

Finanziato dall'Unione europea NextGenerationEU

Centro Nazionale di Ricerca in HPC, Big Data e Quantum Computing

Measurement of Polarization of GWs by 3G Detectors as a Test of Gravity Investigating the capabilities of up to come facilities on measuring polarization modes of GWs and comparison with current generation ones

Giuseppe Troian, Arnab Dhani, B. Sathy
GRASS, Trento, October 1°, 2024
High-Performance Computing, Big Data and Quantum Computing Giuseppe Troian, Arnab Dhani, B. Sathyaprakash

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Testing GR with GWs **Testing GR with GWs**
A broad subject:
• Parametrized post Einsteinian
• Propagation speed and Lorentz invariance **Testing GR with GWs**
A broad subject:
• Parametrized post Einsteinian
• Propagation speed and Lorentz invariance
• Extra-polarization modes: ppE and null streams Testing GR with GWs

A broad subject:
• Parametrized post Einsteinian
• Propagation speed and Lorentz invariance
• Extra-polarization modes: ppE and null streams
Main focus → null streams Testing GR with GWs

A broad subject:
• Parametrized post Einsteinian
• Propagation speed and Lorentz invariance
• Extra-polarization modes: ppE and null streams

Main focus → null streams

-
-
-

Main focus \rightarrow null streams

 $\begin{array}{l} \textsf{H}\ \textsf{W}}\ \textsf{H}\ \textsf{B}\ \textsf{V}\ \textsf{B}\ \textsf{H}\ \textsf{B}\ \text$ $\begin{array}{l} \text{P2} \rightarrow \text{P3} \rightarrow \text{P4} \rightarrow \text{P5} \end{array}$
 $\begin{array}{l} \text{transit} \\ \text{at} \end{array}$ and $\begin{array}{l} \text{Lorentz} \\ \text{Lorentz} \end{array}$ and $\begin{array}{l} \text{Lufz} \\ \text{Lufz} \end{array}$ and $\begin{array}{l} \text{Lufz} \\ \text{Lufz} \end{array}$
 $\begin{array}{l} \text{Lufz} \\ \text{Lufz} \end{array}$ and $\begin{array}{l} \text{$ einian

s: ppE and null streams

ain focus \rightarrow null streams

ady described with several degrees of complication

rrison of performances on simulated data over different networl

ground based detectors (2G and 3G)

of theo Le Einsteinian

d and Lorentz invariance

modes: ppE and null streams
 \blacksquare
 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare
 \blacksquare
 \blacksquare \blacksquare d and Lorentz invariance

modes: ppE and null streams
 \blacksquare
 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare
 \blacksquare
 \blacksquare $\$

GR and non-GR polarization modes
• GR only predicts tensor modes + and cross $\begin{array}{l} \vspace{0.1cm} \textsf{GR}\text{ and }\textsf{non-GR}\text{ polarization}\text{ modes} \end{array}$
• GR only predicts tensor modes + and cross
• Modified theories of gravity \rightarrow huge bestiary
• Number of polarizations is constrained to be \leq 6 (Newman&Pe

-
-
- **GR and non-GR polarization modes**
• GR only predicts tensor modes + and cross
• Modified theories of gravity \rightarrow huge bestiary
• Number of polarizations is constrained to be ≤ 6 (Newman&Penros
1962) **GR and non-GR polarization modes
• GR only predicts tensor modes + and cross**
• Modified theories of gravity \rightarrow huge bestiary
• Number of polarizations is constrained to be ≤ 6 (Newman&Penrose,
1962)
• Eardley's cl 1962) **GR and non-GR polarization modes**
• GR only predicts tensor modes + and cross
• Modified theories of gravity \rightarrow huge bestiary
• Number of polarizations is constrained to be ≤ 6 (Newman&Penrose,
1962)
• Eardley's cl
-
-
- **GR** and non-GR potarization modes

 GR only predicts tensor modes + and cross

 Modified theories of gravity \rightarrow huge bestiary

 Number of polarizations is constrained to be ≤ 6 (Newman&Penrose,

1962)

 Eardley • GR only predicts tensor modes + and cross

• Modified theories of gravity \rightarrow huge bestiary

• Number of polarizations is constrained to be ≤ 6 (Newman&Penrose,

1962)

• Eardley's classification E(2) for a spin-2 GR only predicts tensor modes + and cross
Modified theories of gravity \rightarrow huge bestiary
Number of polarizations is constrained to be ≤ 6 (Newman&Penrose,
1962)
Eardley's classification E(2) for a spin-2 particle (Ea Modified theories of gravity \rightarrow huge be
Number of polarizations is constrained
1962)
Eardley's classification E(2) for a spin-2
Such classification, and the effect on a
Massive gravity theories impose specia
simultaneou

GR and non-GR polarization mdoes
The effect of the 6 modes can always be represented as follows:

Picture from: Isi&Weinstein, 2017

Short summary of Antenna Patterns
• GW detectors are not spherical antennas
• Polstive diaplesement of test masses along IEO's armo: Short summary of Antenna Patterns
• GW detectors are not spherical antennas
• Relative displacement of test masses along IFO's arms: **Short summary of Antenna Patterns**
• GW detectors are not spherical antennas
• Relative displacement of test masses along IFO's arms:
 $\frac{\delta L}{\delta t} = \sum F^{pol}(\omega, \vartheta, \psi) h_{pol}$

-
-

Short summary of Antenna Patterns
\n• GW detectors are not spherical antennas
\n• Relative displacement of test masses along IFO's arms:
\n
$$
\frac{\delta L}{L} = \sum_{pol} F^{pol} (\varphi, \vartheta, \psi) h_{pol}
$$
\n
$$
F^{pol} = \frac{1}{2} \hat{d}_{ij} \hat{\epsilon}^{ij}_{pol} \rightarrow \text{a tensor expression}
$$
\nLong wavelength approximation!
\n
$$
\hat{d}_{ij} = \hat{e}^i_x \otimes \hat{e}^j_x - \hat{e}^i_y \otimes \hat{e}^j_y
$$
\n
$$
\hat{e}^i_x = \text{unit vector along the } x\text{-th arm of the detector}
$$

$$
\hat{d}_{ij} = \hat{e}_x^i \otimes \hat{e}_x^j - \hat{e}_y^i \otimes \hat{e}_y^j
$$

$$
\hat{e}_x^i = \text{unit vector along the } x\text{-th arm of the detector}
$$

Measuring polarizations
• GR could be tested just by the observation of polarizat **Measuring polarizations**
• GR could be tested just by the observation of polarization modes
• Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$
• For the two scalar modes: $F^B = -F^L$

-
- Single detector $\displaystyle \rightarrow$ S_a $=$ $\sum_{pol}F_a^{pol}(\varphi,\vartheta,\psi)$ h_{pol} $_{pol}$ r_a $\qquad \varphi, v, \varphi)$ μ_{pol}
-
- Measuring polarizations

 GR could be tested just by the observation of polarizatio

 Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$

 For the two scalar modes: $F^B = -F^L$

→ Just five independent modes → 5 non-coali Measuring polarizations

• GR could be tested just by the observation of polarization modes

• Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$

• For the two scalar modes: $F^B = -F^L$

full disentangling

The antenna patt full disentangling **Measuring polarizations**

• GR could be tested just by the observation of polarization modes

• Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$

• For the two scalar modes: $F^B = -F^L$

→ Just five independent modes → 5 **Measuring polarizations**

• GR could be tested just by the observation of p

• Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$

• For the two scalar modes: $F^B = -F^L$
 \rightarrow Just five independent modes \rightarrow 5 non-coalign

• GR could be tested just by the observation of polarization modes
• Single detector \rightarrow $S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi)$ h_{pol}
• For the two scalar modes: $F^B = -F^L$
 \rightarrow Just five independent modes \rightarrow 5 non-coaligned de • Single detector $\Rightarrow S_a = \sum_{pol} F_a^{pol}(\varphi, \vartheta, \psi) h_{pol}$
• For the two scalar modes: $F^B = -F^L$
 \Rightarrow Just five independent modes \Rightarrow 5 non-coaligned detectors are needed for
full disentangling
The antenna patterns need be know \rightarrow Just five independent modes \rightarrow 5 non-coaligned detectors are needed for
full disentangling
The antenna patterns need be known with good precision: \rightarrow optimal
localization needed
HLVK+India \rightarrow Hanford and Living

Testing GR

- Testing GR
• Just checking for the presence of non-GR polarization (with no
• disentangling) would be enough
→ Null stream formalism (localization, Klimenko et al., 2011) **esting GR**
Just checking for the presence of non-GR polarization
disentangling) would be enough
>Null stream formalism (localization, Klimenko et al., **Testing GR**

• Just checking for the presence of non-GR polarization (with no

disentangling) would be enough

→ Null stream formalism (localization, Klimenko et al., 2011)

• Three-detector null stream: NS = $\varepsilon_{i j k} F_{$
-
- **Testing GR**
• Just checking for the presence of non-GR polarization (with no
disentangling) would be enough
• Null stream formalism (localization, Klimenko et al., 2011)
• Three-detector null stream: $\text{NS} = \varepsilon_{ijk} F_i^+ F_j$ **EStING GR**
Just checking for the presence of non-GR polariz
disentangling) would be enough
PNull stream formalism (localization, Klimenko e
Three-detector null stream: NS = $\varepsilon_{ijk} F_i^+ F_j^\times S_k \rightarrow$
of tensor modes only: NS = • Just checking for the presence of non-GR polarization (wit

disentangling) would be enough

→ Null stream formalism (localization, Klimenko et al., 2011

• Three-detector null stream: NS = $\varepsilon_{ijk} F_i^+ F_j^{\times} S_k \rightarrow$ if sign
-

Testing GR

-
- **Testing GR**
Null stream-based tests of GR:
• No outcome so far
• Example application to GW170817: Hagihara et al., 20 **Testing GR**
Null stream-based tests of GR:
• No outcome so far
• Example application to GW170817: Hagihara **Testing GR**
• Null stream-based tests of GR:
• No outcome so far
• Example application to GW170817: Hagihara et al., 2019
With a network of 4 non-coaligned detectors: **Testing GR**

Null stream-based tests of GR:

• No outcome so far

• Example application to GW170817: Hagihara et al., 2019

With a network of 4 non-coaligned detectors:

• More stringent analysis can be pursued

• 4-dete

-
- **Testing GR**

 No outcome so far

 No outcome so far

 Example application to GW170817: Hagihara et al., 201

With a network of 4 non-coaligned detectors:

 More stringent analysis can be pursued

 4-detector null st
- Null stream-based tests of GR:
• No outcome so far
• Example application to GW170817: Hagihara e
With a network of 4 non-coaligned detectors:
• More stringent analysis can be pursued
• 4-detector null stream: NS = ε_{ijkl} Null stream-based tests of GR:
• No outcome so far
• Example application to GW170817: Hagihara et al., 2019
With a network of 4 non-coaligned detectors:
• More stringent analysis can be pursued
• 4-detector null stream: N • No outcome so far
• Example application to GW170817: Hagiha
With a network of 4 non-coaligned detectors
• More stringent analysis can be pursued
• 4-detector null stream: NS = $\varepsilon_{ijkl} F_i^+ F_j^{\times} F_k^p$
• Allows getting rid • Example application to GW170817: Hagihara et al., 2
With a network of 4 non-coaligned detectors:
• More stringent analysis can be pursued
• 4-detector null stream: NS = $\varepsilon_{ijkl} F_t^* F_j^{\times} F_k^{pol} S_l$
 \rightarrow Allows getting rid
-
-

Present work

- **Present work
• Testing GR with different networks of detectors
• 1) HLVKI, 2) ETCE
• Both 3 and 4-detector NSs**
- 1) HLVKI, 2) ETCE
-
- Present work
• Testing GR with different networks of det
• 1) HLVKI, 2) ETCE
• Both 3 and 4-detector NSs
• Simulated pop. of BBH events (computat
yet) • Testing GR with different networks of detectors
• 1) HLVKI, 2) ETCE
• Both 3 and 4-detector NSs
• Simulated pop. of BBH events (computational limits → no BNS
yet)
• Localization (needed for NSs) → gwbench yet) • Testing GR with different networks of detectors
• 1) HLVKI, 2) ETCE
• Both 3 and 4-detector NSs
• Simulated pop. of BBH events (computational limits → no BN
yet)
• Localization (needed for NSs) → gwbench
• Computation o • Testing GR with different networks of detectors
• 1) HLVKI, 2) ETCE
• Both 3 and 4-detector NSs
• Simulated pop. of BBH events (computational limits \rightarrow no BNS
yet)
• Localization (needed for NSs) \rightarrow gwbench
• Computa
-
-

Using gwbench

- Using gwbench
• It provides a vectorized function for computing antenna patterns
Why vectorized? → The Earth rotates during the inspiral →antenna
patterns change Using gwbench

• It provides a vectorized function for computing antenna patterns

Why vectorized? \rightarrow The Earth rotates during the inspiral \rightarrow antenna

patterns change

• Makes use of Fisher Information formalism for patterns change **Using gwbench**
• It provides a vectorized function for computing antenna patterns
Why vectorized? \rightarrow The Earth rotates during the inspiral \rightarrow antenna
patterns change
• Makes use of Fisher Information formalism for er **Jsing gwbench**

It provides a vectorized function for computing antenna pa

/hy vectorized? \rightarrow The Earth rotates during the inspiral \rightarrow and

atterns change

Makes use of Fisher Information formalism for error estime
 Using gwbench
• It provides a vectorized function for computing antenna patterns
Why vectorized? \rightarrow The Earth rotates during the inspiral \rightarrow antenna
patterns change
• Makes use of Fisher Information formalism for er • It provides a vectorized function for computing antenna patterns

Why vectorized? \rightarrow The Earth rotates during the inspiral \rightarrow antenna

patterns change

• Makes use of Fisher Information formalism for error estimatio It provides a vectorized function for computing anter
/hy vectorized? \rightarrow The Earth rotates during the inspirat
terns change
Makes use of Fisher Information formalism for error (
(uncertainty on localization \rightarrow key poi
-
-
-
- \rightarrow Borhanian, 2020

Summary of workflow
iven a network of detectors (HLVKI or ETCE)
• Simulation of BBH population $\rightarrow 10^5$ events

- Given a network of detectors (HLVKI or ETCE)
	- Simulation of BBH population $\rightarrow 10^5$ events
	- for event in the pop:
		-
- **Summary of workflow**

iven a network of detectors (HLVKI or ETCE)

 Simulation of BBH population $\rightarrow 10^5$ events

 for event in the pop:

 Retrieve coalescence parameters for that given event

 Data acquisition by a **Highlary of workflow**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• vevent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network **(Praction et al., 2020)**
 Praction of BBH population $\rightarrow 10^5$ **events**
 Process alleges (ACC)
 Praction of BBH population $\rightarrow 10^5$ **events**
 Praction of a non-tensor mode (as in Takeda et al., 2018)

• Data acquisi **MMATY Of WORK FLOW**

a network of detectors (HLVKI or ETCE)

ulation of BBH population $\rightarrow 10^5$ events

svent in the pop:

Retrieve coalescence parameters for that given event

Data acquisition by a network of dets simu **HMMATY Of WORKfloW**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• revent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network of
	-
	-
	- **Hall A 2D-gaussian distribution of (RA, DEC)**
• A 2D-gaussian distribution of BBH population $\rightarrow 10^5$ events
• vector in the pop:
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of **heltwork of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	triewe coalescence parameters for that given event

	ata acquisition by a network of dets simulated with gwbench: waveform **network of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	trivie coalescence parameters for that given event

	trata acquisition by a network of dets simulated with gwbench: wavefor
	-
	- For sample in (100 samples):
		-
		-
		-
	-
	-
- Fraction of BBH population $\rightarrow 10^5$ events

ent in the pop:

ention of BBH population $\rightarrow 10^5$ events

ent in the pop:

trieve coalescence parameters for that given event

tata acquisition by a network of dets simulated Frequencial of the 100 samples: average SNR and its fluctuation

• Revent in the pop:

• Retrieve coalescence parameters for that given event

• Crata acquisition by a network of dets simulated with gwbench: waveform=IMRP • event in the pop-
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS
• Injection of a non-tensor mode (as in Takeda et al., 2018) • Review conductions by an entwick of dets simulated with gwbench: waveform=IMRPhenomXAS

• Chiection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gaus • Cumulative sum of single event significances for different permutations of the order of events • Injection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gaussian distribution of (RA, DEC) values is computed with μ =injection parameters and σ
-

Summary of workflow
iven a network of detectors (HLVKI or ETCE)
• Simulation of BBH population $\rightarrow 10^5$ events

- Given a network of detectors (HLVKI or ETCE)
	- Simulation of BBH population $\rightarrow 10^5$ events
	- for event in the pop:
		-
- **Summary of workflow**

iven a network of detectors (HLVKI or ETCE)

 Simulation of BBH population $\rightarrow 10^5$ events

 for event in the pop:

 Retrieve coalescence parameters for that given event

 Data acquisition by a **Highlary of workflow**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• revent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network
	-
	-
	- **(Pratter et al., 2020)**

	 A a network of detectors (HLVKI or ETCE)

	mulation of BBH population $\rightarrow 10^5$ events

	 verticle coalescence parameters for that given event

	 Pata acquisition by a network of dets simulated **Hall A 2D-gaussian distribution of (RA, DEC)**
• A 2D-gaussian distribution of BBH population $\rightarrow 10^5$ events
• Clata acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS
• Data acquisition by a **MMATY Of WORK FLOW**

	a network of detectors (HLVKI or ETCE)

	ulation of BBH population $\rightarrow 10^5$ events

	sevent in the pop:

	Retrieve coalescence parameters for that given event

	(Pratten et al., 2020)

	Injection of a no **HMMATY Of WORKfloW**

	• a network of detectors (HLVKI or ETCE)

	mulation of BBH population $\rightarrow 10^5$ events

	• revent in the pop:

	• Retrieve coalescence parameters for that given event

	• Data acquisition by a network of **heltwork of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	triewe coalescence parameters for that given event

	atta acquisition by a network of dets simulated with gwbench: wavefor **network of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	trivie coalescence parameters for that given event

	trata acquisition by a network of dets simulated with gwbench: wavefor
	-
	- For sample in (100 samples):
		-
		-
		-
	-
	-
- Fraction of BBH population $\rightarrow 10^5$ events

ent in the pop:

ention of BBH population $\rightarrow 10^5$ events

ent in the pop:

trieve coalescence parameters for that given event

tata acquisition by a network of dets simulated Frequencial of the 100 samples: average SNR and its fluctuation

• Revent in the pop:

• Persis acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS

• (Fratten et al., 2020)

• Injection of a no • Settiew coalescence parameters for that given event
• Data acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS
• higection of a non-tensor mode (as in Takeda et al., 2018)
• Uncertainty on the • Review conductions and interest of this simulated with gwbench: waveform=IMRPhenomXAS

• Chiection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gauss • Cumulative sum of single event significances for different permutations of the order of events • Injection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gaussian distribution of (RA, DEC) values is computed with μ =injection parameters and σ
-

BBH population

-
- **BBH population**
• Help provided by A. Dhani and Sathya
• Expected number of 10⁵ events within $z = 3$ following:
 $dV_x \psi(z)$ and **BBH population**
• Help provided by A. Dhani and Sathya
• Expected number of 10⁵ events within $z = 3$ followir
 $p(z) \propto \frac{dV_c}{dz} \frac{\psi(z)}{1+z}$ • Expected number of 10^5 events within $z = 3$ following:

$$
p(z) \propto \frac{dV_c}{dz} \frac{\psi(z)}{1+z}
$$
 Madau&Dickinson, 2014

BBH population

• Help provided by A. Dhani and Sathya

• Expected number of 10⁵ events within $z = 3$ following:
 $p(z) \propto \frac{dV_c}{dz} \frac{\psi(z)}{1 + z}$

Binaries are uniform in α , δ and ι . Masses are distributed accord GWTC-3 \rightarrow small spins • Expected number of 10^5 events within $z = 3$ following:
 $p(z) \propto \frac{dV_c}{dz} \frac{\psi(z)}{1+z}$

Binaries are uniform in α , δ and ι . Masses are distributed according to

the PowerLaw + PeakModel of GWTC-3

GWTC-3 \rightarrow No spin in BBH population $p(z) \propto \frac{dV_c}{dz} \frac{\psi(z)}{1+z}$

Binaries are uniform in α , δ and ι . Masses are distribute

the PowerLaw + PeakModel of GWTC-3

GWTC-3 \rightarrow small spins

Spin effects on localization measure \rightarrow negligible $\bigcup_{\text{pop$

Summary of workflow
iven a network of detectors (HLVKI or ETCE)
• Simulation of BBH population $\rightarrow 10^5$ events

- Given a network of detectors (HLVKI or ETCE)
	- Simulation of BBH population $\rightarrow 10^5$ events
	- for event in the pop:
		-
- **Summary of workflow**

iven a network of detectors (HLVKI or ETCE)

 Simulation of BBH population $\rightarrow 10^5$ events

 for event in the pop:

 Retrieve coalescence parameters for that given event

 Data acquisition by a **Highlary of workflow**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• vevent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network **(Pratter et al., 2020)**

• A a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• verticle coalescence parameters for that given event

• Pata acquisition by a network of dets simulated **MMATY Of WORK FLOW**

a network of detectors (HLVKI or ETCE)

ulation of BBH population $\rightarrow 10^5$ events

svent in the pop:

Retrieve coalescence parameters for that given event

Data acquisition by a network of dets simu **HMMATY Of WORKfloW**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• revent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network of
	-
	-
	- **Hall A 2D-gaussian distribution of (RA, DEC)**
• A 2D-gaussian distribution of BBH population $\rightarrow 10^5$ events
• vector in the pop:
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of **heltwork of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	triewe coalescence parameters for that given event

	ata acquisition by a network of dets simulated with gwbench: waveform **network of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	trivie coalescence parameters for that given event

	trata acquisition by a network of dets simulated with gwbench: wavefor
	-
	- For sample in (100 samples):
		-
		-
		-
	-
	-
- Fraction of BBH population $\rightarrow 10^5$ events

ent in the pop:

ention of BBH population $\rightarrow 10^5$ events

ent in the pop:

trieve coalescence parameters for that given event

tata acquisition by a network of dets simulated Frequencial of the 100 samples: average SNR and its fluctuation

• Revent in the pop:

• Retrieve coalescence parameters for that given event

• Crata acquisition by a network of dets simulated with gwbench: waveform=IMRP • event in the pop-
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS

• Thereto at 4., 2020)
• Uncertainty on the localization is • Review conductions and interest of this simulated with gwbench: waveform=IMRPhenomXAS

• Clarate acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS

• Injection of a non-tensor mode (as in Ta • Cumulative sum of single event significances for different permutations of the order of events • Injection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gaussian distribution of (RA, DEC) values is computed with μ =injection parameters and σ
-

- **Injection of non-tensor modes
• This part has been performed following non-GR injection in Take**
et al., 2018 **Injection of non-tensor modes**
• This part has been performed following non-GR injection in Takeda
• Each non-GR mode is obtained by: $h_{pol} = A_{pol}G_{pol} h_+$ with et al., 2018
- **Injection of non-tensor modes**
• This part has been performed following non-GR injection in Takeda
et al., 2018
• Each non-GR mode is obtained by: $h_{pol} = A_{pol}G_{pol} h_+$ with
 $G_{pol} = G_{pol}(\mathcal{M}, \iota)$ taken from Takeda, and A_{pol **DN-tensor modes**

performed following non-GR injection in Takeda

de is obtained by: $h_{pol} = \mathcal{A}_{pol} \mathcal{G}_{pol} \ h_+$ with

taken from Takeda, and \mathcal{A}_{pol} being a

pplitude weighting the importance of non-GR

with respect **njection of non-tensor modes**
This part has been performed following non-GR injection in Takeda
et al., 2018
Each non-GR mode is obtained by: $h_{pol} = \mathcal{A}_{pol} \mathcal{G}_{pol} \, h_+$ with
 $\mathcal{G}_{pol} = \mathcal{G}_{pol}(\mathcal{M}, \iota)$ taken from Tak **njection of non-tensor modes**
This part has been performed following non-GR injection in Taket al., 2018
Each non-GR mode is obtained by: $h_{pol} = \mathcal{A}_{pol} \mathcal{G}_{pol} \ h_{+}$ with
 $\mathcal{G}_{pol} = \mathcal{G}_{pol}(\mathcal{M}, \iota)$ taken from Takeda, **in jection of non-tensor modes**

• This part has been performed following non-GR injection in Takeda

• Each non-GR mode is obtained by: $h_{pol} = \mathcal{A}_{pol}G_{pol}h_+$ with
 $\mathcal{G}_{pol} = \mathcal{G}_{pol}(\mathcal{M}, \iota)$ taken from Takeda, and This part has been performed following non-GR injected.

This part has been performed following non-GR injected.

Each non-GR mode is obtained by: $h_{pol} = A_{pol}G_{pol}$
 $G_{pol} = G_{pol}(\mathcal{M}, t)$ taken from Takeda, and A_{pol} being
 Its part rias been performed following fibri-SR injection in Takeda

al., 2018

ach non-GR mode is obtained by: $h_{pol} = \mathcal{A}_{pol} \mathcal{G}_{pol} h_+$ with
 $\frac{h_{pol}}{=} \mathcal{G}_{pol}(\mathcal{M}, t)$ taken from Takeda, and \mathcal{A}_{pol} being a

mensi
-

```
ppE)?
            h non-GR mode is obtained by: h_{pol} = \mathcal{A}_{pol}G_{pol}h_+ with<br>
h = G_{pol}(\mathcal{M}, \iota) taken from Takeda, and \mathcal{A}_{pol} being a<br>
ensionless amplitude weighting the importance of non-GR<br>
des in a signal with respect to GR modes<br>
\begin{aligned} g_{pol} &= \mathcal{G}_{pol}(\mathcal{M}, \iota) \text{ taken from Takeda, and } \mathcal{A}_{pol} \text{ being a} \text{ in} \\ \text{imensions implies amplitude weighting the importance of non-GR} \\ & \mathcal{G}_{pol} = 1 \text{ in this work} \rightarrow \text{unrealistic, used for benchmarking} \\ & \text{etworks' sensitivity to the test} \\ & \text{What about radiation reaction terms due to additional pol. modes (i.e. } \text{ppE)?} \\ & \rightarrow \text{Not considered here as this test depends on localization-ONLY!} \\ & \text{But the assumption of localization uncertainty being independent from} \\ & \text{any waveform variation is SIMPLISTIC} \end{aligned}amplitude weighting the importance of non-GR<br>al with respect to GR modes<br>work \rightarrow unrealistic, used for benchmarking<br>tivity to the test<br>ation reaction terms due to additional pol. modes (i.e.<br>ppE)?<br>red here as this test
```
Summary of workflow
iven a network of detectors (HLVKI or ETCE)
• Simulation of BBH population $\rightarrow 10^5$ events

- Given a network of detectors (HLVKI or ETCE)
	- Simulation of BBH population $\rightarrow 10^5$ events
	- for event in the pop:
		-
- **Summary of workflow**

iven a network of detectors (HLVKI or ETCE)

 Simulation of BBH population $\rightarrow 10^5$ events

 for event in the pop:

 Retrieve coalescence parameters for that given event

 Data acquisition by a **Highlary of workflow**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• vevent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network **(Praction et al., 2020)**
 Praction of BBH population $\rightarrow 10^5$ **events**
 Propertion of BBH population $\rightarrow 10^5$ events
 Preserve condescence parameters for that given event
 Pata acquisition by a network of dets sim MMATY Of WORK FLOW

a network of detectors (HLVKI or ETCE)

ulation of BBH population $\rightarrow 10^5$ events

svent in the pop:

Retrieve coalescence parameters for that given event

Data acquisition by a network of dets simu **HMMATY Of WORKfloW**

• a network of detectors (HLVKI or ETCE)

mulation of BBH population $\rightarrow 10^5$ events

• revent in the pop:

• Retrieve coalescence parameters for that given event

• Data acquisition by a network of
	-
	-
	- **Hall A 2D-gaussian distribution of (RA, DEC)**
• A 2D-gaussian distribution of BBH population $\rightarrow 10^5$ events
• vector in the pop:
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of **heltwork of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	triewe coalescence parameters for that given event

	ata acquisition by a network of dets simulated with gwbench: waveform **network of detectors (HLVKI or ETCE)**

	ation of BBH population $\rightarrow 10^5$ events

	ent in the pop:

	trivie coalescence parameters for that given event

	trata acquisition by a network of dets simulated with gwbench: wavefor
	-
	- For sample in (100 samples):
		-
		-
		-
	-
	-
- Fraction of BBH population $\rightarrow 10^5$ events

ent in the pop:

ention of BBH population $\rightarrow 10^5$ events

ent in the pop:

trieve coalescence parameters for that given event

tata acquisition by a network of dets simulated Frequencial of the 100 samples: average SNR and its fluctuation

• Revent in the pop:

• Retrieve coalescence parameters for that given event

• Crata acquisition by a network of dets simulated with gwbench: waveform=IMRP • event in the pop-
• Retrieve coalescence parameters for that given event
• Data acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS

• Thereto at 4., 2020)
• Uncertainty on the localization is • Review conductions and interest of this simulated with gweench: waveform=IMRPhenomXAS

• Chiection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gauss • Cumulative sum of single event significances for different permutations of the order of events • Injection of a non-tensor mode (as in Takeda et al., 2018)

• Uncertainty on the localization is computed by gwbench

• A 2D-gaussian distribution of (RA, DEC) values is computed with μ =injection parameters and σ
-

Computing null streams
As previously pointed out: NS = $\varepsilon_{ijk} F_i^+ (\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^\times (\hat{\varphi}, \hat{\psi})$ As previously pointed out: $NS = \varepsilon_{ijk} F_i^+(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_i^{\times}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k(\varphi, \vartheta, \psi)$

- **Computing null streams**
As previously pointed out: NS = $\varepsilon_{ijk} F_i^+(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^\times(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k(\varphi, \vartheta, \psi)$
 $\rightarrow S_k(\varphi, \vartheta, \psi)$ is the k-th detector response as given by gwbench

(depends on antenna patterns co
- **Computing null streams**

s previously pointed out: NS = $\varepsilon_{ijk} F_t^{\pm}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^{\times}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k(\varphi, \vartheta, \psi)$
 $\partial s_k(\varphi, \vartheta, \psi)$ is the k-th detector response as given by gwbench

(depends on antenna patter **Computing null streams**
As previously pointed out: $NS = \varepsilon_{ijk} F_i^+ (\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^{\times} (\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k (\varphi, \vartheta, \psi)$
 $\Rightarrow S_k(\varphi, \vartheta, \psi)$ is the k-th detector response as given by gwbench

(depends on antenna patterns c **Computing null streams**

s previously pointed out: $\text{NS} = \varepsilon_{ijk} F_t^{\dagger}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^{\times}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k(\varphi, \vartheta, \psi)$
 $\star S_k(\varphi, \vartheta, \psi)$ is the k-th detector response as given by gwbench

(depends on antenna pat distribution)
- As previously pointed out: $NS = \varepsilon_{ijk} F_i^+(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) F_j^{\times}(\hat{\varphi}, \hat{\vartheta}, \hat{\psi}) S_k(\varphi, \vartheta, \psi)$
 $\Rightarrow S_k(\varphi, \vartheta, \psi)$ is the k-th detector response as given by gwbench

(depends on antenna patterns computed at the exact locat s previously pointed out: NS = $\varepsilon_{ijk} F_i^*$
 $\sum_{k} S_k(\varphi, \vartheta, \psi)$ is the k-th detector respc

(depends on antenna patterns compt
 $\sum_{k} F_i^+(\hat{\varphi}, \hat{\vartheta}, \hat{\psi})$ is the i-th detector anten

values of $\hat{\varphi}, \hat{\vartheta}, \hat{\psi}$ (whic \rightarrow PSD $(f) =$ INS (f) ² (depends on antenna patterns computed at the exact location)
 $\Rightarrow F_i^+(\hat{\varphi}, \hat{\vartheta}, \hat{\psi})$ is the i-th detector antenna pattern: depends on the

values of $\hat{\varphi}, \hat{\vartheta}, \hat{\psi}$ (which come from the uncertainty driven bi-Gaussia
-

One last issue

Summary of workflow

- Given a network of detectors (HLVKI or ETCE)
	- Simulation of BBH population $\rightarrow 10^5$ events
	- for event in the pop:
		- Retrieve coalescence parameters for that given event
		- Data acquisition by a network of dets simulated with gwbench: waveform=IMRPhenomXAS (Pratten et al., 2020)
		- · Injection of a non-tensor mode (as in Takeda et al., 2018)
		- Uncertainty on the localization is computed by gwbench
		- A bi-modal gaussian distribution of (RA, DEC) values is computed with μ =injection parameters and σ = deviation given by gwbench
		- 100 samples are drawn from this distribution
		- For sample in (100 samples):
			- 3 and 4 dets-NSs are computed in the corresponding (RA, DEC) values for each sample
			- The noise of the NSs is computed is well propagating the noise of the detectors
			- NS power/noise = SNR of single sample
		- Averaging over the 100 samples: average SNR and its fluctuation
		- average SNR/fluctuation = significance of gravity test on single event
	- Cumulative sum of single event significances for different permutations of the order of events
- For which network does this sum provide a more meaningful test of GR? ¹¹

330k computing hours

Code for HPC structures

- Code for HPC structures

Gwave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/

 In house version of gwbench for computing antenna patterns of several

detectors for multiple events simult **Code for HPC structures**

Gwave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/

• In house version of gwbench for computing antenna patterns of several

detectors for multiple events simu detectors for multiple events simultaneously
- Code for HPC structures

Gwave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/

 In house version of gwbench for computing antenna patterns of several

detectors for multiple events simult **Code for HPC structures**
wave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/
In house version of gwbench for computing antenna patterns of several
detectors for multiple events simultaneo Code for HPC structures

Gwave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/

• In house version of gwbench for computing antenna patterns of several

detectors for multiple events simult Gwave (PSU cluster) \rightarrow https://computing.docs.ligo.org/guide/computing-centres/psu/
• In house version of gwbench for computing antenna patterns of several
detectors for multiple events simultaneously
• Multiprocessing
-
-

Results in a nutshell

Results in a nutshell

Importance of 4-dets NSs
When observing GW, one can use all of the 4-dets NSs and see which one is min
between one of the other NSs and the «silenced» one, one gets a more powerfu
proxy for tensor signals Monder of 4-dets NSs

When observing GW, one can use all of the 4-dets NSs and see which one is minimized. Performing the ratio

between one of the other NSs and the «silenced» one, one gets a more powerful test of gravity between one of the other NSs and the 4-dets NSs and see which one is minimized. Performing the ratio
between one of the other NSs and the «silenced» one, one gets a more powerful test of gravity: silent NS is a
proxy for t

26 $\epsilon_{TCE} < 10^{-2} \mathcal{A}_{pol}^{H L V K I_{26}}$

Conclusion

-
-
- **Conclusion**
• ETCE would provide a significant claim in shorter time
• The precision of the test is slightly enhanced
• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers a
larger difference in the pr Conclusion
• ETCE would provide a significant claim in shorter time
• The precision of the test is slightly enhanced
• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers
• The localization as achieved
- **onclusion**
• Effect of the test is slightly enhanced
• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers a
• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers a
• larger differen **nclusion**
CE would provide a significant claim in shorter time
a precision of the test is slightly enhanced
Effect of the SNR>12 cut→when dropping the threshold to 8 one reco
larger difference in the precision of the test • FICE would provide a significant claim in shorter time
• The precision of the test is slightly enhanced
• Efect of the SNR>12 cut→when dropping the threshold to 8 one recovers a
larger difference in the precision of the **is only slightly slightly slightly slightly slightly enhanced**
FICE would provide a significant claim in shorter time
The precision of the test is slightly enhanced
• Effect of the SNR>12 cut→when dropping the threshold t network SNRs • ETCE would provide a significant claim in shorter time

• The precision of the test is slightly enhanced

• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers a

• The localization as achieved with C • Liet would provide a sigmicant claim in struct lifter

• The precision of the test is slightly enhanced

• Effect of the SNR>12 cut->when dropping the threshold to 8 one recovers a

larger difference in the precision of The precision of the test is slightly enhanced

• Effect of the SNR>12 cut→when dropping the threshold to 8 one recovers

larger difference in the precision of the test

The localization as achieved with CE and ET for lou
- global SNR of the event.
-

References

- Newman, Ezra, and Roger Penrose. "An approach to gravitational radiation by a method of spin coefficients." Journal of Mathematical Physics 3.3 (1962): 566- 578.
- Eardley, Douglas M., David L. Lee, and Alan P. Lightman. "Gravitational-wave observations as a tool for testing relativistic gravity." Physical Review D 8.10 (1973): 3308.
- De Rham, Claudia, Gregory Gabadadze, and Andrew J. Tolley. "Helicity decomposition of ghost-free massive gravity." Journal of High Energy Physics 2011.11 (2011): 1-35.
- D 96.4 (2017): 042001.
- Klimenko, S., et al. "Localization of gravitational wave sources with networks of advanced detectors." Physical Review D—Particles, Fields, Gravitation, and Cosmology 83.10 (2011): 102001.
- Hagihara, Yuki, et al. "Constraining extra gravitational wave polarizations with Physical Review D 100.6 (2019): 064010.
- Borhanian, Ssohrab. "GWBENCH: a novel Fisher information package for gravitational-wave benchmarking." Classical and Quantum Gravity 38.17 (2021): 175014.
- Pratten, Geraint, et al. "Setting the cornerstone for a family of models for gravitational waves from compact binaries: The dominant harmonic for 064001.
- Madau, Piero, and Mark Dickinson. "Cosmic star-formation history." Annual Review of Astronomy and Astrophysics 52.1 (2014): 415-486.
- Takeda, Hiroki, et al. "Polarization test of gravitational waves from compact binary coalescences." Physical Review D 98.2 (2018): 022008.

Thank you!