample

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement: $D^-\mu\nu$ sample

Data/MC agreement improves after scaling D^{**} and real D components.

Summary

- $^{\circ}$ Split the gap modes into e.g. split $D^{(*)}\pi\pi\ell
 u$ and $D^{(*)}\eta\ell
 u$ templates.
- Split the real D to constrain better the sub-components (inclusive D decays, fake leptons, ...).
- ullet Test a 2D simultaneous fit between the electron and muon samples in the sideband region to constrain the $X\ell\nu$ and real D components.

Observed a good data/MC agreement after scaling $X\ell\nu$ and real D components according to the fit results.

Next steps

ullet Perform a simultaneous fit between the signal and control region to constrain the $X\ell\nu$ decays and real D components.

Backup

Selection of $D\ell\nu$ samples

- |dr|<1 + |dz|<3 for all tracks
- $^{\circ}$ binaryKaonID>0.6 (for $D^{-}\ell\nu$) + binaryKaonID>0.1 (for $D^{0}\ell\nu$)
- MuonID_noSVD>0.9, $PID_{BDT}(e)$ >0.9
- Treefit : $\chi^2 > 1\%$
- $^{\circ}$ ROE mask: $|dr|<1 + |dz|<3 + p_{CMS} < 3.2$
- VisibleEnergyCMS>4 GeV, thetainCDCacceptance
- R2<0.4</p>
- ocsTBTO<0.75
- $p_{\ell}^{CMS} \in [0.8, 2.2]$
- $p_D^{CMS} \in [0.5, 2.5]$
- $P = InvM(D) \in [1.865, 1.874]$ for $D^-\ell\nu$, $InvM(D) \in [1.86, 1.87]$ for $D^0\ell\nu$
- InvM(Y) > 3.2GeV
- \circ $cos\theta_{BY} \in [-2,1.1]$
- $^{\circ}$ Cut on $p(\pi)$ >0.35 (remove the systematics for slow tracks)
- $^{\circ}$ KakunoFoxWolfram(h20)>0.18 (only for $D^{-}\ell\nu$ samples)
- $p_{ROE}^{CMS} < 2.8 GeV$
- One candidate selection applied.

New selection

- Removed cuts on variables with a large data/MC disagreement:
 - 1. M(ROE)<5.2 GeV for $D^-\ell\nu$, M(ROE)<6 GeV for $D^0\ell\nu$.
 - 2. KakunoFoxWolfram(h20)>0.18 (removed only for $D^0\ell\nu$ sample).
- New cut on $M(D\ell)>3.2$ GeV to further reduce the real D component.
- Removed the tight cut on TreeFitter χ^2 (> 5%) probability; replaced by χ^2 > 1%.
- Cut on $p(\pi)$ >0.35 GeV (only for $D^-\ell\nu$ sample) to remove the systematic due to slow tracks.
- Removed nCDCHits>20 cut for mesons (K/π) : not required anymore for PID corrections.

Branching fractions corrections

Update the MC branching fractions according to the PDG:

Decay	$\mathscr{B}(B^+)(MC)$	$\mathcal{B}(B^+)(update)$	$\mathcal{B}(B^0)(MC)$	$\mathcal{B}(B^0)(update)$	D** FF model
$B o D_1 \mathscr{E} u$	0.76%	(0.64 +- 0.10)%	0.71%	(0.59 +- 0.10)%	BLR
$B \to D_0^* \ell \nu$	0.39%	(0.13 +- 0.03)%	0.36%	(0.12 +- 0.03)%	BLR
$B o D_{1}^{'}\mathscr{E} u$	0.43%	(0.28 +- 0.04)%	0.40%	(0.26 +- 0.04)%	BLR
$B \to D_2 \ell \nu$	0.37%	(0.32 +- 0.03)%	0.35%	(0.30 +- 0.03)%	BLR
$B o D\pi\pi\ell u$	0.53%	(0.07 +- 0.09)%	0.49%	(0.07 +- 0.08)%	PHSP
$B \to D^*\pi\pi\ell\nu$	0.26%	(0.22 +- 0.10)%	0.25%	(0.20 +- 0.10)%	PHSP
$B o D\eta \mathscr{E} u$	0.20%	(0.90 +- 0.90)%	0.22%	(0.86 +- 0.86)%	PHSP
$B \to D^* \eta \ell \nu$	0.20%	(0.90 +- 0.90)%	0.22%	(0.86 +- 0.86)%	PHSP

The correction of the branching fractions leads to a modification of the form:

$$N_j^{new} = N_j^{MC} \frac{\mathcal{B}_j^{new}}{\mathcal{B}_j^{MC}}$$

 N_{j}^{MC} = # of events in MC for the j-component, \mathcal{B}_{j}^{MC} = BR in MC, \mathcal{B}_{j}^{new} = update BR.

Gap modes

- In our MC, the gap modes $D^{(*)}\pi\pi\ell\nu$ and $D^{(*)}\eta\ell\nu$ have been generated with phase-space leading to a very soft lepton momentum.
- It seems physically less plausibile than a decay kinematic in which the hadronic particles are more correlated to each other.
- Remove these gap modes in our MC sample and replaced them by

$$B \to D^{**}[\to D^{(*)}\pi\pi]\ell\nu$$
 $B \to D^{**}[\to D^{(*)}\eta]\ell\nu$

Decay	Sim.events	Lumi (ab-1)	D** FF model
$B o D_{1}^{'}[o D\pi\pi] {\ell} u$	$8 \cdot 10^{6}$	B0: 16, B+: 14	BLR
$B \to D_0^*[\to D\pi\pi] \ell \nu$	$8 \cdot 10^6$	B0: 16, B+: 14	BLR
$B o D_{1}^{'}[\ o D^{*}\pi\pi]\mathscr{E} u$	$8 \cdot 10^6$	B0: 3.2, B+: 2.8	BLR
$B o D_0^*[o D^*\pi\pi] \ell \nu$	$8 \cdot 10^{6}$	B0: 3.2, B+: 2.8	BLR
$B o D_0^*[o D\eta] {\mathscr E} u$	$8 \cdot 10^6$	B0: 1.8, B+: 1.8	BLR
$B o D_1^{'}[o D^* \eta] \mathscr{E} u$	$8 \cdot 10^{6}$	B0: 1.8, B+: 1.8	BLR

• $\mathscr{B}(B \to D^{(*)}\pi\ell\nu)$ set to 0; BR saturated by production via D^{**} BR.

D^{**} resonances

- Issue is spotted with the modelling D_0^{st} and D_1^{\prime} resonances. First observation of this issue by Henrik.
- Due to their large width, some events are generated with D^{**} mass larger than the nominal one leading to an unphysical enhancement in the $w\sim 1$ region.

Events that exceed 3 times the width of D_0^st and 2.5 times of $D_1^{'}$ are rejected.

$X\ell\nu$ composition

Studied the $X\ell\nu$ component after the BR and gap modes corrections.

Divided the $X\ell\nu$ component in different sub-components:

- 2. Gap modes
- 3. $D*\tau\nu$
- 4. $D\tau\nu$
- 5. $D^{(*)}\ell\nu$, ℓ = misID lepton
- 6. $D^{**}\tau\nu$

$X\ell\nu$ composition

Studied the $X\ell\nu$ component after the BR and gap modes corrections.

Divided the $X\ell\nu$ component in different sub-components:

- 2. $D^*\tau\nu$
- 3. $D^{**}\tau\nu$
- 4. Gap modes

6. $D^{**}\ell\nu$

Constraining fake D and continuum

Can constrain from data fake D and continuum components using D mass sidebands.
 Will use data to build one single template (fake D + continuum) and fix the normalisation.

Test the strategy using MC:

- 1. Build the template from D mass sidebands.
- 2. Take off-resonance MC sidebands, use it to extract the peak contribution in the signal region due to $e^+e^- \rightarrow c\bar{c}$.

4. Scale to the same luminosity and add it to the final template.

Projections (pre-fit)

