

Monitoring in real time the annealing of optical coatings

Michele Magnozzi *OptMatLab, Dipartimento di Fisica, Università di Genova, Italy*

michele.magnozzi@unige.it

Acknowledgments

Prof. Maurizio Canepa Dr. Michele Magnozzi

Shima Samandari

Finanziato dall'Unione europea **NextGenerationEU**

Ministero dell'Università e della Ricerca

Dr. Massimo Granata Dr. Benoit Sassolas Dr. Christophe Michel Dr. Laurent Pinard

Dr. Alex Amato

Dr. Gianluca Gemme

Stefano Colace

Consiglio Nazionale

Dr. Francesco Bisio

delle Ricerche

The OptMatLab group in Genova

- state-of-the-art suite of ellipsometers
- home-made as well as commercial add-ons to vary temperature & atmosphere
- in situ & in operando capabilities ٠

M. Magnozzi et al., Appl. Surf. Sci 421 651 (2017) M. Magnozzi et al., J. Phys. D 475105 (2023)

Uni**Ge** | DIFI

The need for thermal annealing in IBS-produced coatings

Films produced by Ion Beam Sputtering (IBS) suffer from **compressive stress**, meaning that their structure is not in a state of equilibrium.

As a consequence, the performance of **as-deposited IBS-produced coatings** is not satisfactory. This means that mechanical losses and optical absorption are too high.

Case in point:

The mechanical losses of silica produced by IBS can be up to <u>four orders of magnitude higher</u> than those of fused silica. [M. Granata et al., *Phys. Rev. Mat.* 2 053607 (2018)].

Effects of thermal annealing on mirror coatings

Transition-metal oxides, too, show annealing-induced microscopic variations in their atomic structures.

Prasai et al., Phys. Rev. Lett. 123, 045501 (2019)

Damart et al., J. Appl. Phys. 119, 175106 (2016)

Variations in the face-sharing / edge-sharing / corner-sharing ratios Possibly related to a variation in the oxygen content in the coating following annealing (Fazio et al., *Opt. Expr.* 10, 1687 (2020))

Effects of thermal annealing on mirror coatings

Annealing-induced variations can (and typically do) have a counterpart in the **macroscopic properties** of the coatings, such as **density** and **refractive index**.

Adapted from E. Coillet, PhD Thesis, Université de Lyon 1 (2017)

Thermal annealing requisites

A thermal annealing is defined by a **few key parameters**, such as:

- heating rate
- maximum temperature
- time spent at the maximum temperature (a.k.a. soaking, plateau)
- cooling rate

A good set of parameters is one which brings the coatings in a state where their properties (mechanical, optical) are suitable for GWD applications.

-> relaxation typically requires high temperatures

Fundamental requirement: amorphous coatings should remain amorphous – crystallization must be avoided (partial crystallization still to be properly understood..)

-> crystallization occurs at high temperatures

Where is the optimum between the two requirements?

How are the annealing parameters chosen?

Example of ex-situ analysis on titania-tantala

Urbach energy is related to the degree of 'disorder' within the material.

Lowest value of Urbach energy

Example of ex-situ analysis on multi-nanolayers

Magnozzi M. et al., Opt. Mater. 75, 94 (2018)

200 m

Tracking macroscopic optical properties of coatings during annealing

The composition of the Ti: Ta_2O_5 coating and the annealing protocol are **the same employed in current GWD mirrors**.

S. Colace et al., Class. Quant. Grav. 41 175016 (2024)

Uni**Ge** | DIFI

Key takeaways from the in-situ annealing of titania-tantala

The data indicate that:

- the largest variations occur during the heating ramp not during the plateau
- the onset of the variations occur at temperatures slightly higher than the deposition temperature
- **the evolution** of the considered coating properties **is still ongoing** after 10 hours at the maximum temperature

Implications for the annealing protocol of titania-tantala:

- increasing the soaking time could bring the coating in a different state probably one having better performances for GWD mirrors
- **deposition parameters** (incl. substrate temperature) **and annealing should be optimized together** when searching for the best performing coatings.

Summary and perspectives

Monitoring in-situ & in real time the annealing of optical coatings can provide **unique insights** into the properties, initial state and possible evolution of the coatings for GWD mirrors.

Ex-situ and in-situ characterization approaches are **complementary and both necessary**.

Each choice of coating composition (Ti:GeO₂, Ti:SiO₂, SiN, etc.) requires a **dedicated optimization** of the annealing parameters.

In-situ, real-time diagnostics tools can facilitate the identification of the best annealing parameters and therefore **facilitate the search for the best performing coatings**.

Ongoing work at OptMatLab:

apply the in-situ monitoring tools to study other high-index candidate materials.