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Summary of current frequency dependant squeezing setup
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Simplified scheme of a frequency dependant
sgueezing system
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Summary of current frequency dependant squeezing setup

i Homodyne detection

Main laser
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1064 nm
\ H
Pump @ 532 nm J\

Local oscillator @ 1064 nm

T
532 nm %’-- [(......-...----)]
Filter cavity

Simplified scheme of a frequency dependant
sgueezing system

The filter cavity allow to introduce a frequency
Q, around which the squeezing ellipse
rotates

me L: cavity length

t = T = <

\/iLF(Tz) F: finesse of the cavity (depends

on mirrors reflectivities r.)
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Summary of current frequency dependant squeezing setup
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consequence of filter
cavity configuration
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Simplified scheme of a frequency dependant
sgueezing system

The filter cavity allow to introduce a frequency
Q, around which the squeezing ellipse
rotates

me L: cavity length

t = T = <

\/iLF(Tz) F: finesse of the cavity (depends

on mirrors reflectivities r.)
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Summary of current frequency dependant squeezing setup
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Local oscillator @ 1064 nm
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squeesing consequence of filter
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103

Simplified scheme of a frequency dependant
sgueezing system

The filter cavity allow to introduce a frequency
Q, around which the squeezing ellipse

Reduction of \
radiation
pressure (RP)
noise below Q_

' RP noise o /P

Total
antum noise
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Shot noise
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Summary of current frequency dependant squeezing setup
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Simplified scheme of a frequency dependant
sgueezing system

The filter cavity allow to introduce a frequency
Q, around which the squeezing ellipse
rotates
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What about the next generation of detectors ?
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What about the next generation of detectors ?

The example of Einstein Telescope - Low Frequency (ET-LF):

.
Quantum noise
Seismic noise

Newtonian noise
\ = = Suspension thermal noise
L. = = = Total mirror thermal noise
\ Excess gas noise
10— NN\———— = ET—LF: Total noise
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What about the next generation of detectors ?

The example of Einstein Telescope - Low Frequency (ET-LF):

More complex frequency dependance of quantum noise
The rotation curve allowed by a simple cavity is not enough
Current proposition: two two-mirror cavities in series

Quantum noise
Seismic noise
Newtonian noise

= =Suspension thermal noise
\ = = = Total mirror thermal noise
\ Excess gas noise
N\ === ET—LF: Total noise

Frequency/Hz
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What about the next generation of detectors ?

The example of Einstein Telescope - Low Frequency (ET-LF):

More complex frequency dependance of quantum noise
The rotation curve allowed by a simple cavity is not enough
Current proposition: two two-mirror cavities in series

What could be the role of three-mirror cavities (3MC) ?

At this stage, the use of three-mirror cavity for squeezing filtering is
an open questions.

To provide answers, we need to understand the squeezing
properties in the three-mirror cavity = First step is to have a
complete understanding of three-mirror cavity optical behavior
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Three-mirror cavity - model
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Modelisation of the three-mirror cavity
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Modelisation of the three-mirror cavity

Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior
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Modelisation of the three-mirror cavity

Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior

To characterize the system: how the global transmissivity and reflectivity of a three-mirror cavity
change when we modify the configuration ?
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Modelisation of the three-mirror cavity

° Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior

e Tocharacterize the system: how the global transmissivity and reflectivity of a three-mirror cavity
change when we modify the configuration ?

Step 1 - Fields propagation through the system
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Step 2 - Simulations
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Modelisation of the three-mirror cavity

° Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior
e Tocharacterize the system: how the global transmissivity and reflectivity of a three-mirror cavity

% change when we modify the configuration ?

O

a Step 1 - Fields propagation through the system Step 2 - Simulations
|
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= A - Schematic representation of the three-mirror cavity modelisation:
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Modelisation of the three-mirror cavity

25110902

° Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior

e Tocharacterize the system: how the global transmissivity and reflectivity of a three-mirror cavity
change when we modify the configuration ?

Step 1 - Fields propagation through the system Step 2 - Simulations

A - Schematic representation of the three-mirror cavity modelisation:
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lpTr 7 = itathg + rothy
I YRref = 18 +T10n  VTrans = it3Pa
«— «— Lz «—
Laser lpRef Vs W7 ¥ ¥s k: wave-vector; r. and t. reflection
and transmission coefficients of
; o o mirror “i"
B - Global reflection and transmission coefficients:
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Modelisation of the three-mirror cavity

° Linear three-mirror cavity: two sub-cavities interact together = despite simple configuration change
compared to a two-mirror cavity, it does not have a trivial/intuitive behavior
e Tocharacterize the system: how the global transmissivity and reflectivity of a three-mirror cavity

% change when we modify the configuration ?
O
a Step 1 - Fields propagation through the system Step 2 - Simulations
|
> . A A . .
= A - Schematic representation of the three-mirror cavity modelisation:;
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Three-mirror cavity resonance properties

25110902

Study of the transmitted
field as function of laser
detuning compared to
resonant frequency

Reference: simulation of a
two-mirror Fabry-Perot
cavity
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Three-mirror cavity resonance properties

25110902

Study of the transmitted
field as function of laser
detuning compared to
resonant frequency

Reference: simulation of a
two-mirror Fabry-Perot
cavity

Result: simulation of the
three-mirror cavity shows a
doubling of the
transmission peak caused
by the coupling between
sub-cavities
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How this “double-peak” shape varies as function of cavity parameters ?
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Double-peak modulation

Simulation

Initial configuration :
A =1064nm

Laser _ »
R,=R,=09

L,=05m

p]
LW 2

From initial configuration, we
can vary:
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Double-peak modulation

25110902

AIXIE
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Double-peak modulation

25110902

AIXIE
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= Symmetrical variation of maxima spacing
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Double-peak modulation

25110902

Initial configuration :
Ao, = 1064nm
R=R,=R,=09
L,=L,=05m

From initial configuration, we
canvary.
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Double-peak modulation

Simulation

Initial configuration :
A =1064nm

Laser
R =R,=R,=09
L,=L,=05m

From initial configuration, we

25110902

can vary:
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Double-peak modulation

Simulation

Initial configuration :
A, = 1064nm

aser
R=R,=R,=09
L,=L,=05m

From initial configuration, we
can vary:

Middle mirror
transmissivity

Input/end mirror

[0
O]
¢
I
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>
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@)
O
=
-
)
b
— transmissivity

Complementary role: middle mirror change position without
changing the maxima with/input and end mirror do the exact
opposite
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Double-peak modulation

Simulation

Initial configuration :
A, = 1064nm

aser
R=R,=R,=09
L,=L,=05m

From initial configuration, we
can vary:
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Microscopic spacing

of one sub-cavity
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Double-peak modulation

Simulation

Initial configuration :
A, = 1064nm

aser
R=R,=R,=09
L,=L,=05m

From initial configuration, we
can vary:
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Microscopic spacing

of one sub-cavity
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Double-peak modulation

Simulation

Initial configuration :

From initial configuration, we
can vary:
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Microscopic spacing

of one sub-cavity

25110902
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Double-peak modulation

Simulation

Initial configuration :

From initial configuration, we
can vary:
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Microscopic spacing

of one sub-cavity

25110902
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Double-peak modulation

- . 0

Simulation E 10 l
— o - Sy
3 53 0 [ '
® Initial configuration : = o 107 c J\
c A, =1064nm O = detuning i [\

‘ R=R,=R,=09 Q—-S f \\ J \\
= _— - O c / N— \
> From initial configuration, we = - / —— \
8 can vary: o ; 10-31 / \
O] / \
“ — Y ‘/ \
9 = o ) \\
= £ O 1044 P R1=0.9; R3=0.99 N
E U) LI_ - e e E
‘ = - ——- R1=0.99; R3=0.9
& = 100 '
0 - ' - . ' - . -
c -40 -30 -20 -10 0 10 20 30 40
= Av [MHz]
Microscopic spacing . . . o . .
of one sub-cavity = From a microscopically asymmetrical cavity, it is possible to induce an asymmetry
between maxima height by changing the ratio R1/R3
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Double-peak modulation

Initial configuration :
A, = 1064nm
aser

R=R,=R,=09
L,=L,=05m

From initial configuration, we
can vary:

Middle mirror
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Input/end mirror
transmissivity
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Microscopic spacing
of one sub-cavity

Combining mirrors transmissivity/cavity length
it is possible to drastically change the shape of
the double-peak: almost complete control on
resonance properties
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Variable finesse

We can consider the first sub cavity as an

Z equivalent mirror having properties
g (r',t’)) that depend on L,
|
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Variable finesse

60-
i We can consider the first sub cavity as an 501
% equivalent mirror having properties s 9
O ? 9 S 0 40
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Enough theory...

Does it work in practice ?
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Three-mirror cavity - prototype

at IJCLab (Orsay - France)
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Prototype configuration

Laser source: )\L = 1064nm
aser

Each extremal mirror is placed on an
independant piezoelectric stage
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Prototype configuration

Laser source: )\L = 1064nm
aser

Each extremal mirror is placed on an
independant piezoelectric stage

We test two different three-mirror cavity
setup having symmetrical/asymmetrical
sub-cavities length
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Setup A Setup B
Symmetrical Asymmetrical
configuration configuration

R,=R,=R, =09 R,=R,=R, =09
L, =L, =500mm L, =256mm, L, =16Imm
RoC, = RoC, =1000mm RoC, = RoC, = 150mm
RolC, = e2 RoC, =250mm
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Ongoing experiment... A few preliminary results
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Ongoing experiment... A few preliminary results

Double peak

Method: Send the exact same ramp to each piezo so that
each sub-cavity contracts/expands by the same amount =
equivalent to scan the laser frequency
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Ongoing experiment... A few preliminary results

Double peak

Method: Send the exact same ramp to each piezo so that
each sub-cavity contracts/expands by the same amount =
equivalent to scan the laser frequency

Piezo sensor [V]
Transmission photodiode [V]
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Double-peaks have been seen!
We are currently analysing the data
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Ongoing experiment... A few preliminary results

Double peak Variable finesse

Method: Send the exact same ramp to each piezo so that Method: Set the first sub-cavity length detuning (i.e. set the
each sub-cavity contracts/expands by the same amount = reflectivity of the virtual mirror) while scanning the second
equivalent to scan the laser frequency sub-cavity
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Double-peaks have been seen!
We are currently analysing the data
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Ongoing experiment... A few preliminary results

Double peak Variable finesse

)
Zw Method: Send the exact same ramp to each piezo so that Method: Set the first sub-cavity length detuning (i.e. set the
8 each sub-cavity contracts/expands by the same amount = reflectivity of the virtual mirror) while scanning the second
@) equivalent to scan the laser frequency sub-cavity
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Results from 6 weekends internship by 3™ year students:
Dou ble-pea ks have been seen! two regions separated by ~500nm where the finesse is
We are currently analysing the data dropping

We are doing a second data analysis to reduce uncertainties
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Ongoing experiment... A few preliminary results

Double peak Variable finesse

)
5» Method: Send the exact same ramp to each piezo so that Method: Set the first sub-cavity length detuning (i.e. set the
8 each sub-cavity contracts/expands by the same amount = reflectivity of the virtual mirror) while scanning the second
O equivalent to scan the laser frequency sub-cavity
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We are currently analysing the data dropping

We are doing a second data analysis to reduce uncertainties
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Summary
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Summary

Three-mirror cavity model

Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
Real-time tuning of the system

Need to pay attention to the cavity geometry for stability reasons (not presented here)

Complete tool for the design of optics and stability we made published on ArXiv.
Resonant behavior and stability of a linear three-mirror cavity

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model
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Summary

Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
Real-time tuning of the system

Need to pay attention to the cavity geometry for stability reasons (not presented here)
Complete tool for the design of optics and stability we made published on ArXiv.

Resonant behavior and stability of a linear three-mirror cavity

Three-mirror cavity model

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

e \We are doing simulations of squeezing filtering through a three-mirror cavity
Preparation for the implementation of a suspended 50m scale prototype at IICLab
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Summary

Three-mirror cavity model

Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
Real-time tuning of the system

Need to pay attention to the cavity geometry for stability reasons (not presented here)
Complete tool for the design of optics and stability we made published on ArXiv.

Resonant behavior and stability of a linear three-mirror cavity

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

e \We are doing simulations of squeezing filtering through a three-mirror cavity
e Preparation for the implementation of a suspended 50m scale prototype at IICLab

Thanks to its adaptability, three-mirror cavity could be a powerful

device for the optimization of squeezing filtering especially in the case

of Einstein Telescope
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Condition for doubling of transmission peak
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Double-peak modulation
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Macroscopic mirrors spacing
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