SciFi beam detector: Introduction/reminder of this detector for the beam time 2024

Angela Papa April 4-5 2024 muEDM collaboration meeting

The SciFi detector

- Characteristics:
 - quasi-non-invasive
 - high rate sustainable
 - able to work in magnetic field
 - in vacuum
 - if possible: permanently mounted along the beam line (movable to prevent radiation damage)
 - <u>to measure</u>: beam profile and rate even over the physics run

SciFi detector - MC and TOY MC for the optimal design

- Beam reconstruction and misalignment (MC and TOY MC)
 - Studied configurations: Fibre Pitch = [2, 10] mm, Beam shifts: [1, 20] mm, Beam spot (σ) = [5, 20] mm

Example of TOY: $\delta_R = R_{rec}/R_{sim}$

 χ^2 / ndf = 18.91 / 28

p [MeV]

TOY MC pitch 5 mm

SciFi in air: The first detector

- Main features:
 - Beam profile and rate in few seconds of exposure online monitoring. Particle ID. Not invasive. Insensitive to magnetic field.
- A fibre grid: 2 layers (X,Y)
- Fibre/layer: 21
- Fibre length (free from the frame)~ 200 mm
- Fibre pitch (from center to center, to be cross-checked): 5 mm
- Total number of channels (double readout): 84
- Fibres: Saint Gobain Double cladding square 500 um
- Photosensors: Hamamatsu MPPC S13360-1350CS
- Power: ~ 55.0 V
- Pre-amplifiers: (PSI/Wavedream) gain = 1-100
- DAQ + TRG: WaveDAQ + "OR" of all "AND" from SiPM on the same fibre
- Version: Detector in vacuum (the first detector, the so called "Prototype" was in "air")
- Final version: in vacuum and movable

SciFi in air: The first detector at work

SciFi detector - The version in vacuum

- Main features:
 - Beam profile and rate in few seconds of exposure online monitoring. Particle ID. Not invasive. Insensitive to magnetic field.
- A fibre grid: 2 layers (X,Y)
- Fibre/layer: 21
- Fibre length (free from the frame)~ 200 mm
- Fibre pitch (from center to center, to be cross-checked): 5 mm
- Total number of channels (double readout): 84
- Fibres: Saint Gobain Double cladding square 500 um
- Photosensors: Hamamatsu MPPC S13360-1350CS
- Power: ~ 55.0 V
- Pre-amplifiers: (PSI/Wavedream) gain = 1-100
- DAQ + TRG: WaveDAQ + "OR" of all "AND" from SiPM on the same fibre
- Version: Detector in vacuum (the first detector, the so called "Prototype" was in "air")
- Final version: in vacuum and movable

SciFi detector - at work

• Main features:

- Beam profile and rate in few seconds of exposure
 online monitoring. Particle ID. Not invasive.
 Insensitive to magnetic field.
- A fibre grid: 2 layers (X,Y)
- Fibre/layer: 21
- Fibre length ~ 200 mm
- Fibre pitch: 5 mm
- Total number of channels (double readout): 84
- Fibres: Saint Gobain Double cladding square 500 um
- Photosensors: Hamamatsu MPPC S13360-1350CS
- Power: ~ 55.0 V
- Pre-amplifiers: (PSI/Wavedream) gain = 1-100
- DAQ + TRG: WaveDAQ + "OR" of all "AND" from SiPM on the same fibre
- Version: Detector in vacuum (the first detector, the so called "Prototype" was in "air")
- Final version: in vacuum and movable

Measured beam profile and rate consistent with the default pill detector within < 5%. Beam line: pie5; particles: 28 MeV/c positive muons

Beam profile and rate

Example of beam intensity drop as detected by the Sampling SciFi

Particle ID

based only on the measured charge

Clear separation between minimum ionizing positrons and ``low energy" muons ИŤ

Particle ID for mip

- •
- p = 115 MeV/c (piM1)

Minimum ionizing particle separation adding the time-of-flight measurement (w.r.t. the accelerator radio-frequency)

Muon range curve

- Steps: 50 um thick mylar foils, charge threshold: 1.3 Nphe •

• Result: (mylar equiv.) 534 ± 7 (stat) ± 3 um (sys) [fully consistent with pill counter measurements and MC simulations]

A bit more...

- New feature: correlation parameter measurement. •
 - A first test using the T(DAQ) scalers has been done and looked promising

SciFi: MC simulation Mu037MeV1e7Layer0poly Entries 441 -0.1182 0.02979 14.79 20.82 . 0 20 60 40

A bit more...

- New feature: correlation parameter measurement. •
 - A first test using the T(DAQ) scalers has been done and looked promising

Outlook

- The detector is available for the beam time
- More (young) people will be involved to operated it

