Two-color Einstein-Podolsky-Rosen entangled state in the sub-kHz regime

Andrea Grimaldi, Valerii Novikov, Eugene S. Polzik, and Tulio Brito Brasil.

KØBENHAVNS UNIVERSITET

What is entanglement?

Two systems which cannot be separately described by pure states.

They are linked by a correlation which cannot be classically explained.

Multiple applications

Entanglement for Quantum Sensing

```
"Indirect" manipulation of the probe state.
```


Entanglement for Quantum Sensing

Measurements of two noncommuting variables by using an external reference frame with an effective negative mass.

Signal probes the sensor **Idler** probes the Reference Frame

The relative position $X - X_r$ and the total momentum $P + P_r$ can be measured **at the same time with** *arbitrary precision*.

Optical Resonator enhances the process, and select the frequencies ω_s and ω_i :

- ω_s matches the interferometer frequency
- ω_i is defined by the protocol

What do we need?

Coupling the ITF with the external Quantum Reference.

Two different Wavelength:

- Interferometer works at 1064nm
- External Quantum Reference works at 852nm

Two different Colour

How to generate entanglement between two wavelenght?

Entanglement witness by Quantum Noise Reduction

Requirement on the detection phase

Generic Quadrature

 $q(\chi) = X \cos \chi + P \sin \chi$

 χ detection phase respect to the pump phase $\varphi_{pump}/2$

Quantum Noise reduction is obtained when **measuring symmetrically respect the pump phase** $\varphi_{pump}/2$

$$\chi_{+} = -\chi_{-}$$
$$Q(\chi) = q_{s}(\chi) - q_{s}(-\chi)$$

Coherent Control Phase lock

Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band H. Vahlbruch et al., Phys. Rev. Lett. **97**, 011101 (2006) Yap, M.J., Altin, P., McRae, T.G. et al. Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. Nat. Photonics 14, 223–226 (2020).

New Locking Scheme

Error Signals Beat note between CC beams and Local Oscillator

LO1064 is free running

CC Seed is phase locked to the **LO1064**

LO852 is locked to CC852

Phase Noise Calibration.

Calibration of the CC signals

The calibration of the CC signal is based on the following model. When we scan the phase we have a signal that is:

$$V(\phi) = rac{V_{pp}}{2}\sin(\phi)$$

The phase in function of the voltage signal is given by:

$$\phi = \arcsin\left(rac{2V(\phi)}{V_{pp}}
ight)$$

Sub Kilohertz Two Colour EPR entanglement

Prof. Polzik

European

Commission

Prof. Zeuthen

THANK YOU!

T.B. Brasil; A. Grimaldi; V. Novikov;