

1

A simultaneous analysis of $B \to D \ell \nu$ and $B \to D^* \ell \nu$ decays

M. Dorigo and M. Mantovano (University and INFN Trieste)

TS Analysis Meeting Mar 25, 2024

Gap modes

Gap modes

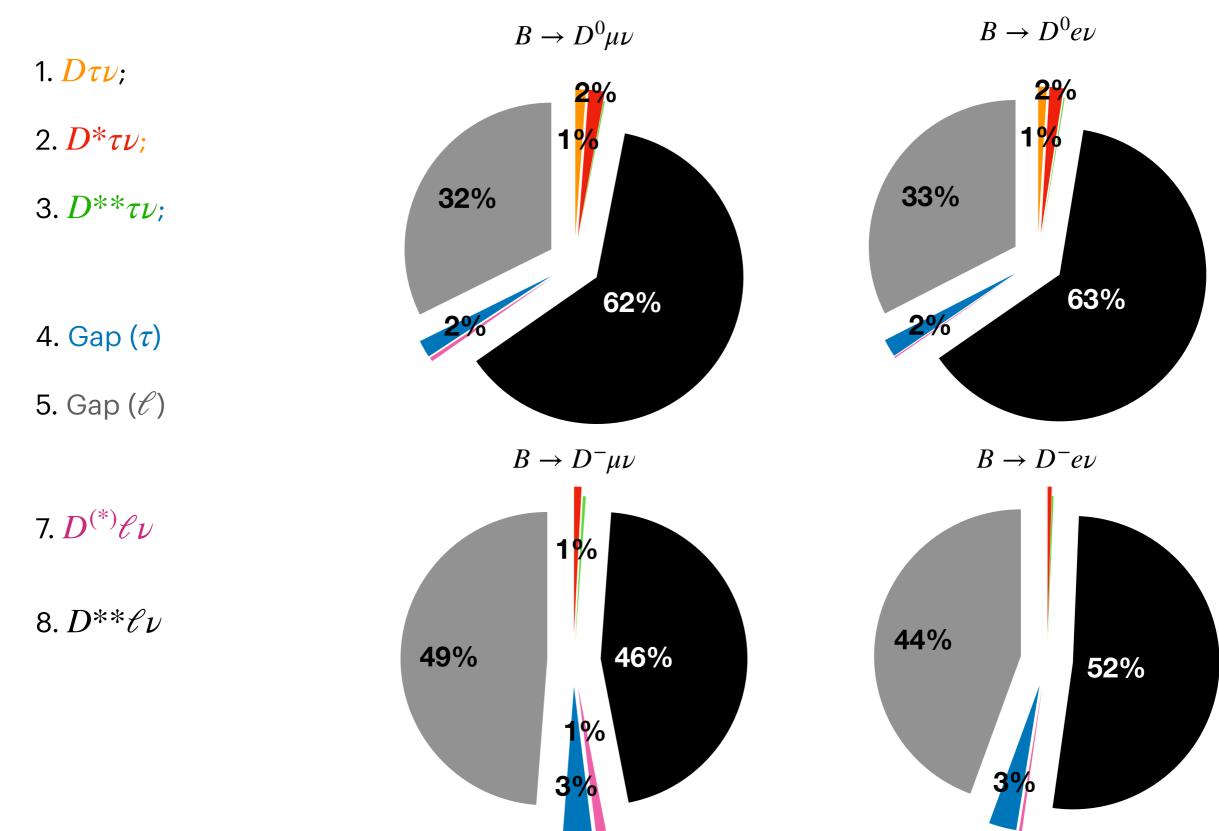
- In our MC, the gap channels $D^{(*)}\pi\pi\ell\nu$ and $D^{(*)}\eta\ell\nu$ have been generated with phase-space leading to a very soft lepton momentum.
- It seems physically less plausibile than a decay kinematic in which the hadronic particles are more correlated to each other.
- Idea: remove these gap modes in our MC sample and replaced them by

$B ightarrow [D^{stst} ightarrow D^{(st)} \pi \pi] \ell u$	$B o [D^{**} o D^{(*)}\eta] \ell \nu$
---	---

Process	Sim.events	Lumi (ab-1)	D** FF model
$B ightarrow [D_{1}^{'} ightarrow D\pi\pi] \ell u$	$8\cdot 10^6$	B0: 16, B+: 14	BLR
$B \to [D_0^* \to D\pi\pi] \ell \nu$	$8 \cdot 10^{6}$	B0: 16, B+: 14	BLR
$B ightarrow [D_{1}^{'} ightarrow D^{*}\pi\pi] \ell u$	$8 \cdot 10^{6}$	B0: 3.2, B+: 2.8	BLR
$B \to [D_0^* \to D^* \pi \pi] \ell \nu$	$8\cdot 10^6$	B0: 3.2, B+: 2.8	BLR
$B \to [D_0^* \to D\eta] \ell \nu$	$8 \cdot 10^{6}$	B0: 1.8, B+: 1.8	BLR
$B ightarrow [D_{1}^{'} ightarrow D^{*}\eta] \ell u$	$8 \cdot 10^6$	B0: 1.8, B+: 1.8	BLR

Skims completed on grid, reconstruction completed.

Same approach for the semitauonic gap modes.

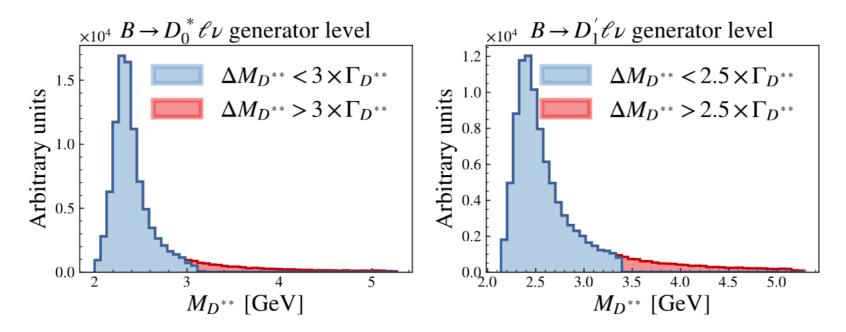

Process	Sim.events	Lumi (ab-1)	D** FF model
$B ightarrow [D_{1}^{'} ightarrow D\pi\pi] au u$	$3 \cdot 10^{6}$	B0: 44.2, B+: 40.8	BLR
$B \to [D_0^* \to D^* \pi \pi] \tau \nu$	$3 \cdot 10^{6}$	B0: 12.8, B+: 11.1	BLR
$B \to [D_0^* \to D\eta] \tau \nu$	$3 \cdot 10^{6}$	B0: 6.3, B+: 6.5	BLR
$B ightarrow [D_{1}^{'} ightarrow D^{*}\eta] au u$	$3 \cdot 10^{6}$	B0: 6.3, B+: 6.5	BLR

Skims completed on grid, reconstruction completed.

NB: Only MC15ri samples are available.

$X\ell\nu$ composition

[•] Studied the $X\ell\nu$ component after all the corrections (BR and gap modes):



$X\ell\nu$ composition

 $^{\circ}$ $X\ell
u$ component dominated by gap modes and $D^{**}\ell
u$ decays:

- 1. $D^* \ell \nu$ decays: no need a FF reweight, less than 1% of the total $X \ell \nu$ (~ 6/7%);
- 2. $D\tau\nu$, $D^*\tau\nu$ and $D^{**}\tau\nu$: same as 1.
- 3. Gap modes and $D^{**}\ell\nu$ decays: already simulated with the correct FF model (BLR).
- Issue is spotted with the modelling D_0^* and $D_1^{'}$.

Due to their large width, some events are generated with D^{**} mass larger than the nominal one —> unphysical enhancement in the $w \sim 1$ region.

Events that exceed 3 times the width of D_0^* and 2.5 times of $D_1^{'}$ are rejected.

Efficiency

Efficiency

Evaluate the # of events produced:

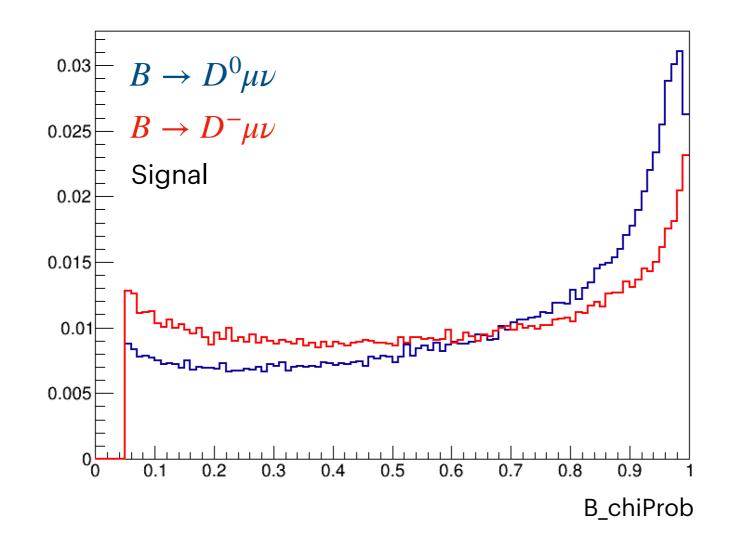
$$\begin{split} N_{prod}^{D^0\ell\nu} &= \sigma_{Y(4(S))} \cdot f_{+-} \cdot \mathscr{L} \cdot \mathscr{B}(B^+ \to D^0\ell\nu) \cdot \mathscr{B}(D^0 \to K\pi) = 746\ 408 \\ N_{prod}^{D^-\ell\nu} &= \sigma_{Y(4(S))} \cdot f_{00} \cdot \mathscr{L} \cdot \mathscr{B}(B^0 \to D^-\ell\nu) \cdot \mathscr{B}(D^- \to K\pi\pi) = 1540\ 010 \\ N_{prod}^{D^{*0}\ell\nu} &= \sigma_{Y(4(S))} \cdot \mathscr{L} \cdot \mathscr{B}(B^+ \to D^{*0}\ell\nu) \cdot (f_{+-} + f_{00} \cdot \frac{\tau_{B^0}}{\tau_{B^+}} \cdot \mathscr{B}(D^{*-} \to D^0X)) \cdot \mathscr{B}(D^0 \to K\pi) = 2\ 803\ 003 \\ N_{prod}^{D^*-\ell\nu} &= \sigma_{Y(4(S))} \cdot f_{00} \cdot \mathscr{L} \cdot \mathscr{B}(B^0 \to D^{*-}\ell\nu) \cdot \mathscr{B}(D^{*-} \to D^-X) \cdot \mathscr{B}(D^- \to K\pi\pi) = 1224\ 546 \\ \end{split}$$

$$\begin{aligned} \text{Where } \sigma_{Y(4(4S))} &= 1.1nb, \ \mathscr{L} = 1444/fb, \ f_{+-} = 0.515, \ f_{00} = 0.483, \ \mathscr{B}(B^+ \to D^0\ell\nu) = 2.31\ \%, \\ \mathscr{B}(B^0 \to D^-\ell\nu) &= 2.14\ \%, \ \mathscr{B}(B^+ \to D^{*0}\ell\nu) = 5.49\ \%, \ \mathscr{B}(B^0 \to D^{*-}\ell\nu) = 5.11\ \%, \\ \mathscr{B}(D^0 \to K\pi) &= 3.95\ \%, \ \mathscr{B}(D^- \to K\pi\pi) = 9.38\ \%, \ \mathscr{B}(D^{*-} \to D^-X) = 33.3\ \% \ \text{and} \\ \mathscr{B}(D^{*-} \to D^0X) &= 66.7\ \%. \end{aligned}$$

$$\end{aligned}$$

Given the N_{prod} , we can evaluate the efficiency:

$$\epsilon = \frac{N_{reco}}{N_{prod}}$$


Efficiency: muon sample

	Nprod	Nreco	Our efficiency	Efficiency (Philipp)
$D^0 \mu u$	746 408	156 809	(21.00 +- 0.03)%	20%
$D^{*0}\mu u$	2 818 431	515 671	(18.30 +- 0.01)%	
$D^-\mu u$	1 540 010	138 679	(9.00 +- 0.02)%	6%
$D^{*-}\mu u$	1 187 773	76 424	(6.43 +- 0.02)%	

Why the $D^- \ell \nu$ efficiency is ~2.5 times lower than $D^0 \ell \nu$?

TreeFitter probability

Could the treeFitter probability cut be the cause of the drop in the efficiency for the $D^- \ell \nu$ channel?

Reprocess a small bucket (26) w/o the treeFitter probability cut.

TreeFitter probability

Reprocess a small bucket (26) w/o the treeFitter probability cut.

$D^-\mu u$	Nreco	Efficiency
PID cuts + InvM cut + chiProb>0	6910	43.31%
PID cuts + InvM cut + chiProb>0.05	5742	35.99%

$D^0 \mu u$	Nreco	Efficiency
PID cuts + InvM cut + chiProb>0	4970	64.27%
PID cuts + InvM cut + chiProb>0.05	4540	58.71%

The TreeFitter probability cut doesn't explain the drop in the efficiency observed for the $D^-\ell\nu$. Other possibility: geometric acceptance?

Backup

BR reweight: muon and electron sample

Update branching fractions

MC (dec file)

Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$	$\mathscr{B}(B^+)(MC)$	$\mathscr{B}(B^0)(MC)$
$B \to D\ell^+ \nu_\ell$	$(2.4098 \pm 0.0709) \cdot 10^{-2}$	$(2.2396 \pm 0.0664) \cdot 10^{-2}$	$2.31 \cdot 10^{-2}$	$2.14 \cdot 10^{-2}$
$B \to D^* \ell^+ \nu_\ell$	$(5.5023 \pm 0.1146) \cdot 10^{-2}$	$(5.1137 \pm 0.1082) \cdot 10^{-2}$	$5.49 \cdot 10^{-2}$	$5.11 \cdot 10^{-2}$
$B \to D_1 \ell^+ \nu_\ell$	$(6.6322 \pm 1.0894) \cdot 10^{-3}$	$(6.1638 \pm 1.0127) \cdot 10^{-3}$	$7.57 \cdot 10^{-3}$	$7.04 \cdot 10^{-3}$
$B\to D_0^*\ell^+\nu_\ell$	$(4.2000 \pm 0.7500) \cdot 10^{-3}$	$(3.9033 \pm 0.6972) \cdot 10^{-3}$	$3.89 \cdot 10^{-3}$	$3.62 \cdot 10^{-3}$
$B \to D_1' \ell^+ \nu_\ell$	$(4.2000 \pm 0.9000) \cdot 10^{-3}$	$(3.9033 \pm 0.8366) \cdot 10^{-3}$	$4.31 \cdot 10^{-3}$	$4.01 \cdot 10^{-3}$
$B \to D_2^* \ell^+ v_\ell$	$(2.9337 \pm 0.3248) \cdot 10^{-3}$	$(2.7265 \pm 0.3020) \cdot 10^{-3}$	$3.73 \cdot 10^{-3}$	$3.47 \cdot 10^{-3}$
$B o D\pi \pi \ell^+ u_\ell$	$(0.6228 \pm 0.8857) \cdot 10^{-3}$	$(0.5788 \pm 0.8232) \cdot 10^{-3}$	$0.23 \cdot 10^{-3}$	$0.21 \cdot 10^{-3}$
$B o D^* \pi \pi \ell^+ u_\ell$	$(2.1600 \pm 1.0247) \cdot 10^{-3}$	$(2.0074 \pm 0.9523) \cdot 10^{-3}$	$1.13 \cdot 10^{-3}$	$1.05 \cdot 10^{-3}$
$B \to D_s K \ell^+ \nu_\ell$	$(0.3000 \pm 0.1421) \cdot 10^{-3}$	-	$0.30 \cdot 10^{-3}$	-
$B \to D_s^* K \ell^+ \nu_\ell$	$(0.2900 \pm 0.1942) \cdot 10^{-3}$	-	$0.30 \cdot 10^{-3}$	_
$B o D\eta \ell^+ u_\ell$	$(3.7700 \pm 3.7700) \cdot 10^{-3}$	$(4.0920 \pm 4.0920) \cdot 10^{-3}$	$2.01 \cdot 10^{-3}$	$2.17 \cdot 10^{-3}$
$B o D^* \eta \ell^+ u_\ell$	$(3.7700 \pm 3.7700) \cdot 10^{-3}$	$(4.0920 \pm 4.0920) \cdot 10^{-3}$	$2.01 \cdot 10^{-3}$	$2.17 \cdot 10^{-3}$
$B \to X_c \ell^+ \nu_\ell$	$(10.8 \pm 0.4) \cdot 10^{-2}$	$(10.1 \pm 0.4) \cdot 10^{-2}$	-	-

The correction of the branching fractions leads to a modification of the form:

$$N_j^{new} = N_j^{MC} \frac{\mathscr{B}_j^{new}}{\mathscr{B}_j^{MC}}$$

where N_j^{MC} is the # of events in MC for the j-component, \mathscr{B}_j^{new} is the update branching fraction and \mathscr{B}_j^{MC} is the branching fraction in MC.

BR reweight: semitauonic decays

	B+ dec file	B+ Update BR	B0 dec file	B0 Update BR
$B o D \tau \nu$	0.69%	(0.72 +- 0.02)%	0.64%	(0.67 +- 0.02)%
$B \to D * \tau \nu$	1.42%	(1.41 +- 0.03)%	1.32%	(1.31 +- 0.03)%
$B o D_0^* \tau \nu$	0.13%	(0.034 +- 0.014)%	0.13%	(0.031 +- 0.01)%
$B ightarrow D_{1}^{'} au u$	0.20%	(0.025 +- 0.01)%	0.20%	(0.023 +- 0.009)%
$B \to D_1 \tau \nu$	0.13%	(0.066 +- 0.013)%	0.13%	(0.062 +- 0.012)%
$B \to D_2^* \tau \nu$	0.20%	(0.021 +- 0.004)%	0.20%	(0.019 +- 0.003)%
$B o D\pi\pi\tau\nu$	—	(0.007 +- 0.010)%	—	(0.0066 +- 0.094)%
$B o D^* \pi \pi \tau \nu$	—	(0.025 +- 0.011)%	_	(0.023 +- 0.011)%
$B o D\eta au u$	_	(0.043 +- 0.043)%	_	(0.047 +- 0.047)%
$B o D^* \eta au u$	_	(0.043 +- 0.043)%	_	(0.047+- 0.047)%

The correction of the branching fractions leads to a modification of the form:

$$N_j^{new} = N_j^{MC} \frac{\mathscr{B}_j^{new}}{\mathscr{B}_j^{MC}}$$

Efficiency: electron sample

	Nprod	Nreco	Our efficiency	Efficiency (Philipp)
$D^0 e u$	746 408	141 926	(19.01 +- 0.03)%	19%
$D^{*0}e u$	2 818 431	439 280	(15.59 +- 0.01)%	
D ⁻ ev	1 540 010	124 445	(8.08 +- 0.02)%	6%
$D^{*-}e u$	1 187 773	65 720	(5.53 +- 0.02)%	

Why the $D^- \ell \nu$ efficiency is ~2.5 times lower than $D^0 \ell \nu$?