

A simultaneous analysis of $B \to D\ell\nu$ and $B \to D^*\ell\nu$ decays

M. Dorigo and M. Mantovano (University and INFN Trieste)

TS Analysis Meeting June 24, 2024

Sample composition

Divide $B \to D\ell\nu$ samples in 6 components:

1.
$$B o D\ell \nu;$$
 signal 2. $B o D*\ell \nu;$

- 3. $B \to X\ell\nu$ + gap modes, where X is D^{**} , $D^{(*)}\tau\nu$ + lepton (real or fake); _____ need a validation
- 4. Real D: real D + lepton (real or fake); Detailed composition study using a wrong charge channel
- 5. Fake D: a random $K\pi/K\pi\pi$ combination + lepton (real or fake);
- 6. Continuum: background from $e^+e^- \rightarrow q\bar{q}$, $q \in [u, d, c, s]$.

constrained from data: using D mass sideband + off-res

New selection

- Removed cuts on variables with a large data/MC disagreement:
 - 1. M(ROE)<5.2 GeV for $D^-\ell\nu$, M(ROE)<6 GeV for $D^0\ell\nu$.
 - 2. KakunoFoxWolfram(h20)>0.18 (removed only for $D^0\ell\nu$ sample).
- New cut on $M(D\ell)>3.2$ GeV to further reduce the real D component.
- Removed the tight cut on TreeFitter χ^2 (> 5%) probability; replaced by χ^2 > 1%.
- Cut on $p(\pi)$ >0.35 GeV (only for $D^-\ell\nu$ sample) to remove the systematic due to slow tracks.
- Removed nCDCHits>20 cut for mesons (K/π) : not required anymore for PID corrections.

$X\ell\nu$ component Electron sample

$X\ell\nu$ composition

Studied the $X\ell\nu$ component after the BR and gap modes corrections.

Divided the $X\ell\nu$ component in different sub-components:

- 2. Gap modes
- 3. $D*\tau\nu$
- 4. $D\tau\nu$
- 5. $D^{(*)}\ell\nu$, ℓ = misID lepton
- 6. $D^{**}\tau\nu$

$X\ell\nu$ validation

Found a $cos\theta_{BY}$ sideband region [-12,-3] to validate these decays.

Take them from off-res data and InvM(D) sideband.

enriched $X\ell\nu$ decays in the $cos\theta_{BY}$ sideband

Simultaneous fit

- ullet Fit the $X\ell
 u$ component in the $cos heta_{BY}$ sideband region to constrain these decays.
- ullet Perform a 2D simultaneous fit between D^0 and D^- samples using (p_D^*,p_ℓ^*) variables.
- Real D components free in the fit, all the others are fixed.
- ullet Gaussian constraints on D_1, D_1', D_2, D_0^* BR with the corresponding uncertainties:
 - 1. D_1 gaussian constraint (unc. 16%)
 - 2. D_0 gaussian constraint (unc. 18%)
 - 3. $D_1^{'}$ gaussian constraint (unc. 21%)
 - 4. D_2 gaussian constraint (unc. 11%)
- ullet Assume isospin symmetry to link the BR on the constraints between B^+ and B^0 samples.
- For this test, the BR of gap modes is fixed to 0 since a fit using it as gaussian constraint (unc. 100%) returns a value compatibile with 0.

Projections

Fit results

The simultaneous fit returns the following results:

Fit parameters	Expected values	Fit results	relative unc.	Fitted/Expected
$\mathcal{B}(B\to D_1\ell\nu)$	0.66%	(0.97 +- 0.05)%	5.4%	1.38
$\mathscr{B}(B \to D_{1}^{'}\ell'\nu)$	0.42%	(0.33 +- 0.07)%	21.1%	0.84
$\mathscr{B}(B\to D_0^*\mathscr{C}\nu)$	0.42%	(0.30 +- 0.05)%	16.2%	0.75
$\mathscr{B}(B\to D_2\mathscr{E}\nu)$	0.29%	(0.32 +- 0.03)%	9.9%	1.08
$realD(D^0e u)$	9268	9998.5 +- 540.5	5.4%	1.08
$realD(D^-e\nu)$	1890	1936.2 +- 190.9	9.8%	1.02

Use the fit results to scale the D^{**} and real D components.

Data/MC agreement: $D^0e\nu$ sample

Check data/MC agreement after scaling D^{**} and real D components according to the fit results.

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement: $D^-e \nu$ sample

Check data/MC agreement after scaling D^{**} and real D components according to the fit results.

Muon sample

Simultaneous fit

- Studied the $X\ell\nu$ component after the BR and gap modes corrections. Divided the $X\ell\nu$ component in different sub-components.
- ullet Fit the $X\ell
 u$ component in the $cos heta_{BY}$ sideband region to constrain these decays.
- ullet Perform a 2D simultaneous fit between D^0 and D^- samples using (p_D^*,p_ℓ^*) variables.
- Real D components free in the fit, all the others are fixed.
- ullet Gaussian constraints on D_1, D_1', D_2, D_0^* BR with the corresponding uncertainties:

Data/MC agreement: $D^0\mu u$ sample

Check data/MC agreement after scaling D^{**} and real D components according to the fit results.

Data/MC agreement improves after scaling D^{**} and real D components.

Data/MC agreement: $D^-\mu\nu$ sample

Check data/MC agreement after scaling D^{**} and real D components according to the fit results.

Data/MC agreement improves after scaling D^{**} and real D components.

Summary

- Improved the selection by removing cuts with a large data/MC disagreement.
 Apply cuts to further reduce background components.
- Applied all the corrections to MC: update the branching fractions and fill the gap.
- Found a $cos\theta_{BY}$ sideband to validate the $X\ell\nu$ decays. Performed a 2D simultaneous fit between D^0 and D^- to constrain the $X\ell\nu$ decays. Observed a good data/MC agreement after scaling $X\ell\nu$ and real D components according to the fit results.

Next steps

- ullet Test further configuration for the sideband fit (split $D^{(*)}\pi\pi\ell
 u$ and $D^{(*)}\eta\ell
 u$ templates). (done)
- Divide the real D component in sub-components to constraint better these decays. (done)
- ullet Perform a simultaneous fit between the signal and control region to constrain the $X\ell
 u$ decays.

Backup

Real D validation: $D^0 e \nu$ sample

- 1. From a true lepton (secondary) and a D from the same B.
- 2. Events with a D and a fake lepton (same/different B).

Selection of $D\ell\nu$ samples

- |dr|<1 + |dz|<3 for all tracks
- $^{\circ}$ binaryKaonID>0.6 (for $D^-\ell
 u$) + binaryKaonID>0.1 (for $D^0\ell
 u$)
- MuonID_noSVD>0.9, $PID_{BDT}(e)$ >0.9
- Treefit : $\chi^2 > 1\%$
- $^{\circ}$ ROE mask: $|dr|<1 + |dz|<3 + p_{CMS} < 3.2$
- VisibleEnergyCMS>4 GeV, thetainCDCacceptance
- R2<0.4</p>
- cosTBTO<0.75</p>
- $p_{\ell}^{CMS} \in [0.8, 2.2]$
- $p_D^{CMS} \in [0.5, 2.5]$
- $P = InvM(D) \in [1.865, 1.874]$ for $D^-\ell\nu$, $InvM(D) \in [1.86, 1.87]$ for $D^0\ell\nu$
- InvM(Y) > 3.2GeV
- $cos\theta_{BY} \in [-2,1.1]$
- Cut on $p(\pi)$ >0.35 (remove the systematics for slow tracks)
- ullet KakunoFoxWolfram(h20)>0.18 (only for $D^-\ell
 u$ samples)
- $p_{ROE}^{CMS} < 2.8 GeV$

Branching fractions corrections

Update the MC branching fractions according to the PDG:

Decay	$\mathscr{B}(B^+)(MC)$	$\mathcal{B}(B^+)(update)$	$\mathcal{B}(B^0)(MC)$	$\mathcal{B}(B^0)(update)$	D** FF model
$B o D_1 \mathscr{E} u$	0.76%	(0.66 +- 0.11)%	0.71%	(0.62 +- 0.10)%	BLR
$B \to D_0^* \ell \nu$	0.39%	(0.42 +- 0.08)%	0.36%	(0.39 +- 0.07)%	BLR
$B o D_{1}^{'}{\mathscr E} u$	0.43%	(0.42 +- 0.09)%	0.40%	(0.39 +- 0.08)%	BLR
$B \to D_2 \ell \nu$	0.37%	(0.29 +- 0.03)%	0.35%	(0.27 +- 0.03)%	BLR
$B o D\pi\pi\ell u$	0.53%	(0.62 +- 0.89)%	0.49%	(0.58 +- 0.82)%	PHSP
$B \to D^*\pi\pi\ell\nu$	0.26%	(0.22 +- 0.10)%	0.25%	(0.20 +- 0.10)%	PHSP
$B o D\eta \mathscr{E} u$	0.20%	(0.38 +- 0.38)%	0.22%	(0.41 +- 0.41)%	PHSP
$B \to D^* \eta \ell \nu$	0.20%	(0.38 +- 0.38)%	0.22%	(0.41 +- 0.41)%	PHSP

The correction of the branching fractions leads to a modification of the form:

$$N_j^{new} = N_j^{MC} \frac{\mathcal{B}_j^{new}}{\mathcal{B}_j^{MC}}$$

 N_{j}^{MC} = # of events in MC for the j-component, \mathcal{B}_{j}^{MC} = BR in MC, \mathcal{B}_{j}^{new} = update BR.

Gap modes

- In our MC, the gap modes $D^{(*)}\pi\pi\ell\nu$ and $D^{(*)}\eta\ell\nu$ have been generated with phase-space leading to a very soft lepton momentum.
- It seems physically less plausibile than a decay kinematic in which the hadronic particles are more correlated to each other.
- Remove these gap modes in our MC sample and replaced them by

$$B \to D^{**}[\to D^{(*)}\pi\pi]\ell\nu$$
 $B \to D^{**}[\to D^{(*)}\eta]\ell\nu$

Decay	Sim.events	Lumi (ab-1)	D** FF model
$B o D_{1}^{'}[o D\pi\pi]\mathscr{E} u$	$8 \cdot 10^{6}$	B0: 16, B+: 14	BLR
$B \to D_0^*[\to D\pi\pi] \ell \nu$	$8 \cdot 10^6$	B0: 16, B+: 14	BLR
$B o D_{1}^{'}[\ o D^{*}\pi\pi]\mathscr{E} u$	$8 \cdot 10^6$	B0: 3.2, B+: 2.8	BLR
$B \to D_0^*[\to D^*\pi\pi] \ell \nu$	$8 \cdot 10^{6}$	B0: 3.2, B+: 2.8	BLR
$B o D_0^*[o D\eta] \mathscr{E} u$	$8 \cdot 10^6$	B0: 1.8, B+: 1.8	BLR
$B o D_1^{'}[o D^* \eta] \mathscr{E} u$	$8 \cdot 10^{6}$	B0: 1.8, B+: 1.8	BLR

• $\mathcal{B}(B \to D^{(*)}\pi\ell\nu)$ set to 0; BR saturated by production via D^{**} BR.

D^{**} resonances

- Issue is spotted with the modelling D_0^* and $D_1^{'}$ resonances. First observation of this issue by Henrik.
- Due to their large width, some events are generated with D^{**} mass larger than the nominal one leading to an unphysical enhancement in the $w\sim 1$ region.

Events that exceed 3 times the width of D_0^st and 2.5 times of $D_1^{'}$ are rejected.

$X\ell\nu$ composition

Studied the $X\ell\nu$ component after the BR and gap modes corrections.

Divided the $X\ell\nu$ component in different sub-components:

- 2. $D^*\tau\nu$
- 3. $D^{**}\tau\nu$
- 4. Gap modes

6. $D^{**}\ell\nu$

Projections (pre-fit)

