Resonant behavior of linear three-mirror cavities in the context of quantum noise reduction

Paul Stevens

paul.stevens@ijclab.in2p3.fr

2024/10/01

Laboratoire de Physique des 2 Infinis

- **1. Context: Frequency Dependant Squeezing**
- 2. Three-mirror cavity model
- 3. Three-mirror cavity prototype at *IJCLab (Orsay, France)*

4. Summary

Context: Frequency dependant squeezing

2024/10/01

Context: Frequency Dependant Squeezing

The example of Einstein Telescope - Low Frequency (ET-LF):

The example of Einstein Telescope - Low Frequency (ET-LF):

More **complex frequency dependance of quantum noise** The rotation curve allowed by **a simple cavity is not enough** Current proposition: **two two-mirror cavities in series**

The example of Einstein Telescope - Low Frequency (ET-LF):

More **complex frequency dependance of quantum noise** The rotation curve allowed by **a simple cavity is not enough** Current proposition: **two two-mirror cavities in series**

What could be the role of three-mirror cavities (3MC)?

At this stage, the use of three-mirror cavity for squeezing filtering is an open questions.

To provide answers, we need to understand the squeezing properties in the three-mirror cavity ⇒ First step is to have a complete understanding of three-mirror cavity optical behavior

Three-mirror cavity - model

2024/10/01

Modelisation of the three-mirror cavity

- Problematic
- Linear three-mirror cavity: two sub-cavities interact together ⇒ despite simple configuration change compared to a two-mirror cavity, **it does not have a trivial/intuitive behavior**

Modelisation of the three-mirror cavity

Problematic

- Linear three-mirror cavity: two sub-cavities interact together ⇒ despite simple configuration change compared to a two-mirror cavity, **it does not have a trivial/intuitive behavior**
- To characterize the system: how the global transmissivity and reflectivity of a three-mirror cavity change when we modify the configuration ?

Problematic	 Linear three-mirror cavity: two sub-cavities interact together ⇒ despite simple configuration change compared to a two-mirror cavity, it does not have a trivial/intuitive behavior To characterize the system: how the global transmissivity and reflectivity of a three-mirror cavity change when we modify the configuration ? 	
	Step 1 - Fields propagation through the system	Step 2 - Simulations

Three-mirror cavity - model

Modelisation of the three-mirror cavity

2024/10/01

Three-mirror cavity resonance properties

Study of the **transmitted field as function of laser detuning** compared to resonant frequency

<u>Reference:</u> simulation of a two-mirror Fabry-Perot cavity

Simulation parameters: $\lambda_{Laser} = 1064$ nm, Two-mirror Fabry-Perot cavity $R_{Input Mirror} = R_{Output Mirror} = 0.9$, $L_{Cavity} = 1$ m

Three-mirror cavity resonance properties

Study of the **transmitted field as function of laser detuning** compared to resonant frequency

<u>Reference:</u> simulation of a two-mirror Fabry-Perot cavity

<u>Result:</u> simulation of the three-mirror cavity shows a **doubling of the transmission peak** caused by the coupling between sub-cavities

How this "double-peak" shape varies as function of cavity parameters ?

Simulation Initial configuration : $\mathbf{\lambda}_{\text{Laser}} = 1064 \text{ nm}$ $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = 0.9$ $\mathbf{L}_1 = \mathbf{L}_2 = 0.5 \text{ m}$ From initial configuration, we can vary:

1.0

Wel 0.8

00

input

For

0.9

0.7

<u>a</u> 0.0

0.5 <mark>[9</mark>

0.4 patient

0.2 Superior

model

Three-mirror cavity -

Three-mirror cavity - model

model

Three-mirror cavity -

Three-mirror cavity - model

Variable finesse

2024/10/01

Variable finesse

Enough theory...

Does it work in practice ?

Three-mirror cavity - prototype at *IJCLab (Orsay - France)*

2024/10/01

Prototype configuration

Laser source: $\lambda_{Laser} = 1064$ nm

Each extremal mirror is placed on an independant piezoelectric stage

Prototype configuration

Laser source: $\lambda_{\text{Laser}} = 1064$ nm

Each extremal mirror is placed on an independant piezoelectric stage

We test **two different three-mirror cavity setup** having symmetrical/asymmetrical sub-cavities length

Setup A	Setup B	
Symmetrical configuration	Asymmetrical configuration	
R ₁ = R ₂ = R ₃ = 0.9	R ₁ = R ₂ = R ₃ = 0.9	
L ₁ = L ₂ = 500mm	L ₁ = 256mm, L ₂ = 161mm	
RoC ₁ = RoC ₃ = 1000mm	RoC ₁ = RoC ₂ = 150mm	
RoC ₂ = ∞	RoC ₃ = 250mm	

Three-mirror cavity - prototype

Double peak

Method: Send the exact same ramp to each piezo so that each sub-cavity contracts/expands by the same amount ⇒ equivalent to scan the laser frequency

Double peak

Method: Send the exact same ramp to each piezo so that each sub-cavity contracts/expands by the same amount ⇒ equivalent to scan the laser frequency

Double-peaks have been seen !

We are currently analysing the data

Double peak

Method: Send the exact same ramp to each piezo so that each sub-cavity contracts/expands by the same amount ⇒ equivalent to scan the laser frequency

Double-peaks have been seen !

We are currently analysing the data

Variable finesse

Method: Set the first sub-cavity length detuning (i.e. set the reflectivity of the virtual mirror) while scanning the second sub-cavity

Double peak

Method: Send the exact same ramp to each piezo so that each sub-cavity contracts/expands by the same amount ⇒ equivalent to scan the laser frequency

Double-peaks have been seen !

We are currently analysing the data

Variable finesse

Method: Set the first sub-cavity length detuning (i.e. set the reflectivity of the virtual mirror) while scanning the second sub-cavity

Results from 6 weekends internship by 3rd year students: two regions separated by ~500nm where the finesse is dropping

We are doing a second data analysis to reduce uncertainties

Double peak

Method: Send the exact same ramp to each piezo so that each sub-cavity contracts/expands by the same amount ⇒ equivalent to scan the laser frequency

Double-peaks have been seen !

We are currently analysing the data

Variable finesse

Method: Set the first sub-cavity length detuning (i.e. set the reflectivity of the virtual mirror) while scanning the second sub-cavity

Results from 6 weekends internship by 3rd year students: two regions separated by ~500nm where the finesse is dropping

We are doing a second data analysis to reduce uncertainties

Paper

 \supset

preparation

2024/10/01

Summary

Three-mirror cavity model

- Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
- **Real-time tuning** of the system
- Need to pay attention to the cavity geometry for stability reasons (not presented here)
- Complete tool for the design of optics and stability we made published on *ArXiv*. Resonant behavior and stability of a linear three-mirror cavity

Prototype implementation at *IJCLab*

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Summary

Three-mirror cavity model

- Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
- **Real-time tuning** of the system
- Need to pay attention to the cavity geometry for stability reasons (not presented here)
- Complete tool for the design of optics and stability we made published on *ArXiv*. Resonant behavior and stability of a linear three-mirror cavity

Prototype implementation at *IJCLab*

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

- We are doing simulations of squeezing filtering through a three-mirror cavity
- Preparation for the implementation of a suspended 50m scale prototype at IJCLab

Summary

Three-mirror cavity model

- Three-mirror cavities have resonant properties that are more modulable by design than two-mirror cavities
- **Real-time tuning** of the system
- Need to pay attention to the cavity geometry for stability reasons (not presented here)
- Complete tool for the design of optics and stability we made published on *ArXiv*. Resonant behavior and stability of a linear three-mirror cavity

Prototype implementation at IJCLab

Experiment still ongoing but very promising: all the measurements analyzed for now confirm our model

Other/future work on this topic

- We are doing simulations of squeezing filtering through a three-mirror cavity
- Preparation for the implementation of a suspended 50m scale prototype at IJCLab

<u>Thanks to its adaptability, three-mirror cavity</u> could be a <u>powerful</u> <u>device for the optimization of squeezing filtering</u> especially in the case of Einstein Telescope

2024/10/01

Condition for doubling of transmission peak

Macroscopic mirrors spacing

