

Design and testing of an improved LISA grabbing, positioning and release mechanism

GRAvitational-waves Science&technology Symposium (GRASS 2024) October 2nd, 2024

<u>M. Tomasi</u>^{1,2} D. Bortoluzzi^{1,2} E. Dalla Ricca^{1,2} A. A. Gelan^{1,2} F. Marzari^{1,2} D. Vignotto^{1,2} C. Zanoni^{2,1} A. P. Moroni³ P. Zaltron⁴

¹University of Trento, Trento, Italy

²Italian National Institute for Nuclear Physics (INFN), Trento, Italy

³OHB-Italia, Milan, Italy

⁴ATG Europe, Contractor in the Space Mechanism Section at ESA/ESTEC, Noordwijk, Netherlands

GRS Mechanisms

- > allows survival to launch loads;
- > enables science phase

- > allows survival to launch loads;
- > enables science phase

Lack of reliability in LPF!

enables science phase

Lack of reliability in LPF!

♠

to be solved with delta-design for LISA <u>without</u> violating the LPF GRS science **heritage**

GPRM

Grabbing, Positioning and Release Mechanism.

Mechanism responsible for the TM positioning and release.

release the test-mass with the lowest residual velocity.

The release procedure is made of 4 main steps

release the test-mass with the lowest residual velocity.

The release procedure is made of 4 main steps

Grabbing

release the test-mass with the lowest residual velocity.

The release procedure is made of 4 main steps

Handover

release the test-mass with the lowest residual velocity.

The release procedure is made of 4 main steps

Tip retraction

release the test-mass with the lowest residual velocity.

The release procedure is made of 4 main steps

Plunger retraction

Release performance

In LPF, TM was not released within the requirements.

GPRM identified as critical in LPF.

DOF	Unit	Residual LPF Req.	velocity TM1	TM2
t _x	μm s ⁻¹	5	-3	+12
t _y		5	-20	-27
t _z		5	-57	-16
r _x	μ rad s ⁻¹	100	+681	+1035
r _y		100	-797	-30
r _z		100	-1085	-430

Polosso porformanso	DOF	Unit	Residual LPF Req.	velocity TM1	TM2
In LPF, TM was not released within the requirements.	$egin{array}{c} t_x \ t_y \ t_z \end{array}$	μm s ⁻¹	5 5 5	-3 -20 -57	+12 -27 -16
GPRM identified as critical in LPF.	r _x r _y r _z	μ rad s ⁻¹	100 100 100	+681 -797 -1085	+1035 -30 -430
Causes		E	ffects		
Adhesion Tip retraction time lag TM-Plunger electrostatic attraction Plunger anomalous trajectory Mechanism vibrations					

		DOF	Linit	Residual	velocity	The
Release performance			Unit	LPF Req.	11411	111/12
In LPF, TM was not released within the requirements.		t _x t _y tz	$\mu m s^{-1}$	5 5 5	-3 -20 -57	+12 -27 -16
GPRM identified as critical in LPF.		r _x r _y r _z	μ rad s ⁻¹	100 100 100	+681 -797 -1085	+1035 -30 -430
Causes	Spurio	us force 1 TM	E s	ffects		
Adhesion Tip retraction time lag TM-Plunger electrostatic attraction Plunger anomalous trajectory		x x x				
Plunger anomalous trajectory						

Mechanism vibrations

Integration and manufacturing tolerances

	DOF	Resid		velocity	
Release performance		Unit	LPF Req.	TM1	TM2
In LPF, TM was not released within the requirements.	t _x t _y t _z	$\mu m s^{-1}$	5 5 5	-3 -20 -57	+12 -27 -16
GPRM identified as critical in LPF.	r _x r _γ r _z	μ rad s $^{-1}$	100 100 100	+681 -797 -1085	+1035 -30 -430
Causes	Spurious force	s	ffects Gap		

Causes	Spurious forces on TM	Gap reduction	
Adhesion	X		
Tip retraction time lag	X		
TM-Plunger electrostatic attraction	X		
Plunger anomalous trajectory		X	
Mechanism vibrations		х	
Integration and manufacturing tolerances		X	

	DOF		Residual	velocity	T1 4 -
Release performance		Unit	LPF Req.	I M1	1M2
In LPF, TM was not released within the requirements.	$\begin{array}{c} t_x \\ t_y \\ t_z \end{array}$	$\mu m s^{-1}$	5 5 5	-3 -20 -57	+12 -27 -16
GPRM identified as critical in LPF.	r _x r _y r _z	μ rad s ⁻¹	100 100 100	+681 -797 -1085	+1035 -30 -430
Causes	Spurious force	E	ffects	Plunger-	ГМ

	Effects					
Causes	Spurious forces	Gap	Plunger-TM			
	on TM	reduction	re-contact			
Adhesion	X					
Tip retraction time lag	X					
TM-Plunger electrostatic attraction	X					
Plunger anomalous trajectory		Х	X			
Mechanism vibrations		Х	X			
Integration and manufacturing tolerances		x				

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

Relative TM-plunger configuration is converted into relative plunger-indent misalignment.

Maximum allowable misalignment is defined by the nominal TM-plunger gap at the handover.

$$\begin{split} G_{X-Z} &= \frac{\delta x_{\mathrm{eq}}}{\delta x_{\mathrm{max}}} + \frac{\delta z_{\mathrm{eq}}}{\delta z_{\mathrm{max}}} \leq 1 \\ G_{Y-Z} &= \frac{\delta y_{\mathrm{eq}}}{\delta y_{\mathrm{max}}} + \frac{\delta z_{\mathrm{eq}}}{\delta z_{\mathrm{max}}} \leq 1 \end{split}$$

GAP FACTOR (G)

Index defining the re-contact probability.

Indipendent for the two planes X-Z and Y-Z

Relative TM-plunger configuration is converted into relative plunger-indent misalignment.

Maximum allowable misalignment is defined by the nominal TM-plunger gap at the handover.

$$\begin{split} G_{X-Z} &= \frac{\delta x_{eq}}{\delta x_{max}} + \frac{\delta z_{eq}}{\delta z_{max}} \leq 1 \\ G_{Y-Z} &= \frac{\delta y_{eq}}{\delta y_{max}} + \frac{\delta z_{eq}}{\delta z_{max}} \leq 1 \end{split}$$

LPF case:

The stroke of the tip is directly connected to the TM-plunger gap at the handover: increasing the tip stroke, the probability of re-contact decreases.

- TP retraction - PL retraction

GAP Model - Pvr - YZ

100

(%)

ests 80

- geo 60

ď 40

Piezo extension (µm)

- TP retraction - PL retraction

GAP Model - Pvr - XZ

100

60

8

tests 80 The stroke of the tip is directly connected to the TM-plunger gap at the handover: increasing the tip stroke, the probability of re-contact decreases.

The piezo-stack actuators commands the motion of the tip: commercial solution are compared with gap model outcome to obtain close to 100% of safe tests.

25 30

25 30

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

Side guiding system Reduction of the anomalous motion of the GPRM

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

10

z (um)

Side guiding system Reduction of the anomalous motion of the GPRM

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

The cause of this was identified on:

- the asymmetry of the guiding system friction
- the asymmetry of the guiding system stiffness

c (µm)

-10

-20

50

- SS15-P

100

z (um)

SS10-P

SS05-P

150

Anomalous motion of the GPRM: when the plunger inverts the motion (in Z), the plunger head moves laterally (along X).

The cause of this was identified on:

- ▶ the asymmetry of the guiding system friction
- the asymmetry of the guiding system stiffness

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

The BBM includes:

- more symmetric guiding system
- a 30 μm stroke piezo-stack
- off-the-shelf piezo-walk actuator
- commercial control electronics

A breadboard model (BBM) is designed and tested to evaluate some of the design improvements of the GPRM.

The BBM includes:

- more symmetric guiding system
- a 30 μm stroke piezo-stack
- off-the-shelf piezo-walk actuator
- commercial control electronics

The LPF guiding system is also tested as a reference.

BBM is tested in the UniTN laboratory.

Tests are performed on an anti-vibration platform inside a cleanroom.

BBM is tested in the UniTN laboratory.

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- ▶ 1 beam laser interferometer
 - > lateral (X) displacement

ALLS * APR

BBM is tested in the UniTN laboratory.

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- 1 beam laser interferometer
 - > lateral (X) displacement
- ▶ 3 beams laser interferometer
 - > axial (Z) displacement
 - > X and Y rotations

ALLS * APR

BBM is tested in the UniTN laboratory.

Tests are performed on an anti-vibration platform inside a cleanroom.

The mechanism trajectory is measured by:

- 1 beam laser interferometer
 - > lateral (X) displacement
- ▶ 3 beams laser interferometer
 - > axial (Z) displacement
 - > X and Y rotations
- load cell
 - > total friction force

- global higher lateral displacement
 - > due to run-out

- global higher lateral displacement
 - > due to run-out
- ▶ lower lateral displacement at the inversion
 - > critical in case of handover after grabbing

- global higher lateral displacement
 - > due to run-out
- lower lateral displacement at the inversion
 - > critical in case of handover after grabbing

NOTE:

close to the TM, at the release, GPRM is likely to a motion-inversion configuration.

Design of GPRM under internal review to increase the mechanism performance

GPRM improvements

- ► Roller-roller side guiding configuration
 - > Lower lateral displacement close to the TM
- 2 equal 27 mm piezo-stacks
 - > 27 µm of tip stroke
- Improved force sensor
 - > Lower pre-release TM preload
- Improved tollerances verification process

Design of GPRM under internal review to increase the mechanism performance

GPRM improvements

- Roller-roller side guiding configuration
 - Lower lateral displacement close to the TM
- 2 equal 27 mm piezo-stacks
 - > 27 μ m of tip stroke
- Improved force sensor
 - > Lower pre-release TM preload
- Improved tollerances verification process

2.5 r

0.0

10

Ņ PDF X-

Main references:

D. Bortoluzzi et al., Investigation of the in-flight anomalies of the LISA Pathfinder Test Mass release mechanism, Advances in Space Research, vol. 68, 2021.

INFN

Agenzia Spaziale Italiana

D. Bortoluzzi, et al., Analytical-experimental characterization of metallic adhesion impulses, Tribology International, vol. 177, 2023.

D. Vignotto, et al., The Role of Friction in the LISA-Pathfinder Release Mechanism Anomaly, AIAA Journal, 2023.

M. Tomasi, et al., Preliminary dynamical model of the LISA/LISA Pathfinder release mechanism, proceeding ASME IMECE, 2023.

Thank you for your attention!