

GRASS Trento 2nd Oct 2024

Anna Puecher anna.puecher@uni-potsdam.de *Phys.Rev.D* 108 (2023) 2, 023018 - arXiv:2408.10678

KAGR

Neutron Stars Equation of State

Neutron stars: supranuclear-dense matter

Equation of state:

relation between pressure and density ↓ parameters of the neutron stars ← mass-radius ← mass - tidal deformability

University of Birmingham

Inspiral

 parameters measurements (mass, tidal deformability)

Inspiral

 parameters measurements (mass, tidal deformability) Postmerger

- different density and temperature regime

Inspiral

 parameters measurements (mass, tidal deformability) How well can future detectors measure binary neutron stars parameters? [*Phys.Rev.D* 108 (2023) 2, 023018]

- Parameter estimation analysis with ET
- Simulate signals for 3 different sources (ET analysis computationally very expensive)
- Mass-weighted tidal deformability
- Repeat analysis with the different ENC configurations (triangular 10 km, 2L aligned 15 or 20 km, 2L misaligned: 15 or 20 km)

 $\overline{ ext{GW170817:}} ilde{\Lambda}=300^{+420}_{-230}$ [Phys. Rev. X 9, 011001 (2019)]

- Parameter estimation analysis with ET
- Simulate signals for 3 different sources (ET analysis computationally very expensive)
- Mass-weighted tidal deformability
- Repeat analysis with the different ENC configurations (triangular 10 km, 2L aligned 15 or 20 km, 2L misaligned: 15 or 20 km)

Comparison ${
m GW170817:}\, ilde{\Lambda}=300^{+420}_{-230}$ [Phys. Rev. X 9, 011001 (2019)]

Triangular 10 km: wider posterior

- Parameter estimation analysis with ET
- Simulate signals for 3 different sources (ET analysis computationally very expensive)
- Mass-weighted tidal deformability
- Repeat analysis with the different ENC configurations (triangular 10 km, 2L aligned 15 or 20 km, 2L misaligned: 15 or 20 km)

 $\overline{ ext{Comparison}}$ GW170817: $ilde{\Lambda}=300^{+420}_{-230}$ [Phys. Rev. X 9, 011001 (2019)]

Configuration does not affect results, but arm-length does

Effect of varying minimum frequency

Extended frequency band

Inspiral

 parameters measurements (mass, tidal deformability) Postmerger

- different density and temperature regime

What is the remnant? [arXiv:2408.10678]

Postmerger

 different density and temperature regime

BNS fate after the merger

Depends mainly on:

- equation of state
- total mass
- -> Information about the EOS
- -> Different processes involved
- -> Different electromagnetic signatures
- -> Which GW events follow up

Gen.Rel.Grav. 53 (2021) 3, 27

BNS fate after the merger

Gen.Rel.Grav. 53 (2021) 3, 27

Depends mainly on:

- equation of state
- total mass
- -> Information about the EOS
- -> Different processes involved
- -> Different electromagnetic signatures
- -> Which GW events follow up

— Goal Use numerical-relativity data to build a classifier to predict the remnant based on parameters measured from inspiral GWs Following *Phys.Rev.D* 83 (2011) 124008, classification based on collapse time t_{BH}:

I. t_{BH} < 2 ms: prompt collapse
II. 2 ms < t_{BH} < 5 ms: short-lived HMNS

III. t_{BH} > 5 ms: long-lived HMNS
IV. no collapse within simulation time

Time after merger

Data and algorithm

- NR simulations data from CoRe and SACRA database, together with data from *Phys.Rev.D* 106 (2022) 4, 044026 and *Phys.Rev.D* 109 (2024) 12, 123011
- Highest resolution, ignore eccentric systems and mis-aligned spins
- Total: 398
- For classifier B and C, remove points in class IV with short simulation time (> 25 ms, total points 318)

Parameters from GWs inspiral as features : total mass, $\tilde{\Lambda}$ [EOS information], mass ratio, effective inspiral spin χ_{eff}

Data and algorithm

- Gradient Boosted Trees
 Classifier in sklearn
- 90% training and 10% validation

Results

	Validat	tion set	Total		
	α	MCC	α	MCC	
Classifier A	97.6%	0.946	99.8%	0.994	
Classifier B	94.1%	0.909	<mark>99.1%</mark>	0.985	
Classifier C	88.2%	0.831	97.5%	0.964	

α: accuracy MCC: Matthews Correlation Coefficient (accounts for correct/wrong classifications distribution among different classes)

Real events

$$p_i = rac{n_i}{n_{
m tot}}$$
 i: over posterior samples

	Classifier A		Classifier B			Classifier C			
	$p_{ m PCBH}$	$p_{ m RNS}$	$p_{ m PCBH}$	$p_{ m HMNS}$	$p_{ m \scriptscriptstyle NC}$	$p_{ m PCBH}$	$p_{ m short}$	$p_{ m long}$	$p_{ m \scriptscriptstyle NC}$
GW170817	39.8%	60.2%	39.7%	57.5%	2.8%	41.7%	15.6%	39.8%	3.7%

Include information about equation of state and electromagnetic counterparts posterior samples from Koehn et al. [arxiv:<u>2402.04172]</u>

Real events

	Classifier A		Classifier B			Classifier C			
	$p_{\scriptscriptstyle ext{PCBH}}$	$p_{ m RNS}$	$p_{ m PCBH}$	$p_{ m HMNS}$	$p_{ m \scriptscriptstyle NC}$	$p_{\scriptscriptstyle \mathrm{PCBH}}$	$p_{ m short}$	$p_{ m long}$	$p_{ m \scriptscriptstyle NC}$
GW170817	39.8%	60.2%	39.7%	57.5%	2.8%	41.7%	15.6%	39.8%	3.7%
GW170817+EoS	9.0%	91.0%	8.8%	90.5%	0.7%	11.6%	38.7%	49.2%	0.5%
GW170817 + EoS + KN	0.9%	99.1%	0.9%	98.9%	0.2%	1.3%	42.8%	55.8%	0.2%
GW170817+EoS+KN+GRB	0.1%	99.9%	0.2%	99.5%	0.3%	0.5%	50.8%	48.6%	0.1%
GW190425	59.5%	40.5%	66.2%	7.4%	26.4%	71.9%	0.3%	11.1%	15.7%
GW190425 + EoS	98.2%	1.8%	98.6%	0.2%	1.1%	97.3%	0.0%	0.1%	2.5%

Conclusions

Inspiral parameter estimation

- Tidal deformability recovered with very high accuracy
- The accuracy depends on the detector's arm-length, but not on its geometry
- Starting the analysis at lower frequencies brings an additional improvement

Postmerger remnant

- We employed numerical-relativity data and Gradient Boosted Decision Trees to build a classifier to predict the outcome of BNS mergers
- Features = parameters inferred from GW inspiral signal (no need of a post-merger detection)
- Three different classifiers, all with very high accuracy and MCC
- When applied to real events (possibly including additional information)
 - \Box GW170817: formed a hyper-massive NS, with roughly same probability of being
 - short- or long-lived
 - \hookrightarrow GW190425: prompt collapse to black hole

Configuration does not affect results, but arm-length does

Prompt collapse: effect of parameters

GW170817+EoS samples

 $| ilde{\Lambda}_{
m thr} \sim 310|$

Prompt collapse: effect of parameters

Extra: Confidence of predictions

The classifier predict the probability of an input \mathbf{x} to belong to each class:

- final predictions: \mathbf{x} belongs to class with largest probability
- likelihood of preferred class \iff confidence of prediction [1]

[1] A. Manilin, Uncertainty Estimation in Deep Learning with application to Spoken Language Assessment, (2019).

SHAP values

