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BNS merger in a nutshell: dynamics

Credit: D. Radice; Radice, Bernuzzi, Perego 2020 ARNPS, Bernuzzi 2020 for recent reviews

▶ inspiral: driven by GW emission
▶ GW-dominated phase:

▶ LGW ∼ 1055erg/s e.g. Zappa et al 2018 PRL

▶ at merger
▶ for q ∼ 1, vorb/c ≈

√
C ∼ 0.39 (C/0.15)1/2 (C ≡ M/R) and q = M1/M2

▶ NS collision Ekin → Eint
▶ copious ν production: Lν ∼ 1053erg/s Eichler+ 89, Ruffert+ 97, Rosswog & Liebendoerfer 03

▶ viscous phase: MHD viscosity + ν emission
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GWs from coalescing neutron star binaries

Courtesy of S. Bernuzzi

▶ inspiral: chirp signal (Mchirp, q)
▶ late inspiral and merger: matter effects (reduced tidal parameter Λ̃)
▶ post-merger:

▶ remnant as loud source of kHz GWs with rich phenomenology
▶ dominant feature (f2 or fpeak) directly related to the remnant angular

velocity (dominant ℓ = m = 2 mode)
▶ peak location and amplitudes depend on EOS of NSs and possibly reveal

microphysics features (e.g. QCD phase transitions)
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Modelling of GWs from BNS mergers
CoRe database
▶ largest GW database from Numerical Relativity (NR) simulations

▶ 254 BNS configurations
▶ 590 distinct simulations
▶ NS masses, EOS, spins, eccentricity, microphysics

▶ GW strains and Weyl multipoles up to (ℓ,m) = (4, 4) mode
I release: Dietrich+ CQG 2018, II release: Gonzalez+ 2023 CQG

NRPMw: post-merger model
Breschi+ 2019,2024 PRD

▶ kHz frequency realm
▶ it complements EOB

inspiral-merger models
▶ calibrated against 618 NR

simulations

Breschi+ PRD 2023
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BNS merger in a nutshell: ejecta
▶ expelled by different mechanisms, acting on different timescales
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BNS merger in a nutshell: ejecta
▶ expelled by different mechanisms, acting on different timescales

▶ dynamical ejecta (t ∼ 1 − 5ms)
▶ tidal & shock heated ejecta
▶ ⟨v⟩ ∼ 0.2 − 0.3c
▶ Mej ∼ 10−4 − 10−2M⊙

Radice, Perego, Hotokezafa, Fromm, Bernuzzi, Roberts ApJ

2018
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BNS merger in a nutshell: ejecta
▶ expelled by different mechanisms, acting on different timescales

▶ dynamical ejecta (t ∼ 1 − 5ms)
▶ tidal & shock heated ejecta
▶ ⟨v⟩ ∼ 0.2 − 0.3c
▶ Mej ∼ 10−4 − 10−2M⊙

▶ disk winds (t ∼ 0.05 − 10s)
▶ neutrinos, MHD
▶ ⟨v⟩ ∼ 0.1c
▶ up to Mej ∼ 0.1 − 0.4Mdisk
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BNS merger in a nutshell: ejecta
▶ expelled by different mechanisms, acting on different timescales
▶ dynamical ejecta (t ∼ 1 − 5ms)

▶ tidal & shock heated ejecta
▶ ⟨v⟩ ∼ 0.2 − 0.3c
▶ Mej ∼ 10−4 − 10−2M⊙

▶ disk winds (t ∼ 0.05 − 10s)
▶ neutrinos, MHD
▶ ⟨v⟩ ∼ 0.1c
▶ up to Mej ∼ 0.1 − 0.4Mdisk

▶ spiral wave winds (t ∼ 0.01 − 1s)
▶ m = 1, 2 spiral mode in the remnant
▶ ⟨v⟩ ∼ 0.2c
▶ Ṁ ∼ 0.1M⊙/s
▶ acting until BH formation

Nedora et al ApjL 2019
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▶ m = 1, 2 spiral mode in the remnant
▶ ⟨v⟩ ∼ 0.2c
▶ Ṁ ∼ 0.1M⊙/s
▶ acting until BH formation

top: ϕ-angular momentum radial flux

bottom: spiral wind ejecta mass

Nedora et al ApjL 2019
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Nucleosynthesis and EM counterparts
r-process nucleosynthesis
▶ ejecta: ideal place for r-process

nucleosynthesis
▶ production of all r-process

elements once neutrinos are
taken into account

Nedora+ ApJ 2022

EM counterparts
▶ kilonova:

▶ UV/optical/IR transient
▶ 1-10 day timescale
▶ powered by radioactive decay

of r-process elements
▶ short-GRB

▶ relativistic jet produced by the
remnant

▶ precise mechanism still elusive
Berger+ 2015
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BNS mergers in ET era

III generation GW detectors will allow to access not only inspiral, but also
post-merger signals, as well as good sky localization

great opportunity:
▶ to extract the most from GW detections, for example in extracting EOS

information
▶ to enable multi-messenger detections, for example in combination

with kilonova observation

great challenge:
strong need for . . .
▶ . . . detailed and reliable models
▶ . . . sophisticated data analysis techniques
▶ . . . effective multimessenger strategies

see the talks of this section, as well as Anna’s and Eleonora’s talk from tomorrow morning!
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Detection of BH formation in BNS mergers
Can we directly detect BH formation in a BNS merger?
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Detection of BH formation in BNS mergers
Can we directly detect BH formation in a BNS merger?
▶ invaluable information about dense and hot nuclear matter (EOS)
▶ key information for EM counterpart interpretation and understanding

A possible way to do it: searching for termination of post-merger GW
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Detection of BH formation in BNS mergers
Can we directly detect BH formation in a BNS merger?
▶ invaluable information about dense and hot nuclear matter (EOS)
▶ key information for EM counterpart interpretation and understanding

A possible way to do it: searching for termination of post-merger GW
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Detection of BH formation in BNS mergers
Can we directly detect BH formation in a BNS merger?
▶ invaluable information about dense and hot nuclear matter (EOS)
▶ key information for EM counterpart interpretation and understanding

A possible way to do it: searching for termination of post-merger GW

however:
▶ time-domain analysis of weak signal
▶ it provides only lower limit for remnant lifetime
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Ring down from BH formation
▶ Detailed analysis of GW post-merger signal from 190 Numerical

Relativity BNS merger simulations
▶ all performed with THC code, at multiple resolutions
▶ promptly collapsing, short lived, or long-lived remnants

Dhani+ 2024, PRD

▶ post-collapse signal:
exponential dumping of
quasi-normal ring down

hQNM = C exp (−iω(t − tstart))

▶ postmerger GW spectrum of a
long-lived remnant has greatly
reduced power at f ≳ fpeak, for
f ≳ 4 kHz & fpeak ∈ [2.5, 4]kHz
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Is it something we can detect?

▶ Calculation of SNR in the high portion of the spectrum
▶ optimally oriented BNS at 40 Mpc

Dhani+ 2024, PRD
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What can we learn from promptly collapsing BNS
mergers?

1. Testing GR in strong field regime

2. Measuring nuclear incompressibility at the
highest densities
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Do black holes remember what they are made of?

▶ Bandyopadhyay+ 2024, CQG
▶ analysis of post-collapse ring-down

signal from 49 NR simulations
▶ QNM-fit of ℓ,m =(2,2) and (2,1)

spherical armonics decomposition

h(ℓ,m) = A(ℓ,m) exp
(
−iω(ℓ,m)(t − tstart)

)
▶ A(ℓ,m)’s seem not to correlated . . .
▶ . . . while A(2,1)/A(2,2) seem to

correlate with q = M1/M2 and Λ̃

A(2,1)

A(2,2)
= (1 − q)

(
a

1 + q
+

b
Λ̃

)
▶ b ̸= 0: direct imprint of matter (Λ̃)
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Testing GR with prompt collapse mergers
Some preliminary considerations:
▶ no-hair theorem: while final BH is only characterized by mass & spin,

ringdown mode amplitudes depend on the properties of the
progenitor BNS

▶ results on post-merger QNM analysis derived assuming GR
▶ post-merger QNM analysis requires high enough SNR in the

post-merger → very high SNR in inspiral: q and Λ̃ well measured
during the inspiral

How can we use these results to test GR?

by comparing
(
A(2,1)/A(2,2)

)
data VS

(
A(2,1)/A(2,2)

)
fit (q, Λ̃)data one could test

consistency of GR between inspiral and post-merger

Caveat:
▶ for SNR≳ 3, systematics error dominates
▶ strong need for high resolution simulations
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When does PC occur?
q = 1, non spinning BNSs:

M > Mth = kthMTOV
max

and kth correlates with EOS-
dependent NS properties

kth = aCmax + b

Hotokezaka+11 PRD, Bauswein+12 PRL, Koeppel+19 ApJL...

Kashyap+22 PRD

what about q ̸= 1 BNSs?

M > Mth(q) = kth(q)MTOV
max

▶ Mth decreases for small q due
to lower rotational support

▶ quasi-universal behavior?
▶ non-monotonicity at q ≲ 1?

Bauswein+20,21 PRL & PRD; Tootle+21 ApJL, Kölsch+22 PRD

Bauswein+21 PRD
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PC in asymmetric, irrotational BNSs

▶ large simulation campaign
(∼ 250) to determine Mth(q)

▶ 6 EOSs and 6 mass ratios

▶ two regimes, separated by
q̃ ≈ 0.725

▶ global decrease for decreasing q,
but
▶ non-trivial EOS dependence
▶ clear non-monotonic behavior

for q > q̃ for some EOSs
▶ double linear fit

f (q) =

{
αlq + βl if q < q̃ ,
αhq + βh if q ≥ q̃ .

0.6 0.7 0.8 0.9 1.0

q

0.92

0.94

0.96

0.98

1.00

1.02

f
(q

)
≡
M

th
(q

)/
M

th
(q

=
1)

BL

DD2

LS220

SFHo

BHB

DD2qG

Perego et al PRL 2022
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The role of nuclear incompressibility

What is missing?
▶ (prompt) collapse: competition

between gravity and matter
incompressibility

▶ nuclear incompressibility:

K(nb, δ) ≡ 9
∂P
∂nb

∣∣∣∣
T=0,δ=const

.

▶ clear correlation of α’s with

Kmax = K(nTOV
b,max, δeq)

▶ measurement of Mth at two q’s
directly provide Kmax
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Conclusions
▶ We live in exciting times, thanks to GWs and multimessenger

astrophysics
▶ (Advanced) Ligo and Virgo have opened new fields and unveiled the

potential of multi-messenger detections
▶ III generation detectors will enable detections from BNS merger

remnants
▶ remnant is ideal playground for theoretical physics and

multimessenger signals will provide valuable insights on several
topics, including
▶ properties of nuclear matter e.g. Perego+ 2023 PRL

▶ properties of spacetime e.g. Dhani+ 2024 PRD, Bandyopadhyay+ 2024 CQG
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r-process nucleosynthesis: basic ideas

▶ how do heavy elements (> Fe group) form? n-capture e.g. B2FH RvMP 57

(A,Z) + n ↔ (A + 1,Z) + γ

▶ if n density high enough, tn−capt ≪ tβ−decay

▶ ejecta properties, i.e. (s,Ye, τexp) at NSE freeze-out (T ≲ 6GK)
determine final nucleosynthesis yields

Hoffman+ ApJ 98,Lippuner & Roberts ApJ 17
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r-process nucleosynthesis in BNS ejecta
▶ at low entropy (s ≲ 40kb/baryon), Ye dominant parameter
▶ lanthanides (and actanides) production dramatically changes photon

opacity (atomic f -shell opening)
▶ Ye influenced by weak interactions involving neutrinos, e.g.

p + e− ↔ n + νe n + e+ ↔ p + ν̄e
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Ye = ne/nB ≈ np/ (np + nn): electron fraction
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Electromagnetic counterparts
BNS mergers (possibly) produce several transient EM emissions: e.g.,

▶ (short/hard) gamma-ray burst
▶ accretion of magnetized matter on

compact object producing a
relativistic jet

▶ prompt emission:
▶ γ-rays
▶ T90 ≲ 2 sec

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ days-weeks

▶ kilonova
▶ r-process nucleosynthesis

produces unstable nuclei
▶ quasi-thermal, nuclear powered

▶ from UV to NIR
▶ t ≲ 0.1 − 10 days

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ months − years

Berger+ 2015
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Quasi-universal relations involving incompressibility
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▶ Kmax correlates with NS and
EOS properties, e.g.
▶ Cmax
▶ c2

s,max

▶ Kmax possibly provides
information on high density
composition:
▶ Kmax ≳ 15GeV points to purely

hardonic EOSs
▶ possibly, Kmax ≳ 12GeV
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Is it something we can detect?
Calculation of SNR in the high (H) and medium (M) portion of the
spectrum for optimally oriented BNS at 40 Mpc
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