

Design and testing of an improved LISA grabbing, positioning and release mechanism

GRAvitational-waves Science&technology Symposium (GRASS 2024) October 2nd, 2024

M. Tomasi ^{1,2} D. Bortoluzzi ^{1,2} E. Dalla Ricca ^{1,2} A. A. Gelan ^{1,2} F. Marzari ^{1,2} D. Vignotto ^{1,2} C. Zanoni ^{2,1} A. P. Moroni³ P. Zaltron⁴

¹University of Trento, Trento, Italy

² Italian National Institute for Nuclear Physics (INFN), Trento, Italy

³OHB-Italia, Milan, Italy

⁴ATG Europe, Contractor in the Space Mechanism Section at ESA/ESTEC, Noordwijk, Netherlands

GRS Mechanisms

- > allows survival to launch loads;
- > enables science phase

- > allows survival to launch loads;
- > enables science phase

Lack of reliability in LPF!

- > allows survival to launch loads;
- > enables science phase

Lack of reliability in LPF!

to be solved with delta-design for LISA without violating the LPF GRS science **heritage**

GPRM

Grabbing, **P**ositioning and **R**elease **M**echanism.

Mechanism responsible for the TM positioning and release.

2

release the test-mass with the lowest residual velocity.

The **release procedure** is made of 4 main steps

release the test-mass with the lowest residual velocity.

The **release procedure** is made of 4 main steps

Grabbing

release the test-mass with the lowest residual velocity.

The **release procedure** is made of 4 main steps

Handover

release the test-mass with the lowest residual velocity.

The **release procedure** is made of 4 main steps

Tip retraction

release the test-mass with the lowest residual velocity.

The **release procedure** is made of 4 main steps

Plunger retraction

Release performance

In LPF, TM was not released within the requirements.

GPRM identified as critical in LPF.

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

Relative TM-plunger configuration is converted into relative plunger-indent misalignment.

Maximum allowable misalignment is defined by the nominal TM-plunger gap at the handover.

$$
G_{X-Z} = \frac{\delta x_{\rm eq}}{\delta x_{\rm max}} + \frac{\delta z_{\rm eq}}{\delta z_{\rm max}} \leq 1
$$

$$
G_{Y-Z} = \frac{\delta y_{\rm eq}}{\delta y_{\rm max}} + \frac{\delta z_{\rm eq}}{\delta z_{\rm max}} \leq 1
$$

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

Relative TM-plunger configuration is converted into relative plunger-indent misalignment.

Maximum allowable misalignment is defined by the nominal TM-plunger gap at the handover.

$$
G_{X-Z} = \frac{\delta x_{eq}}{\delta x_{max}} + \frac{\delta z_{eq}}{\delta z_{max}} \le 1
$$

$$
G_{Y-Z} = \frac{\delta y_{eq}}{\delta y_{max}} + \frac{\delta z_{eq}}{\delta z_{max}} \le 1
$$

LPF case:

0.0 0.5 1.0 1.5 2.0 2.5

Gap factor (-) Tip retraction PL retraction

0.0 0.5 1.0 1.5 2.0 2.5

Gap factor (-) Tip retraction PI retraction

6

The stroke of the tip is directly connected to the TM-plunger gap at the handover: increasing the tip stroke, the probability of re-contact decreases.

The stroke of the tip is directly connected to the TM-plunger gap at the handover: increasing the tip stroke, the probability of re-contact decreases.

The piezo-stack actuators commands the motion of the tip: commercial solution are compared with gap model outcome to the TM-plunger gap at the handover:

increasing the tip stroke, the probability of

re-contact decreases.

The piezo-stack actuators commands the

motion of the tip: commercial solution are

compared with gap model outcom

Side guiding system Reduction of the anomalous motion of the GPRM

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

0 50 100 150

Side guiding system Reduction of the anomalous motion of the GPRM

SS15-P0 SS10-P0 SS05-P0

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

 $=$

0 50 100 150

Side guiding system Reduction of the anomalous motion of the GPRM

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

> -20 -10 0 10

x (µm)

The cause of this was identified on:

SS15-P0 SS10-P0 SS05-P0

▶ the asymmetry of the guiding system friction

z (µm)

 \blacktriangleright the asymmetry of the guiding system stiffness

0

10

 \overline{a} x \overline{a} 0 \overline{a} 20 \overline{a} 40 mm

20

30

 $=$

Directional deformation along x, unit µm

Side guiding system Reduction of the anomalous motion of the GPRM

7

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

 S_{S1} $SS10-$ SS05.

The cause of this was identified on:

- ▶ the asymmetry of the guiding system friction
- \blacktriangleright the asymmetry of the guiding system stiffness

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

The BBM includes:

- \blacktriangleright more symmetric guiding system
- a 30 µm stroke piezo-stack
- off-the-shelf piezo-walk actuator
- commercial control electronics

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

The BBM includes:

- more symmetric guiding system
- a 30 µm stroke piezo-stack
- off-the-shelf piezo-walk actuator
- ▶ commercial control electronics

The LPF guiding system is also tested as a reference.

Tests are performed on an anti-vibration platform inside a cleanroom.

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- ▶ 1 beam laser interferometer
	- > lateral (X) displacement

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- ▶ 1 beam laser interferometer
	- > lateral (X) displacement
- \blacktriangleright 3 beams laser interferometer
	- > axial (Z) displacement
	- > X and Y rotations

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- ▶ 1 beam laser interferometer
	- > lateral (X) displacement
- \blacktriangleright 3 beams laser interferometer
	- > axial (Z) displacement
	- > X and Y rotations
- ▶ load cell
	- > total friction force

During BBM tests, roller-roller side guiding configuration shows:

During BBM tests, roller-roller side guiding configuration shows:

- \blacktriangleright global higher lateral displacement
	- > due to run-out

During BBM tests, roller-roller side guiding configuration shows:

- \blacktriangleright global higher lateral displacement
	- > due to run-out
- \blacktriangleright lower lateral displacement at the inversion
	- > critical in case of handover after grabbing

During BBM tests, roller-roller side guiding configuration 1000 rot y (µrad) 500 \blacktriangleright global higher lateral displacement

- > due to run-out
- \blacktriangleright lower lateral displacement at the inversion
	- > critical in case of handover after grabbing

NOTE:

shows:

close to the TM, at the release, GPRM is likely to a motion-inversion configuration.

Design of GPRM under internal review to increase the mechanism performance

GPRM improvements

- \blacktriangleright Roller-roller side guiding configuration
	- > Lower lateral displacement close to the TM
- ▶ 2 equal 27 mm piezo-stacks
	- > 27 µm of tip stroke
- ▶ Improved force sensor
	- > Lower pre-release TM preload
- Improved tollerances verification process

Design of GPRM under internal review to increase the mechanism performance

GPRM improvements

- \blacktriangleright Roller-roller side guiding configuration
	- > Lower lateral displacement close to the TM
- ▶ 2 equal 27 mm piezo-stacks
	- > 27 µm of tip stroke
- ▶ Improved force sensor
	- > Lower pre-release TM preload
- Improved tollerances verification process

Main references:

D. Bortoluzzi et al., *Investigation of the in-flight anomalies of the LISA Pathfinder Test Mass release mechanism*, Advances in Space Research, vol. 68, 2021.

INFN

Agenzia Spaziale Italiana

D. Bortoluzzi, et al., *Analytical–experimental characterization of metallic adhesion impulses*, Tribology International, vol. 177, 2023.

D. Vignotto, et al., *The Role of Friction in the LISA-Pathfinder Release Mechanism Anomaly*, AIAA Journal, 2023.

M. Tomasi, et al.,*Preliminary dynamical model of the LISA/LISA Pathfinder release mechanism*, proceeding ASME IMECE, 2023.

Thank you for your attention!