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Summary of current frequency dependant squeezing setup 
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Simplified scheme of a frequency dependant 
squeezing system

The filter cavity allow to introduce a frequency 
Ωt around which the squeezing ellipse 

rotates

L: cavity length 

F: finesse of the cavity (depends 
on mirrors reflectivities ri)

The rotation curve 
shape is a 

consequence of filter 
cavity configuration 

Reduction of 
radiation 

pressure (RP) 
noise below Ωc, 

Reduction of 
shot noise 
above Ωc

⇒ QN reduced 
at all 

frequencies
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Ωt around which the squeezing ellipse 

rotates

L: cavity length 

F: finesse of the cavity (depends 
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What about the next generation of detectors ?
C

on
te

xt
: F

re
q

u
en

cy
 D

ep
en

d
an

t 
Sq

u
ee

zi
n

g

3/182024/10/01



Paul Stevens

What about the next generation of detectors ?

The example of Einstein Telescope - Low Frequency (ET-LF):

More complex frequency dependance of quantum noise
The rotation curve allowed by a simple cavity is not enough

Current proposition: two two-mirror cavities in series
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At this stage, the use of three-mirror cavity for squeezing filtering is 
an open questions.

To provide answers, we need to understand the squeezing 
properties in the three-mirror cavity ⇒ First step is to have a 

complete understanding of three-mirror cavity optical behavior

Paul Stevens

What about the next generation of detectors ?

The example of Einstein Telescope - Low Frequency (ET-LF):

More complex frequency dependance of quantum noise
The rotation curve allowed by a simple cavity is not enough

Current proposition: two two-mirror cavities in series

What could be the role of three-mirror cavities (3MC) ?
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Modelisation of the three-mirror cavity
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 Problematic
● Linear three-mirror cavity: two sub-cavities interact together ⇒ despite simple configuration change 

compared to a two-mirror cavity, it does not have a trivial/intuitive behavior 
● To characterize the system: how the global transmissivity and reflectivity of a three-mirror cavity 

change when we modify the configuration ?
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Modelisation of the three-mirror cavity

 

Step 1 - Fields propagation through the system 

 

Step 2 - Simulations
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Modelisation of the three-mirror cavity

 

Step 1 - Fields propagation through the system 

 

Step 2 - Simulations

A - Schematic representation of the three-mirror cavity modelisation:
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Modelisation of the three-mirror cavity

 

Step 1 - Fields propagation through the system 

 

Step 2 - Simulations

Implement global 
transmission coefficient 

in a code

Parameters to vary:

● Laser wavelength 
(wave-vector)

● First, second and third 
mirrors transmission 
coefficients

● L1 and L2 distances
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Three-mirror cavity resonance properties

Study of the transmitted 
field as function of laser 

detuning compared to 
resonant frequency

Reference: simulation of a 
two-mirror Fabry-Perot 
cavity

Result: simulation of the 
three-mirror cavity shows a 
doubling of the 
transmission peak caused 
by the coupling between 
sub-cavities 

Simulation parameters: λLaser = 1064nm, Two-mirror Fabry-Perot cavity RInput Mirror = ROutput Mirror  = 0.9, LCavity = 
1m

Three-mirror cavity R1 = R2 = R3 = 0.9, L1 = L2 = 1m.
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Three-mirror cavity resonance properties

Study of the transmitted 
field as function of laser 

detuning compared to 
resonant frequency

Reference: simulation of a 
two-mirror Fabry-Perot 
cavity

Result: simulation of the 
three-mirror cavity shows a 
doubling of the 
transmission peak caused 
by the coupling between 
sub-cavities 

How this “double-peak” shape varies as function of cavity parameters ? 

Simulation parameters: λLaser = 1064nm, Two-mirror Fabry-Perot cavity RInput Mirror = ROutput Mirror  = 0.9, LCavity = 
1m

Three-mirror cavity R1 = R2 = R3 = 0.9, L1 = L2 = 0.5m.
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Double-peak modulation

Initial configuration : 
λLaser = 1064nm
R1 = R2 = R3 = 0.9
L1 = L2 = 0.5m

From initial configuration, we 
can vary:

Simulation

Input/end mirror 
transmissivity

Microscopic spacing 
of one sub-cavity
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Double-peak modulation

Initial configuration : 
λLaser = 1064nm
R1 = R2 = R3 = 0.9
L1 = L2 = 0.5m

From initial configuration, we 
can vary:

Simulation

Middle mirror 
transmissivity

Input/end mirror 
transmissivity

Microscopic spacing 
of one sub-cavity ⇒ Symmetrical variation of maxima spacing
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Double-peak modulation

Simulation

⇒ Intrinsic maxima with variation

Initial configuration : 
λLaser = 1064nm
R1 = R2 = R3 = 0.9
L1 = L2 = 0.5m

From initial configuration, we 
can vary:

Middle mirror 
transmissivity

Input/end mirror 
transmissivity

Microscopic spacing 
of one sub-cavity

Th
re

e-
m

irr
or

 c
av

ity
 - 

m
od

el

7/182024/10/01

arX
iv:

2406.07752

https://arxiv.org/abs/2406.07752
https://arxiv.org/abs/2406.07752


Paul Stevens

Double-peak modulation

Simulation

⇒ Intrinsic maxima with variation
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Double-peak modulation

Simulation

Complementary role: middle mirror change position without 
changing the maxima with/input and end mirror do the exact 

opposite

Initial configuration : 
λLaser = 1064nm
R1 = R2 = R3 = 0.9
L1 = L2 = 0.5m

From initial configuration, we 
can vary:
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Microscopic spacing 
of one sub-cavity
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Double-peak modulation

Simulation

⇒ Asymmetrical displacement of maxima
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Double-peak modulation

Simulation

⇒ Asymmetrical displacement of maxima
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Double-peak modulation

Simulation

⇒ Asymmetrical displacement of maxima

Maxima position 
for -50nm 
detuning 
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Double-peak modulation

Simulation

⇒ From a microscopically asymmetrical cavity, it is possible to induce an asymmetry 
between maxima height by changing the ratio R1/R3
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Double-peak modulation

Simulation

    Combining mirrors transmissivity/cavity length 
it is possible to drastically change the shape of 

the double-peak: almost complete control on 
resonance properties

Initial configuration : 
λLaser = 1064nm
R1 = R2 = R3 = 0.9
L1 = L2 = 0.5m

From initial configuration, we 
can vary:
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Variable finesse

We can consider the first sub cavity as an 
equivalent mirror having properties 

(r’1,t’1) that depend on L1
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Variable finesse

We can consider the first sub cavity as an 
equivalent mirror having properties 

(r’1,t’1) that depend on L1

First sub-cavity:

Resonant ⇒ Finesse minimum
Anti-resonant ⇒ Finesse maximum

Simulation parameters: R1 = R2 = R3  = 0.9, λLaser = 1064nm 
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Enough theory…

Does it work in practice ?
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at IJCLab (Orsay - France)

Paul Stevens 2024/10/01



Paul Stevens

Prototype configuration
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Laser source: λLaser = 1064nm

Each extremal mirror is placed on an 
independant piezoelectric stage

We test two different three-mirror cavity 
setup having symmetrical/asymmetrical 

sub-cavities length
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Prototype configuration

Setup A

Symmetrical 
configuration

R1 = R2 = R3  = 0.9
L1 = L2  = 500mm

RoC1 = RoC3 = 1000mm
RoC2 = ∞

Setup B

Laser source: λLaser = 1064nm

Each extremal mirror is placed on an 
independant piezoelectric stage

We test two different three-mirror cavity 
setup having symmetrical/asymmetrical 

sub-cavities length

Asymmetrical 
configuration

R1 = R2 = R3  = 0.9
L1 = 256mm, L2  = 161mm

RoC1 = RoC2 = 150mm
RoC3 = 250mm
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Ongoing experiment… A few preliminary results
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Ongoing experiment… A few preliminary results

Double peak
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Method: Send the exact same ramp to each piezo so that 
each sub-cavity contracts/expands by the same amount ⇒ 
equivalent to scan the laser frequency
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Method: Send the exact same ramp to each piezo so that 
each sub-cavity contracts/expands by the same amount ⇒ 
equivalent to scan the laser frequency

Double-peaks have been seen ! 
We are currently analysing the data 
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Method: Set the first sub-cavity length detuning (i.e. set the 
reflectivity of the virtual mirror) while scanning the second 
sub-cavity
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Ongoing experiment… A few preliminary results

Double peak Variable finesse
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Method: Send the exact same ramp to each piezo so that 
each sub-cavity contracts/expands by the same amount ⇒ 
equivalent to scan the laser frequency

Double-peaks have been seen ! 
We are currently analysing the data 
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Method: Set the first sub-cavity length detuning (i.e. set the 
reflectivity of the virtual mirror) while scanning the second 
sub-cavity

Results from 6 weekends internship by 3rd year students: 
two regions separated by ~500nm where the finesse is 

dropping

We are doing a second data analysis to reduce uncertainties
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equivalent to scan the laser frequency
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Summary

Three-mirror cavity model

● Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
● Real-time tuning of the system 
● Need to pay attention to the cavity geometry for stability reasons (not presented here)
● Complete tool for the design of optics and stability we made published on ArXiv: 

Resonant behavior and stability of a linear three-mirror cavity 

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

18/182024/10/01

https://doi.org/10.48550/arXiv.2406.07752


Paul Stevens

Summary

Three-mirror cavity model

● Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
● Real-time tuning of the system 
● Need to pay attention to the cavity geometry for stability reasons (not presented here)
● Complete tool for the design of optics and stability we made published on ArXiv: 

Resonant behavior and stability of a linear three-mirror cavity 

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

● We are doing simulations of squeezing filtering through a three-mirror cavity
● Preparation for the implementation of a suspended 50m scale prototype at IJCLab
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Summary

Three-mirror cavity model

● Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
● Real-time tuning of the system 
● Need to pay attention to the cavity geometry for stability reasons (not presented here)
● Complete tool for the design of optics and stability we made published on ArXiv: 

Resonant behavior and stability of a linear three-mirror cavity 

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

● We are doing simulations of squeezing filtering through a three-mirror cavity
● Preparation for the implementation of a suspended 50m scale prototype at IJCLab

Thanks to its adaptability, three-mirror cavity could be a powerful 
device for the optimization of squeezing filtering especially in the case 

of Einstein Telescope 
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Condition for doubling of transmission peak
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Double-peak modulation
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Macroscopic mirrors spacing
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