Birefringence measurements of substrate materials and coatings for Einstein Telescope

October 2nd, 2024

G. Zavattini, University and INFN - Ferrara

Group composition:

Guido ZavattiniStaff FerraraAndrea MazzolariStaff FerraraGiovanni Di DomenicoStaff FerraraAurelie MaillietPost-Doc FerraraAlina SoflauMaster's student FerraraFederico Della ValleStaff SienaEmilio MariottiStaff Siena

Finanziato dall'Unione europea NextGenerationEU

GRASS 2024, Trento, 2st October 2024

Summary

- Brief background
- Birefringence measurements in transmission
- Birefringence measurements in reflection
- Comments and questions

Birefringence and ellipticity

The index of refraction is a complex number: $\tilde{n} = n + i\kappa$

- In a birefringent medium $n_{\parallel} \neq n_{\perp}$
- A linearly polarized beam passing through a birefringent medium will acquire an ellipticity $\psi = \pm a/b$ (the sign determines the rotation direction of E_{γ})

$$\mathbf{E}_{\gamma} = E_{\gamma} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \Delta \phi = \frac{2\pi (n_{\parallel} - n_{\perp})L}{\lambda}$$
$$\mathbf{E}_{\gamma}' = E_{\gamma} \begin{pmatrix} 1 + i\frac{\Delta\phi}{2}\cos 2\vartheta \\ i\frac{\Delta\phi}{2}\sin 2\vartheta \end{pmatrix}, \qquad \Delta \phi \ll 1$$

Immaginary

$$\psi = \pm \frac{a}{b} \approx \frac{\Delta \phi}{2} \sin 2\theta = \frac{\pi (n_{\parallel} - n_{\perp})L}{\lambda} \sin 2\theta$$

Dichroism and rotation

The index of refraction is a complex number: $\tilde{n} = n + i\kappa$

- In a dichroic medium $K_{\parallel} \neq K_{\perp}$
- A linearly polarized beam passing through a dichroic medium will acquire a rotation ε

If $|\psi| = \varepsilon$, both will give the same ouput power in a direction perpendicular to E_{γ} but have very different origins

Measuring the ellipticity of a sample

The typical elipticity one would like to measre is $\psi \lesssim 10^{-4}$

DC direct detection is excluded $I_{\rm out} = I_0 \left[\sigma^2 + \psi^2 \sin^2 2\vartheta \right]$ Extinction $\sigma^2 \approx 10^{-7}$, $\psi^2 \leq 10^{-8}$

- Add a known time varying ellipticity $\eta(t)$ to ψ . With η , $\psi << 1$, these add algebraically
- Also make the ellipticity $\psi(t)$ time dependent by rotating the polarization in the sample using a HWP

$$I_{\text{out}} = I_0 \left\{ \sigma^2 + |i\psi(t) + i\eta(t)|^2 \right\} = I_0 \left\{ \sigma^2 + \eta^2(t) + 2\eta(t)\psi(t) + \dots \right\}$$

The output power is now linear in the ellipticity $\psi(t)$.

Ellipiticity vs Rotation

- Ellipticities ψ , η are imaginary numbers whereas rotations ϕ are real. If small, they also add up algebraically.
- After the analyzer, the electric field and the power will be

$$\vec{E}_{\text{out}} = E_0 \begin{pmatrix} 0\\ \varphi(t) + i\psi(t) + i\eta(t) \end{pmatrix}$$

$$I_{\text{out}} = I_0 |\varphi(t) + i\psi(t) + i\eta(t)|^2 = I_0 \left[\varphi(t)^2 + \eta(t)^2 + \psi(t)^2 + 2\eta(t)\psi(t)\right]$$

• There is no product between φ and η . Rotations do not beat with ellipticities. With an ellipticity modulator (time dependent) one measures only ellipticities.

Measuring the ellipticity of a sample

- Add a known time varying ellipticity $\eta(t)$ to ψ . With η , $\psi \ll 1$, these add algebraically
- Also make the ellipticity ψ (t) time dependent by rotating the polarization in the sample using a HWP

Baseline scheme for substrate birefringence measurements

 $lpha_{1,2}$ are the phase errors from π of the two HWPs and $\phi(t)$ is their rotation angle

- ✓ 532 nm beam (HWP -> FWP) allows independent alignment of the rotating HWPs to reduce 1^{st} , 3^{rd} and 4^{th} harm.
- \checkmark At 1064 nm, control the temperature of the wave-plates to reduce the dominating 2nd harmonic
- ✓ Reduced systematic peaks such that $\alpha_{1,2}^{(1,2,3)} \lesssim 10^{-4}$ at all relevant harmonics and in particular for the 4th harmonic, $\alpha_{1,2}^{(4)} \lesssim 10^{-5}$. Can be subtracted vectorially → Ellipticity sensitivity $\psi_0 \approx 10^{-6}$
- ✓ Can produce X-Y 'maps' of the static average birefringence of a substrate: $\Delta n = \frac{\psi_0 \lambda}{\pi I}$
- ✓ Optical path difference sensitivity $S_{\text{OPD}} \leq 10^{-12} \text{ m}$
- ✓ Calibration with the Cotton-Mouton effect in air using a rotating 2.5 T permanent magnet

Generation of spurious harmonics from rotating HWPs $\alpha_{1,2}(\phi, T, r) = \alpha_{1,2}^{(0)}(T) + \alpha_{1,2}^{(1)}\cos\phi(t) + \alpha_{1,2}^{(2)}\cos 2\phi(t) + \dots$

EPJC 82 (2022) 159

Example of a demodulated spectrum

Subtraction of the 4th harmonics with and without the sample is done vectorially.

Example of birefringent map of silicon

- Silicon crystal samples (100), L = 1 mm thick, 2.5 cm x 2.5 cm, cut in house from larger sample
- Measurements using 1064nm (significant absorption). Will be repeated with 1550nm
- Subtracted vectorially the waveplate contribution (small effect)
- Held with clamp from bottom edge (left): extra stress can be seen due to clamp.
- Held without clamp (right). Upper half maintains same birefringence.
- Non uniform birefringence.

Reflective coating birefringence measurements

Reflection scheme for static birefringence maps of reflective coatings:

- At present we have a 1064 nm and 532 nm beams aligned.
- When mapping the sample, the reflected beam must be re-aligned on the PSD.
- Zero measurements cannot be made without the sample.
- $0^{\circ} 90^{\circ}$ measurements allow the separation of the sample and HWP contributions.
- Installed a rotating magnet for calibration.

Example of birefringent map of coatings: first samples

- Silver mirror.
- Very low birefringence.
- Measured ellipticity is dominated by the rotating half-waveplate.

- Dielectric mirror with T $\approx 10^{-3}$. 'Uniform'.
- Polarization can be aligned in cavities.
- Higher reflectivity, lower birefringence. For F $\approx 10^5$, $\Delta n \cdot L \approx 3 \times 10^{-13} \text{ m}.$
- Brandi et al. Appl. Phys. B 65, 351–355 (1997);
 F. Bielsa, Appl Phys B (2009) 97: 457–463
 1e–9

Pictures

At present being used with rotating HWPs.

General view from input side

General view from output side

Comments and questions: 1

KAGRA

- The measured residual birefringence of sapphire perpendicular to the C-axis is $\Delta n \approx 10^{-6}$ with 15 cm thick substrates.
- Non uniform birefringence map of substrate (amplitude and direction). Phase shifts of \approx 1 rad.
- $\Delta n \approx 10^{-7}$ in silicon^{*}. Non uniform here too. For ET the desired thickness is 67 cm.
- → Phaser shift ≈ 0.3 rad. ET would like a X10 better sensitivity
- Is $\Delta n \leq 10^{-8}$ necessary? If Δn is uniform \rightarrow align polarization with axis of system birefringence including coatings? How?

-1.300

-1.175

-1.050

0.925

0.800 .

0.675

0.550

0.425

0.300

0.175

15

Figure 4. Mean distribution of both birefringence Δn and θ -angle, calculated from the six input-polarization combinations which led to no miscalculations.

Zeidler, S., *et al.* Correlation between birefringence and absorption mapping in large-size Sapphire substrates for gravitational-wave interferometry. *Sci Rep* **13**, 21393 (2023)(https://doi.org/10.1038/s41598-023-45928-0)

*see also C. Krüger et al. Class. Quantum Grav. 33 (2016) 015012

Comments and questions: 2 MIRRORS

1. Our experience and other's too (Toulouse BMV group) have found that for the static birefringence of coatings:

 $\Delta n_{\text{high finesse}} < \Delta n_{\text{low finesse}}$

- 2. There seems to be a 'more' uniform map compared to substrates (over ≈ few centimeters).
- The origin of this birefringence is not clear. C. Rizzo's group, Toulouse, attribute the birefringence to the first layer near to the substrate (F. Bielsa, Appl Phys B (2009) 97: 457–463). The cause is the stress between the substrate and first layer of the coating?
- In our Fabry-Perot based polarimeter for VMB measurements with a finesse = 700000 the static mirror birefringences were oriented to subtract each other and the polarisation aligned to the axis of the cavity as a whole. In this way the two eigenmodes of the cavity are almost superimposed.

Fig. 6 Two different numerical calculations for the induced phase retardation per reflection as a function of (1 - R). Solid curve: birefringence only for the first layer just after the substrate. Dots with error bars: calculation with random birefringence per each layer. Crosses: measurements plotted in Fig. 3

Thank you for your attention

Induced birefringence from stress

- Residual stress will generate a (static) birefringence map inside the sample
- External stress will also generate a birefringence

$$\Delta n = C_{\rm SOC} \left(\sigma_1 - \sigma_2 \right)$$

- C_{SOC} = Stess optic coefficiente [Pa^{-1}], σ_1 and σ_2 stress along perpendicular directions [Pa]
- Typical values of stress optic coefficient: $C_{SOC} \approx 10^{-12} Pa^{-1}$
- Fused silica: $3.4 \ge 10^{-12} Pa^{-1}$
- Crystalline Silicon (axes): $(0.6 \div 1) \ge 10^{-12} Pa^{-1}$
- Some initial work done for stress induced birefringence in Silicon as ET-LF substrate:
 C. Krüger et al. Class. Quantum Grav. 33 (2016) 015012
- Sapphire: could not find a value for C_{SOC} .

Alignment of sample in refelction

Disentangle HWP effect from sample signal: dual phase de-modulation at $4\nu_{w}$

- Sample at 0°: $ec{V}_{\psi_{ ext{HWP}}} + ec{V}_{\psi_{ ext{sample}}}$
- Sample at 90°: $\dot{V}_{\psi_{\mathrm{HWP}}} \dot{V}_{\psi_{\mathrm{sample}}}$
- From semi-sum and semi-difference, one separates the two effects ٠
- Graphs of the X and Y components of $\vec{V}_{\psi_{HWP}}$ and $\vec{V}_{\psi_{sample}}$ as a function of beam incident angle on the sample (silver mirror). ٠
- The HWP signals depend significantly on the incident angle: the reflected beam passes through the HWP in a different point ٠

0.4