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General Idea of NRSurNN3dq4

NRSurNN3dq4 is a fast surrogate model that predicts binary black hole (BBH) merger
waveforms using deep learning.
Makes use of a pretraining step on approximating data before fine-tuning on NR data
Predicts low-dimensional representations of waveform data, allowing fast inference.
Leverages parallelization ability to generate large numbers of accurate waveforms very
quickly.
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Surrogate models: Why/What

Gravitational-wave (GW) astronomy involves many computationally intensive
waveform generation tasks.
Numerical relativity simulations are time-consuming but accurate.
Approximants provide faster alternatives for waveform generation with slight accuracy
trade-offs.
Surrogate models aim to reduce this gap using interpolation on NR data.
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Approximant Data

Generated using NRSur7dq8 surrogate
model.
1,024,000 waveforms created with
uniform mass ratios 𝑞 ∈ [1, 6] and
aligned spins 𝜒1, 𝜒2 ∈ [−0.99, 0.99].
Amplitude and time in natural units.
Duration: 4096𝑀⊙ with sampling rate of 
2𝑀⊙
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Numerical Relativity Data

Sourced from SXS collaboration’s
simulation catalogue.
Non-precessing waveforms filtered for
consistency with approximant data,
resulting in 381 simulations.
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A primer on dimensionality

When working with discretized data, waveforms of length N are effectively vectors in 
ℝN whose components have certain restrictions
The “curse of dimensionality” is the observation that an increase of the dimensionality
of data leads to dramatic growth in the volume of the data space, which in turn leads to
sparsity of data points (average distance scales with 

√
𝑁 )
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Dimensionality Reduction

High-dimensional waveforms can be
simplified for efficient processing.
There are simple ways of manipulating
GW data in ways to tackle complexity:

Make sure the merger happens at the
same point always
Set the initial phase to zero across the
entire dataset
Represent the complex waveform as 
ℎ(𝑡) = 𝐴(𝑡)𝜙(𝑡)
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Dimensionality Reduction

We can further simplify data by using principal component analysis (PCA) to identify
the most significant underlying patterns (principal components) within the data.
PCA works by performing eigendecomposition on the covariance matrix of a subset of
the approximant dataset

Eigenvectors will compose an orthonormal basis
Eigenvalues express the amount of variance explained

We can then select a subset of the most relevant component (30 for amplitude, 70 for
phase) and project the original dataset to this basis
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Dimensionality Reduction
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Reconstruction quality

To evaluate the quality of a
reconstruction, we use the mismatch:

1 − 𝒪 = 1 −
(ℎ1|ℎ2)

√(ℎ1|ℎ1)(ℎ2|ℎ2)
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Reconstruction quality

We verify that the basis created on the
approximant can largely reconstruct the NR
data.
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Network Architecture

A multi-layer perceptron (MLP) with 3 hidden layers (64, 512, 1024 neurons)
implemented in torch.
ReLU activations.
PCA basis as internal (frozen) model parameters.
Integrated PCA projection transform and inverse.
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Loss Function:

A combination of PCA component loss (mean absolute error) and waveform overlap
loss (mismatch) is used to ensure both accurate PCA reconstruction and waveform
fidelity.
𝐿 = 𝐿1 + log(𝐿2), where 𝐿1 is the MAE on PCA components and 𝐿2 is the mismatch
between generated and actual waveforms.
Key point: having the PCA transforms as part of the torch model allows us to use
features from both the latent space and the waveform space together.
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Pretraining Process
Pre-training on Approximant Data:
The neural network is pre-trained using 1
million waveforms generated by the
NRSur7dq8 approximant model, with a
80/20 train-validation split
Sophia optimizer with starting learning
rate of 3 × 10−3
Learning rate scheduler reducing the
learning rate after 1000 epochs without
improved performance.
Training lasts for 20,000 epochs, with
learning rate adjustments based on
validation performance.
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Approximant Accuracy

The pretrained model achieves an
average mismatch of about 10−5 on
approximant data.
The worst mismatch is of the order of 
10−2
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Fine-tuning on NR Data

The model is fine-tuned using 381 waveforms from the SXS collaboration.
Starting learning rate of 1 × 10−4 keeps model in the weight-space region arrived at in
pretraining
12.5% of the waveforms are set aside for testing purpose
A k-fold weight-averaging strategy is employed to avoid overfitting and improve
generalization, wich each of the 5 used folds having an 80/20 validation split.
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Fine-tuning on NR Data
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NR Accuracy

The averaged weight distribution peaks
around 5 × 10−3
The worst averaged weight mismatch is 
2.1 × 10−2.
Weight averaging shows improvement
over individual training attempts
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NR Accuracy

OGF et al GRASS 2024, Trento, 01/10/2024 A DL Powered NR Surrogate for BBH Waveforms 24 / 32



Part 1: Introduction Part 2: Datasets Part 3: Methods Part 4: Results Part 5: Conclusions

NR Accuracy
𝑞 = 3, 𝜒1 = 0.0, 𝜒2 = 0.3
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NR Accuracy
𝑞 = 3, 𝜒1 = 0.0, 𝜒2 = 0.6
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Speed

DL approximant is highly parallelizable
on the GPU.
CUDA initialization processes take
around 500 ms, after which waveform
generation is extremely fast.
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Usage with bilby

Usage of NRSurNN3dq4 with bilby is
straight forward on the CPU (generation
time ~5ms)
Full GPU support will require deeper
changes in how bilby samplers deal with
parallelization
NRSurNN3dq4 shows the ability to
accurately recover parameters from an
injected signal
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Conclusions

NRSurNN3dq4 is a deep learning-powered surrogate model that offers both high
accuracy and fast generation speeds.
Could be employed very effectively for the creation of large template banks.
Through bilby, it is an effective tool for parameter estimation in gravitational-wave
astronomy, though better GPU integration is possible.
Future work: Extend to precessing systems and include higher-order modes for more
complex waveforms.
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