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Neutron Stars Equation of State

Neutron stars: supranuclear-dense matter

Equation of state:

o SRS s2 o relation between pressure and density
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Inspiral
- parameters measurements
(mass, tidal deformability)

How well can future detectors measure

binary neutron stars parameters?
[ Phys.Rev.D 108 (2023) 2, 023018]



Source A

Tidal deformability recovery

- Parameter estimation analysis with ET
- Simulate signals for 3 different sources
(ET analysis computationally very

expensive)
- Mass-weighted tidal deformability
- Repeat analysis with the different EX

configurations (triangular 10 km, 2L aligned 15
or 20 km, 2L misaligned: 15 or 20 km)

Comparison

GW170817: A = 300" 320

[Phys. Rev. X' 9, 011001 (2019)]
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Triangular 10 km: wider posterior




Source A

Tidal deformability recovery

- Parameter estimation analysis with ET
- Simulate signals for 3 different sources
(ET analysis computationally very

expensive)
- Mass-weighted tidal deformability
- Repeat analysis with the different EX

configurations (triangular 10 km, 2L aligned 15
or 20 km, 2L misaligned: 15 or 20 km)

Comparison

GW170817: A = 300" 320

[Phys. Rev. X' 9, 011001 (2019)]

Configuration does not affect results,
but arm-length does




Effect of varying minimum frequency
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Postmerger
What is the remnant? - different density and
[arXiv:2408.10678] temperature regime



BNS fate after the merger
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Depends mainly on:
® equation of state
e total mass

-> Information about the EOS
-> Different processes involved

-> Different electromagnetic signatures
-> Which GW events follow up
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Depends mainly on:
® equation of state
e total mass

-> Information about the EOS
-> Different processes involved

-> Different electromagnetic signatures
-> Which GW events follow up

Goal
Use numerical-relativity data to

build a classifier to predict the
remnant based on parameters
measured from inspiral GWs




Following Phys.Rev.D 83 (2011) 124008, classification based on collapse time .

Ity <2 ms: prompt collapse .ty > 5 ms: long-lived HMNS
Il. 2ms<t,, <5ms:shortlived HMNS . no collapse within simulation time

Classifier A Classifier C

stable

s end simulation ' ' end simulation
[> 25 ms] [> 25 ms]

Time after merger




Data and algorithm

NR simulations data from CoRe and SACRA database, together with data from
Phys.Rev.D 106 (2022) 4, 044026 and Phys.Rev.D 109 (2024) 12, 123011
Highest resolution, ignore eccentric systems and mis-aligned spins

Total: 398

For classifier B and C, remove points in class IV with short simulation time

(> 25 ms, total points 318)

Parameters from GWs inspiral as features : total mass, A [EOS information],
mass ratio, effective inspiral spin Xeft




Data and algorithm

Classifier A Classifier B Classifier C

e (Gradient Boosted Trees
Classifier in sklearn

o 90% training and 10%
validation
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Results

Validation set Total

. accuracy

- R §0 MCC: Matthews Correlation Coefficient (accounts for
correct/wrong classifications distribution among different classes)
Classifier A 97.6% 0.946 99.8% 0.994

Classifier B 94.1% 0.909 99.1% 0.985

Validation set
Classifier C 88.2% 0.831 97.5% 0.964

True label

True label

Predicted label

Predicted label



Real events

i: over posterior samples

Classifier A Classifier B Classifier C

PrcBa Prxs PrcBH  PuMNS Pnc PrcBa  Psuort  PLoNG Pxnc

GW170817 39.8% 60.2% 39.7% 57.5% 2.8% 41.7% 15.6% 39.8% 3.7%

Include information about equation of state and electromagnetic counterparts

—> posterior samples from Koehn et al. [arxiv:2402.04172]



https://arxiv.org/abs/2402.04172

Real events

Classifier A Classifier B Classifier C

PrcBn Prns PrcBa  PHMNS Pnc Prcu  Psnort  PLONG Pxc

GW170817 39.8% 60.2% 39.7% 57.5% 2.8% 41.7% 15.6% 39.8% 3.7%
GW170817+EoS 9.0% 91.0% 8.8% 90.5% 0.7%  11.6% 38.7% 49.2% 0.5%
GW170817+EoS+KN 0.9% 99.1% 0.9% 98.9% 0.2% 1.3% 42.8% 55.8% 0.2%

GW170817+EoS+KN+GRB  0.1% 99.9% 0.2% 99.5% 0.3% 0.5% 50.8% 48.6% 0.1%

GW190425 59.5% 40.5% 66.2% 7.4% 264% 71.9% 0.3% 11.1% 15.7%

GW1904254-EoS 98.2% 1.8% 98.6% 02% 1.1% 97.3% 0.0% 0.1% 2.5%




Conclusions

Inspiral parameter estimation

Tidal deformability recovered with very high accuracy
The accuracy depends on the detector's arm-length, but not on its geometry
Starting the analysis at lower frequencies brings an additional improvement

Postmerger remnant

We employed numerical-relativity data and Gradient Boosted Decision Trees to build a
classifier to predict the outcome of BNS mergers
Features = parameters inferred from GW inspiral signal (no need of a post-merger
detection)
Three different classifiers, all with very high accuracy and MCC
When applied to real events (possibly including additional information)

L GW170817: formed a hyper-massive NS, with roughly same probability of being

short- or long-lived
L GW190425: prompt collapse to black hole



Tidal deformability recovery

Arm-length
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Prompt collapse: effect of parameters

® NS remnant GW170817+EoS samples

® Prompt collapse

Ay ~ 310




Prompt collapse: effect of parameters

NS remnant
e Prompt collapse

Xeff =0




Extra: Confidence of predictions

The classifier predict the probability of an input x to belong to each class:

- final predictions: x belongs to class with largest probability
- likelihood of preferred class <= confidence of prediction [1]

Classifier A on
GW170817:
< mean

I

confidence ~99%

0.5 0.6 0.7 0.8 0.9 1.0
Prediction confidence

[1] A. Manilin, Uncertainty Estimation in Deep Learning with application to Spoken Language Assessment, (2019).



SHAP values
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