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Summary

* Brief background
* Birefringence measurements in transmission
* Birefringence measurements in reflection

 Comments and questions



Birefringence and ellipticity

The index of refraction is a complex number: n = n + 1K

* Ina birefringent medium n# n,

* Alinearly polarized beam passing through a birefringent medium will acquire
an ellipticity y =+ a/b (the sign determines the rotation direction of E,)
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Dichroism and rotation

The index of refraction is a complex number: n = n + 1K

* In adichroic medium xj # x|
* Alinearly polarized beam passing through a dichroic medium will acquire a rotation ¢
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If [y| = ¢, both will give the same ouput power in a direction perpendicular to E, but have very different origins
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Measuring the ellipticity of a sample

The typical elipticity one would like to measre is ¢ < 10
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DC direct detection is excluced
: Lot = Iy [0® + 4” sin® 20]

Extinction 62 = 107, y? < 108

« Add a known time varying ellipticity 77(?) to w. With 77, << 1, these add algebraically

* Also make the ellipticity w(t) time dependent by rotating the polarization in the sample using a HWP
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The output power is now linear in the ellipticity y(t).




Ellipiticity vs Rotation

* Ellipticities y,n are imaginary numbers whereas rotations ¢ are real. If small, they
also add up algebraically.

» After the analyzer, the electric field and the power will be

= 0
Fow = o (so(t) +i(t) + in(t))
B Lo = lololt) + (1) + () = Io () +n(t)?* + (1) + 20t} (1)

* There is no product between @ and 77. Rotations do not beat with ellipticities. With
an ellipticity modulator (time dependent) one measures only ellipticities.



Measuring the ellipticity of a sample

« Add a known time varying ellipticity 1(¢) to w. With 1, << 1, these add algebraically

* Also make the ellipticity w(t) time dependent by rotating the polarization in the sample using a HWP
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Baseline scheme for substrate birefringence measurements
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(1 9 are the phase errors from n of the two HWPs and gb is their rotation angle

v' 532 nm beam (HWP -> FWP) allows independent alignment of the rotating HWPs to reduce 1, 3" and 4t harm.

v' At 1064 nm, control the temperature of the wave-plates to reduce the dominating 2" harmonic

1,2,3
v Reduced systematlc peaks such that a§ 2 ) < 10™ 4 at all relevant harmonics and in particular for the 4t

harmonic, ozg % < 107°. Can be subtracted vectorlally =>» Ellipticity sensitivity yo = 10

v’ Can produce X-Y ‘maps’ of the static average birefringence of a substrate: An = =22

L
v’ Optical path difference sensitivity Sopp < 1012m

v’ Calibration with the Cotton-Mouton effect in air using a rotating 2.5 T permanent magnet




Generation of spurious harmonics from rotating HWPs
012(, T, 7) = i 3(T) + @'y cos (t) + o) cos 20(t) +
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corresponding to an optical path difference/ An dL <1072 m

v' The HWPs can be aligned separately using a frequency doubled laser @ 532 nm

EPJC 82 (2022) 159



Example of a demodulated spectrum
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Integration time = 32 s; Hanning window.

—— opd_no_sample ‘
— opd_si_sample_corretto| =

Frequency (Hz)

Peak due to silicon
birefringence:
An=1.1X107;L=1mm

Calibration Cotton-

Mouton peak of air.
An=39X10%;1L=0.84m

Subtraction of the 4t harmonics with and without the sample is done vectorially.
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Example of birefringent map of silicon

Y (mm)

Silicon crystal samples (100), L = 1 mm thick, 2.5 cm x 2.5 cm, cut in house from larger sample
Measurements using 1064nm (significant absorption). Will be repeated with 1550nm
Subtracted vectorially the waveplate contribution (small effect)

Held with clamp from bottom edge (left): extra stress can be seen due to clamp.

Held without clamp (right). Upper half maintains same birefringence.

Non uniform birefringence.
oA
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Reflective coating birefringence measurements

Reflection scheme for static birefringence maps of reflective coatings:
e At present we have a 1064 nm and 532 nm beams aligned.
*  When mapping the sample, the reflected beam must be re-aligned on the PSD.
e Zero measurements cannot be made without the sample.

e (0°-90° measurements allow the separation of the sample and HWP contributions.
* |nstalled a rotating magnet for calibration.

PEM HWP
|, Z Mirror static birefringence
PDE ZS > < }% map measurement
74 0° and 90° measurements
n @ Vm \I] @ V\y: 4VP
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Example of birefringent map of coatings: first samples

e Dielectric mirror with T = 103. ‘Uniform’.

e Silver mirror. * Polarization can be aligned in cavities.

* Very low birefringence. * Higher reflectivity, lower birefringence. For F = 10°,
* Measured ellipticity is dominated by the An-L=>3X10" m.
rotating half-waveplate. * Brandi et al. Appl. Phys. B 65, 351-355 (1997);

F. Bielsa, Appl Phys B (2009) 97: 457-463
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Pictures
At present being used with rotating HWPs.

General view from input side » General view from output side
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Comments and questions: 1
KAGRA

* The measured residual birefringence of sapphire perpendicular to the C-axis is An = 10 with 15 cm thick substrates.
* Non uniform birefringence map of substrate (amplitude and direction). Phase shifts of = 1 rad.

An = 107 in silicon*. Non uniform here too. For ET the desired thickness is 67 cm.

=» Phaser shift = 0.3 rad. ET would like a X10 better sensitivity

Is An < 10® necessary? If An is uniform =» align polarization with axis of system birefringence including coatings? How?

If non uniform...
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Figure 4. Mean distribution of both birefringence An and #-angle, calculated from the six input-polarization
combinations which led to no miscalculations.

Zeidler, S., et al. Correlation between birefringence and absorption mapping in large-size Sapphire substrates for
15 gravitational-wave interferometry. Sci Rep 13, 21393 (2023)(https://doi.org/10.1038/s41598-023-45928-0) *see also C. Kriger et al. Class. Quantum Grav. 33 (2016) 015012



Comments and questions: 2
MIRRORS

1. Our experience and other’s too (Toulouse BMV group) have
found that for the static birefringence of coatings:

Anhigh finesse < AnIow finesse

2. There seems to be a ‘more’ uniform map compared to
substrates (over = few centimeters).

* The origin of this birefringence is not clear. C. Rizzo’s group,
Toulouse, attribute the birefringence to the first layer near to the
substrate (F. Bielsa, Appl Phys B (2009) 97: 457—-463). The cause is
the stress between the substrate and first layer of the coating?

* In our Fabry-Perot based polarimeter for VMB measurements
with a finesse = 700000 the static mirror birefringences were
oriented to subtract each other and the polarisation aligned to
the axis of the cavity as a whole. In this way the two eigenmodes
of the cavity are almost superimposed.
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Fig. 6 Two different numerical calculations for the induced phase re-
tardation per reflection as a function of (1 — R). Solid curve: birefrin-
gence only for the first layer just after the substrate. Dots with error
bars: calculation with random birefringence per each layer. Crosses:
measurements plotted in Fig. 3
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Thank you for your attention



Induced birefringence from stress

Residual stress will generate a (static) birefringence map inside the sample

* External stress will also generate a birefringence
An = CSOC (0‘1 — 0'2)

* (Csoc = Stess optic coefficiente [Pal], o; and o, stress along perpendicular directions [Pa]
» Typical values of stress optic coefficient: Csqc = 10712 Pal

* Fused silica: 3.4 x 10712 Pgt

* Crystalline Silicon (axes): (0.6 = 1)x 1012 Pgl

* Some initial work done for stress induced birefringence in Silicon as ET-LF substrate:
C. Kruiger et al. Class. Quantum Grav. 33 (2016) 015012

* Sapphire: could not find a value for C¢g.
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Alignment of sample in refelction

Disentangle HWP effect from sample signal: dual phase de-modulation at 4v,,

« Sample at 0°: ‘7¢HWP + szampm

e Sample at 90°: ‘7¢HWP — ‘7¢3ample

* From semi-sum and semi-difference, one separates the two effects

* Graphs of the X and Y components of Vwpr and V%ample as a function of beam incident angle on the sample (silver mirror).

* The HWP signals depend significantly on the incident angle: the reflected beam passes through the HWP in a different point
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