

Maastricht University

High-Quality Mirrors for Future Gravitational-Wave Detectors

Alex Amato^{1,2}

on behalf of the GWFP group of Maastricht University

1. Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands

GRAvitational-waves Science&technology Symposium GRASS 2024

Gravitational-Waves Detectors

ARC Centre of Excellence for Gravitational Wave Discover

Alex Amato

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 10³⁰kg

GRASS 2024

Future Gravitational-Waves Detectors

Future Gravitational-Waves Detectors

GRASS 2024

Coating Thermal Noise

https://apps.et-gw.eu/tds/?content=3&r=17196

Power Spectral Density:

W. Yam, S. Gras, and M. Evans Phys. Rev. D 91, 042002 (2015) Approximation from: T. Hong et al. Phys. Rev. D 87, 082001 (2013)

Coating Thermal Noise (CTN) reduction comes from:

- Temperature
- Coating Thickness
- Laser beam size
- Mechanical Parameters

(Young modulus of Substrate Y' and Coating Y')

Coating loss angle

The Einstein Telescope Low Frequency (ET-LF) detectors will use cryogenic temperatures and large mirrors

Steinlechner J. et al., Phys. Rev. Lett., 120, 263602 (2018).

TABLE I. Mechanical loss ϕ and refractive index *n* used for all wavelengths considered.

	Mechanical loss $\phi \times 10^{-4}$				
Temperature [K]	SiO ₂	Ti:Ta ₂ O ₅	~		
290 120	0.4 [16] 1.7 [17]	2.4 [16] 3.3 [34]	Materials used in		
20	7.8 [17]	8.6 [34]	current detectors		
<i>n</i> (refr. Index)	1.5	2.05			
κ (ext. Coeff.)	$< 10^{-6}$	$< 10^{-6}$			

substrate (s)

Bragg mirror

ETM = 38 layers ITM = 16 layers

^aOur measurements.

^bUpper limit from sample without heat treatment.

CTN problem at cryogenic temperatures

Low Index

SiO₂

High Index

Ti:Ta₂O₅

Steinlechner J. et al., Phys. Rev. Lett., 120, 263602 (2018).

TABLE I. Mechanical loss ϕ and refractive index *n* used for all wavelengths considered.

		Mechanical loss $\phi \times 10^{-4}$				
Temperature [K]	SiO ₂	$Ti:Ta_2O_5$	a-Si ^a	SiN		
290	0.4 [16]	2.4 [16]	0.2	0.8 [32,33]		
120	1.7 [17]	3.3 [34]	≤ 0.5 ^b	0.2 [32,33]		
20	7.8 [17]	8.6 [34]	≤ 0.2 ^b	0.1 [32,33]		
<i>n</i> (refr. Index)	1.5	2.05	3.65	2.17 [35]		
κ (ext. Coeff.)	$< 10^{-6}$	< 10 ⁻⁶	3.5×10	$^{-5}$ 1.2 × 10 ⁻⁵		

Bragg mirror

^aOur measurements.

^bUpper limit from sample without heat treatment.

Absorption problem

Problem: The main problem in using aSi and SiN is the relatively high optical absorption.

Solution: Use a top layer of crystalline silicon to reflect \approx 70% of laser power before it reaches the amorphous layers and reduce the absorption.

Problem: The main problem in using aSi and SiN is the relatively high optical absorption.

Solution: Use a top layer of crystalline silicon to reflect \approx 70% of laser power before it reaches the amorphous layers and reduce the absorption.

a) A SOI wafer is adopted to obtain a crystalline silicon layer as thin as 100 nm.

Problem: The main problem in using aSi and SiN is the relatively high optical absorption.

Solution: Use a top layer of crystalline silicon to reflect \approx 70% of laser power before it reaches the amorphous layers and reduce the absorption.

- a) A SOI wafer is adopted to obtain a crystalline silicon layer as thin as 100 nm.
- b) An amorphous aSi/SiN HR coating, which displays a CTN of 2.56 x 10^{-22} m/ \sqrt{Hz} at 20 K and at 100 Hz, is deposited on the SOI.

Problem: The main problem in using aSi and SiN is the relatively high optical absorption.

Solution: Use a top layer of crystalline silicon to reflect \approx 70% of laser power before it reaches the amorphous layers and reduce the absorption.

- a) A SOI wafer is adopted to obtain a crystalline silicon layer as thin as 100 nm.
- b) An amorphous aSi/SiN HR coating, which displays a CTN of 2.56 x 10^{-22} m/ \sqrt{Hz} at 20 K and at 100 Hz, is deposited on the SOI.
- c) The SOI with the multilayer is bonded to the mirror substrate on the side of the stack.

NWO - VI.Vidi.203.062

Crystalline-silicon Top-layer Design

Problem: The main problem in using aSi and SiN is the relatively high optical absorption.

Solution: Use a top layer of crystalline silicon to reflect \approx 70% of laser power before it reaches the amorphous layers and reduce the absorption.

- a) A SOI wafer is adopted to obtain a crystalline silicon layer as thin as 100 nm.
- b) An amorphous aSi/SiN HR coating, which displays a CTN of 2.56 x 10^{-22} m/ \sqrt{Hz} at 20 K and at 100 Hz, is deposited on the SOI.
- c) The SOI with the multilayer is bonded to the mirror substrate on the side of the stack.
- d) The thick base crystalline silicon wafer and the SiO₂ layers are etched so to leave the thin crystalline silicon layer on top of the mirror.

Materials

Single layers of aSi, deposited by *magnetron sputtering* on silica substrates at Padova University. Two different gases during production:

🛛 100% Ar

□ 95% Ar and 5% Hydrogen

Treatments

Samples annealed in air for 4h at temperatures up to 600° C, with a step of 100° C.

Tools

- Cary 5000 spectrophotometer for n.
- Photothermal Common-path Interferometry (PCI) for k @1550nm.

GRASS 2024

Studies related the absorption in the NIR region of aSi to the dangling bonds (unpaired electron-spin density) (Phys. Rev. Lett. 131, 256902)

Hydrogenation can help reducing dangling bond and hence absorption (<u>Phys. Rev. Lett. 121, 191101</u>)

Optical Properties of aSi

IP: Phys. Rev. D 103.4 (2021): 042001.
ECR-IBS: Phys. Rev. Lett. 121 (2018): 191101.

IBS: *Phys. Rev. D* 103.4 (2021): 042001.
IBS: *Phys. Rev. D* 93 (2016): 062005.

Alex Amato

GRASS 2024

Maastricht University 15

Materials

Single layers of SiN, deposited by *Ion Beam Sputtering* by LMA on silica substrate. (Sample S17033) Film composition (RBS in Padova University): SiN_{1.35}Ar_{0.015} New samples: arXiv:2409.07147 (2024)

Treatments

Coatings annealed in air, 4h at 200°C, 300°C, 400°C, 500°C and 600°C, consecutively.

Tools

- Cary 5000 spectrophotometer for n.
- Photothermal Common-path Interferometry (PCI) for k @1550nm.

GRASS 2024

Optical Properties of SiN

Ο PECVD SiN_{0.33}H_{0.58}: Class. Quantum Grav. 39 (2022) 15LT01.

Future Perspectives

Coating Deposition and Characterization

□ Further reduction of optical absorption for aSi is needed. We need to prevent desorption of H content (?) We need to use higher deposition temperature (?)

We have problems of bubble formation after 450-500 °C heat treatment. > Stress (?)

Argon (?)

> Water (?)

SiN single layer investigation just started at 1550 nm on an old sample and further investigation is needed on new samples.

□ aSi/SiN multilayer investigation is missing.

Bonding and Etching

 \Box Bonding procedure \rightarrow some tests already done before this project but need further investigation.

 \Box Etching procedure \rightarrow ongoing (some tests already done).

Acknowledgments

This project is funded by NWO – VI.Vidi.203.062.

Thank you for your attention!

