

Assessing the impact of metallic adhesion on the injection of a proof mass into a geodesic trajectory

GRAvitational - wave Science & technology Symposia

Edoardo Dalla Ricca^{1,2} Daniele Bortoluzzi^{1,2} Carlo Zanoni²

¹Department of Industrial Engineering, University of Trento, Trento, Italy

²National Institute for Nuclear Physics (INFN), Trento, Italy

October 2nd, 2024

Characterization of metallic adhesion

Goal

Estimate the adhesive impulse at the separation of two metallic surfaces

In the literature, the techniques are based on:

- Static measure of adhesion force
- Low residual preload and separation velocities

The proposed technique exploits the multi-mode response of the sensing body

- ▶ Technique relies on independent observables
- Impulse time duration is also estimated
- Focus on the impulse developed by the adhesion force

Prediction of the momentum acquired by a body released into free-fall

On-ground testing

Performed tests applying different preload:

- Needles moved toward the TM
- ► Tip pushed towards the TM
- ► Tip retraction (≈ 80 µs) and the adhesive bonds are broken

Motion of a linear elastic plate body subjected to a force:

$$\begin{split} & \mathsf{w}(\mathsf{x},\mathsf{y},t) = \sum_{m=1}^{\infty} \mathsf{W}_m(\mathsf{x},\mathsf{y}) q_m(t) \\ & \mathsf{w}(\mathsf{o},\mathsf{o},t) \approx \alpha_1 q_1(t) + \alpha_2 q_2(t) + \alpha_3 q_3(t) + \alpha_4 q_4(t) \qquad \text{ where } \alpha_m = \mathsf{W}_m(\mathsf{o},\mathsf{o}) \end{split}$$

Each modal coordinate obeys the differential equation of a simple oscillator:

$$q''_m(t) + \omega_m^2 q_m(t) = \frac{Q_m(t)}{b_m}$$
 given $q_m(0) = \frac{Q_m(0)}{\omega_m^2 b_m}$ and $q'_m(0) = 0$
 \downarrow
mode represents an independent dynamical system whose steady-state vibrate

Each mode represents an independent dynamical system whose steady-state vibrations represent our measurement technique

Dynamic modeling: forces and initial conditios

¹D. Bortoluzzi et al., "Improvements in the measurement of metallic adhesion dynamics," *Mechanical Systems and Signal Processing* [E. Dalla Ricca, October 2nd, 2024, Trento

Dynamic modeling: tip preload

Analytical model of the TM displacement:

$$\left\{ \begin{array}{ll} z_1=0 & t\leq t_o \\ z_2=\gamma_o+\gamma_1t+\gamma_2t^2+\gamma_3t^3+A_1sin(\omega_1t)+B_1cos(\omega_1t)+A_2sin(\omega_2t)+\\ +B_2cos(\omega_2t)+A_3sin(\omega_3t)+B_3cos(\omega_3t)+A_4sin(\omega_4t)+B_4cos(\omega_4t) & t_o\leq t\leq t_1 \\ z_3=mt+q+A_1sin(\omega_1t)+B_1cos(\omega_1t)+A_2sin(\omega_2t)+B_2cos(\omega_2t)+\\ +A_3sin(\omega_3t)+B_3cos(\omega_3t)+A_4sin(\omega_4t)+B_4cos(\omega_4t) & t_1\leq t \end{array} \right.$$

Constraints:

 $z_2(t_0) = 0$ $z_2'(t_0) = d$ $z_{2}^{\prime\prime}(t_{0})=p$ $z_2(t_1) = z_3(t_1)$ $z'_{2}(t_{1}) = z'_{2}(t_{1})$ $z_{2}''(t_{1}) = 0$

∜

Minimization algorithm performed to get estimation of all fitting parameters

Dynamic modeling: modal parameters

The technique relies on the amplitude of the steady-state modes oscillations²

Steady-state solution to m-th oscillator:

 $q_m(t) = A_m sin(\omega_m t) + B_m cos(\omega_m t)$

Oscillation amplitude of the m-th mode:

$$c_m^2 = A_m^2 + B_m^2$$

Normalized squared oscillations amplitude:

$$\frac{c_m^2}{\alpha_{m,tip}^2} = \frac{\mathsf{A}_m^2 + \mathsf{B}_m^2}{\alpha_{m,tip}^2} = f(\mathbf{I}, \tau, \mathbf{p}, \omega_{\mathbf{p}}, \omega_{\mathbf{m}}, \mathbf{b}_{\mathbf{m}}, \alpha_{\mathbf{m},tip}, \alpha_{\mathbf{m},ndl})$$

Substituting FEM and fitting parameters and initial conditions:

$$c_m^2 - \alpha_{m,tip}^2 f(I, \tau) = 0$$

| E. Dalla Ricca, October 2nd, 2024, Trento

¹E. Dalla Ricca et al., "An improved vibration multi mode-based technique for the characterization of metallic adhesion impulses", AIAA *Journal*, 2024

Experimental results

Hybrid estimation approach:

- ▶ FEM model $\rightarrow \alpha_m$, b_m , ω_m first guess
- ▶ Fit \rightarrow *p*, *A*_{*m*}, *B*_{*m*}, ω_m , c_m^2
- ▶ Filter $\rightarrow c_m^2$

Taking into account the four detected modes:

$$\begin{aligned} \mathbf{c}_1^2 &- \alpha_{1,tip}^2 f(\mathbf{I},\tau) = \mathbf{0} \\ \mathbf{c}_2^2 &- \alpha_{2,tip}^2 f(\mathbf{I},\tau) = \mathbf{0} \\ \mathbf{c}_3^2 &- \alpha_{3,tip}^2 f(\mathbf{I},\tau) = \mathbf{0} \\ \mathbf{c}_4^2 &- \alpha_{4,tip}^2 f(\mathbf{I},\tau) = \mathbf{0} \end{aligned}$$

Contour plot as function of solely impulse amplitude and duration:

- Locus of points compatible with c²_m
- Intersections gives the impulse amplitdue *I* and duration τ
- Redundant set of measurement

Optimal solution

Given two modes (*i* and *j*), the solution $(\bar{I}, \bar{\tau})$ is found solving for *I* and τ :

$$\begin{cases} \mathbf{c}_{i}^{2} - \alpha_{i,tip}^{2} \mathbf{f}(\mathbf{I},\tau) = \mathbf{O} \\ \mathbf{c}_{j}^{2} - \alpha_{j,tip}^{2} \mathbf{f}(\mathbf{I},\tau) = \mathbf{O} \end{cases}$$
$$\begin{pmatrix} \sigma_{\overline{i}} \\ \sigma_{\overline{\tau}} \end{pmatrix} = -J_{\mathbf{I},\tau}^{-1}(\overline{\mathbf{I}},\overline{\tau},\overline{\mathbf{v}}) J_{\mathbf{v}}(\overline{\mathbf{I}},\overline{\tau},\overline{\mathbf{v}}) \delta \mathbf{v} = \mathbf{Q}(\overline{\mathbf{I}},\overline{\tau},\overline{\mathbf{v}}) \delta \mathbf{v}$$

Optimal estimation:

$$\begin{split} \tilde{I} &= \sum_{n=1}^{k} w_{l,n} \bar{I}_{n} \qquad \qquad \sigma_{\bar{I}}^{2} &= \sum_{n=1}^{k} w_{l,n}^{2} \sigma_{\bar{I},n}^{2} \\ \nabla \sigma_{\bar{I}}^{2} &= \begin{bmatrix} \frac{\partial \sigma_{l}^{2}}{\partial w_{l,n}} \\ \vdots \\ \frac{\partial \sigma_{\bar{I}}^{2}}{\partial w_{l,n}} \end{bmatrix} = 0 \qquad \tilde{w}_{l,n} &= \frac{1}{\sigma_{\bar{I},n}^{2}} \left(\sum_{n=1}^{k} \frac{1}{\sigma_{\bar{I},n}^{2}} \right)^{-1} \end{split}$$

Conclusions

- Impulse amplitude increases with preload
- Impulse duration not affected by preload
- Repeatability of the phenomenon at same preload

∜

Increasing the preload strengthens the adhesive bonds leaving their elongation nearly unaffected

Preload	Mean adhesion impulse
100 mN tests	0.45 \pm 0.10 kg µm s ⁻¹
300 mN tests	1.16 \pm 0.16 kg µm s ⁻¹
500 mN tests	2.03 \pm 0.26 kg µm s ⁻¹

Momentum transferred to TM due to adhesion \approx 10% of LPF momentum requirement