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GRS MechanismsNecessity of mechanisms for LISA

GRS Mechanisms

FUNCTIONALITY

> allows survival to launch loads;
> enables science phase

Lack of reliability in LPF!

to be solved with delta-designfor LISA without violatingthe LPF GRS science heritage
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2
The GPRMGrabbing, positioning and release mechanism

GPRM
Grabbing, Positioning and ReleaseMechanism.
Mechanism responsible for the TM positioning and release.

Nom. and red.piezo-stacksFixed guide

Flex guide
Position sensorbracket Force sensor

Piezo-walkactuator

ϕ 10mmplunger
Release tip
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The GPRMGrabbing, positioning and release mechanism

Main goal
release the test-mass with the lowest residualvelocity.
The release procedure is made of 4 main steps
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Plunger
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Tip
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3
The GPRMGrabbing, positioning and release mechanism

Main goal
release the test-mass with the lowest residualvelocity.
The release procedure is made of 4 main steps

Handover
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The GPRMGrabbing, positioning and release mechanism

Main goal
release the test-mass with the lowest residualvelocity.
The release procedure is made of 4 main steps

Tip retraction
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The GPRMGrabbing, positioning and release mechanism

Main goal
release the test-mass with the lowest residualvelocity.
The release procedure is made of 4 main steps

Plunger retraction
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4
The GPRMRelease performance in LPF

Release performance
In LPF, TM was not released within therequirements.
GPRM identified as critical in LPF.

DOF Residual velocityUnit LPF Req. TM1 TM2
tx µm s−1 5 -3 +12
ty 5 -20 -27
tz 5 -57 -16
rx µrad s−1 100 +681 +1035
ry 100 -797 -30
rz 100 -1085 -430

Causes
Effects

Spurious forces Gap Plunger-TMon TM reduction re-contact

Adhesion

X

Tip retraction time lag

X

TM-Plunger electrostatic attraction

X

Plunger anomalous trajectory

X X

Mechanism vibrations

X X

Integration and manufacturing tolerances

X
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5
Gap modelGap erosion assessment
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GAP FACTOR (G)
Index defining the re-contact probability.
Indipendent for the two planes X-Z and Y-Z

Relative TM-plunger configuration is convertedinto relative plunger-indent misalignment.
Maximum allowable misalignment is defined bythe nominal TM-plunger gap at the handover.

GX−Z =
δxeq

δxmax
+

δzeq

δzmax
≤ 1

GY−Z =
δyeq

δymax
+

δzeq

δzmax
≤ 1
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Gap modelGap erosion assessment

δz

δzmax δx

The gap modelcondition is satisfied(G < 1)

The gap modelcondition is not satisfied(G > 1)

The gap modelcondition (G = 1)
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Gap modelGap erosion assessment

LPF case:
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6
Tip strokePerformance of the stack unit

The stroke of the tip is directly connected tothe TM-plunger gap at the handover:increasing the tip stroke, the probability ofre-contact decreases.

The piezo-stack actuators commands themotion of the tip: commercial solution arecompared with gap model outcome toobtain close to 100% of safe tests.
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7
Side guiding systemReduction of the anomalous motion of the GPRM

Anomalous motion of the GPRM:when the plunger inverts the motion (in Z), the plungerhead moves laterally (along X).
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The cause of this was identified on:
▶ the asymmetry of the guiding system friction
▶ the asymmetry of the guiding system stiffness
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8
Breadboard modelTesting GPRM improvements

A breadboard model (BBM) is designed andtested to evaluate some of the designimprovements of the GPRM.

The BBM includes:
▶ more symmetric guiding system
▶ a 30 µm stroke piezo-stack
▶ off-the-shelf piezo-walk actuator
▶ commercial control electronics

The LPF guiding system is also tested as areference.
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9
Breadboard modelTesting GPRM improvements

BBM is tested in the UniTN laboratory.
Tests are performed on an anti-vibrationplatform inside a cleanroom.

The mechanism trajectory is measured by:
▶ 1 beam laser interferometer

> lateral (X) displacement
▶ 3 beams laser interferometer

> axial (Z) displacement> X and Y rotations
▶ load cell

> total friction force
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10
Breadboard modelTesting GPRM improvements

During BBM tests, roller-roller side guiding configurationshows:

▶ global higher lateral displacement
> due to run-out

▶ lower lateral displacement at the inversion
> critical in case of handover after grabbing

NOTE:close to the TM, at the release, GPRM is likely to amotion-inversion configuration.
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11
LISA BaselineImproved GPRM for LISA
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Design of GPRM under internal review to increasethe mechanism performance
GPRM improvements
▶ Roller-roller side guiding configuration

> Lower lateral displacement close to the TM
▶ 2 equal 27mm piezo-stacks

> 27 µm of tip stroke
▶ Improved force sensor

> Lower pre-release TM preload
▶ Improved tollerances verification process
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Design of GPRM under internal review to increasethe mechanism performance
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12
ConclusionFuture of the mechanisms in a LISA-like mission

GRS Mechanisms

FUNCTIONALITY

NECESSARY & MAJOR DESIGNCONSTRAINT FOR GRS

> cables inside vacuum;
> actuators inside vacuum;
> volume availability;
> EH actuation and sensing;
> . . .

GRS mechanisms shall berevised to increasefuture LISA-likemissions performance
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| October 2nd, 2024, Trento, Italy
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